Certifying Parity Reasoning Efficiently Using Pseudo-Boolean Proofs

Stephan Gocht, Jakob Nordström

February 2021

 \blacktriangleright formally verify solver? usually not feasible / too costly

 \blacktriangleright formally verify solver? usually not feasible / too costly

 \blacktriangleright instead: formally verify answer!

 \blacktriangleright formally verify solver? usually not feasible / too costly

 \triangleright instead: formally verify answer!

 \blacktriangleright formally verify solver? usually not feasible / too costly

 \triangleright instead: formally verify answer!

 \blacktriangleright formally verify solver? usually not feasible / too costly

instead: formally verify answer!

 \blacktriangleright formally verify solver? usually not feasible / too costly

instead: formally verify answer!

 \blacktriangleright formally verify solver? usually not feasible / too costly

instead: formally verify answer!

SAT Solving - A Success Story for Certifying Algorithms ...

 \triangleright SAT = satisfiability testing of propositional formulas

 \triangleright SAT competition requires solver to produce certificate (aka proof logging)

SAT Solving — A Success Story for Certifying Algorithms . . .

- \triangleright SAT = satisfiability testing of propositional formulas
- ▶ SAT competition requires solver to produce certificate (aka proof logging)
- ▶ Proof formats such as RUP [\[GN03\]](#page-54-0), TraceCheck [\[Bie06\]](#page-53-0), GRIT [\[CFMSSK17\]](#page-54-1), LRAT $[CFHH+17]$ $[CFHH+17]$; DRAT $[WHH14]$ has become standard.

SAT Solving — A Success Story for Certifying Algorithms . . .

- \triangleright SAT = satisfiability testing of propositional formulas
- \triangleright SAT competition requires solver to produce certificate (aka proof logging)
- ▶ Proof formats such as RUP [\[GN03\]](#page-54-0), TraceCheck [\[Bie06\]](#page-53-0), GRIT [\[CFMSSK17\]](#page-54-1), LRAT $[CFHH+17]$ $[CFHH+17]$; DRAT $[WHH14]$ has become standard.

 \blacktriangleright certificates can help to

- \blacktriangleright prove correctness of answer
- \triangleright detect and fix bugs, even when solver produced correct answer
- **D** audit answer later on
- \triangleright explain what solver is doing

. . . Except for SAT Solving Techniques That Can't Be Certified

- \triangleright too much overhead / too complicated proof logging for
	- **Parity reasoning** (as in CryptoMiniSat [\[Cry\]](#page-54-2) and Lingeling [\[Lin\]](#page-55-0))
	- \triangleright Counting arguments (as in Lingeling)
	- \triangleright Symmetry breaking (as in BreakID [\[Bre\]](#page-53-2))
	- \Rightarrow no available implementations for proof logging

In Not using these techniques \Rightarrow exponential loss in reasoning power / performance

. . . Except for SAT Solving Techniques That Can't Be Certified

- \triangleright too much overhead / too complicated proof logging for
	- **Parity reasoning** (as in CryptoMiniSat [\[Cry\]](#page-54-2) and Lingeling [\[Lin\]](#page-55-0))
	- \triangleright Counting arguments (as in Lingeling)
	- \triangleright Symmetry breaking (as in BreakID [\[Bre\]](#page-53-2))
	- \Rightarrow no available implementations for proof logging
- In Not using these techniques \Rightarrow exponential loss in reasoning power / performance
- \blacktriangleright How about practical proof logging for stronger solving paradigms?
	- \blacktriangleright MaxSAT solving
	- \blacktriangleright constraint programming (CP)
	- \blacktriangleright mixed integer programming (MIP)
	- \triangleright algebraic reasoning / Gröbner basis computations
	- \blacktriangleright pseudo-Boolean satisfiablity and optimization

many new proof systems with implemented proof checkers:

- **Demogration redundancy (PR) [\[HKB17a\]](#page-55-1)**
- ▶ practical polynomial calculus (PAC) [\[RBK18,](#page-56-0) [KFB20\]](#page-55-2)
- **Demon propagation redundancy for BDDs [\[BB21\]](#page-53-3)**
- \triangleright Max-SAT resolution [\[PCH21\]](#page-56-1)
- **Desimale Boolean proofs [\[EGMN20,](#page-54-3) [GN21\]](#page-54-4)**

SAT + Parity Reasoning

basic algorithm:

Search + smart look ahead + learning from failure (CDCL)

$SAT + Parity Reasoning$

basic algorithm:

- \triangleright search + smart look ahead + learning from failure (CDCL)
- ▶ Gaussian elimination on XORs [\[SNC09,](#page-57-1) [HJ12\]](#page-55-3) to detect
	- \triangleright propagation (forced values)
	- \triangleright contradiction (no solution)

$SAT + Parity Reasoning$

basic algorithm:

- Search + smart look ahead + learning from failure (CDCL)
- ▶ Gaussian elimination on XORs [\[SNC09,](#page-57-1) [HJ12\]](#page-55-3) to detect
	- \blacktriangleright propagation (forced values)
	- \triangleright contradiction (no solution)

applications:

- \triangleright solving cryptographic problems
- \blacktriangleright approximate counting
- \blacktriangleright circuit verification
- $x_1 + x_2 + x_3 > 1$ $x_1 + \bar{x}_2 + \bar{x}_3 > 1$ $\bar{x}_1 + x_2 + \bar{x}_3 > 1$ $\bar{x}_1 + \bar{x}_2 + x_3 > 1$ $\bar{x}_2 + x_3 > 1$
	- $x_2 + \bar{x}_3 > 1$
- \triangleright Boolean variable x with domain 0 (false) or 1 (true)
- lacktriangleright Literal: x or its negation $\bar{x} = 1 x$
- **Pseudo-Boolean constraint:** linear (in-)equality over literals
- \blacktriangleright Clause: at-least-one constraint
- \triangleright Parity / XOR: equality modulo 2 notation: $x_1 \oplus x_2 \oplus x_3 = 1$
- \triangleright Assignment: function mapping variables to $\{0,1\}$
- ▶ VeriPB Proof Format (PBP):
	- ▶ based on pseudo-Boolean constraints
	- \blacktriangleright has operations to reason with PB constraints

Goal: find assignment satisfying all constraints

• only satisfied if $x_1 = 1$

- $x_1 + x_2 + x_3 > 1$ $x_1 + \bar{x}_2 + \bar{x}_3 > 1$ $\bar{x}_1 + x_2 + \bar{x}_3 > 1$ $\bar{x}_1 + \bar{x}_2 + x_3 > 1$
	- $\bar{x}_2 + x_3 > 1$ $x_2 + \bar{x}_3 > 1$
- \triangleright Boolean variable x with domain 0 (false) or 1 (true)
- lacktriangleright Literal: x or its negation $\bar{x} = 1 x$
- **Pseudo-Boolean constraint:** linear (in-)equality over literals
- \blacktriangleright Clause: at-least-one constraint
- \triangleright Parity / XOR: equality modulo 2 notation: $x_1 \oplus x_2 \oplus x_3 = 1$
- \triangleright Assignment: function mapping variables to $\{0,1\}$
- ▶ VeriPB Proof Format (PBP):
	- ▶ based on pseudo-Boolean constraints
	- \blacktriangleright has operations to reason with PB constraints

Goal: find assignment satisfying all constraints

Claim:

$$
\left.\begin{array}{l} x_1+x_2+x_3\geq 1\\ x_1+\bar{x}_2+\bar{x}_3\geq 1\\ \bar{x}_1+x_2+\bar{x}_3\geq 1\\ \bar{x}_1+\bar{x}_2+x_3\geq 1\\ \bar{x}_2+x_3\geq 1\\ x_2+\bar{x}_3\geq 1 \end{array}\right\}
$$

clausal encoding of $x_1 \oplus x_2 \oplus x_3 = 1$

$$
x_2\oplus x_3=0
$$

Claim:

• only satisfied if $x_1 = 1$

$$
\left.\begin{array}{l} x_1 + x_2 + x_3 \geq 1 \\ x_1 + \bar{x}_2 + \bar{x}_3 \geq 1 \\ \bar{x}_1 + x_2 + \bar{x}_3 \geq 1 \\ \bar{x}_1 + \bar{x}_2 + x_3 \geq 1 \\ \bar{x}_2 + x_3 \geq 1 \\ x_2 + \bar{x}_3 \geq 1 \end{array}\right\}
$$

clausal encoding of $x_1 \oplus x_2 \oplus x_3 = 1$

$$
x_2\oplus x_3=0
$$

Claim:

• only satisfied if $x_1 = 1$

How can we formalize this?

Stephan Gocht — stephan.gocht@cs.lth.se [Certified Parity Reasoning](#page-0-0) 7/ 14

Step 1: Translate XORs $x_1 + x_2 + x_3 \geq 1$ $x_1 + \bar{x}_2 + \bar{x}_3 \ge 1$ $\bar{x}_1 + x_2 + \bar{x}_3 \ge 1$ $\bar{x}_1 + \bar{x}_2 + x_3 > 1$ \mathcal{L} \int clausal encoding of $x_1 \oplus x_2 \oplus x_3 = 1$ $\bar{x}_2 + x_3 \geq 1$ $x_2 + \bar{x}_3 \ge 1$ \mathcal{L} $x_2 \oplus x_3 = 0$

Step 1: Translate XORs $x_1 + x_2 + x_3 \geq 1$ $x_1 + \bar{x}_2 + \bar{x}_3 \ge 1$ $\bar{x}_1 + x_2 + \bar{x}_3 \ge 1$ $\bar{x}_1 + \bar{x}_2 + x_3 > 1$ \mathcal{L} \int clausal encoding of $x_1 \oplus x_2 \oplus x_3 = 1$ $\bar{x}_2 + x_3 \geq 1$ $x_2 + \bar{x}_3 \ge 1$ \mathcal{L} $x_2 \oplus x_3 = 0$

Step 2: XOR reasoning (via Gaussian elimination) add both XORs $x_1 = 1$

Step 1: Translate XORs $x_1 + x_2 + x_3 \ge 1$ $x_1 + \bar{x}_2 + \bar{x}_3 \ge 1$ clausal encoding of $\bar{x}_1 + x_2 + \bar{x}_3 \ge 1$ $\bar{x}_1 + \bar{x}_2 + x_3 > 1$ \mathcal{L} \int $x_1 \oplus x_2 \oplus x_3 = 1$ $\bar{x}_2 + x_3 \geq 1$ $x_2 + \bar{x}_3 \ge 1$ \mathcal{L} $x_2 \oplus x_3 = 0$

Step 2: XOR reasoning (via Gaussian elimination) add both XORs

$$
x_1=1
$$

Step 3: Reason clause generation

 $x_1 > 1$

Step 1: Translate XORs

$$
\left.\begin{array}{l}\nx_1 + x_2 + x_3 \ge 1 \\
x_1 + \overline{x}_2 + \overline{x}_3 \ge 1 \\
\overline{x}_1 + x_2 + \overline{x}_3 \ge 1 \\
\overline{x}_1 + \overline{x}_2 + x_3 \ge 1 \\
\overline{x}_2 + x_3 \ge 1 \\
x_2 + \overline{x}_3 \ge 1\n\end{array}\right\} \text{ clausal encoding of } \Rightarrow \text{ convert to pseudo-Boolean constraint } x_1 + x_2 + x_3 = 1 + 2y_1
$$
\n
$$
\left.\begin{array}{l}\n\overline{x}_1 + x_2 + x_3 \ge 1 \\
\overline{x}_2 + x_3 \ge 1 \\
x_2 + \overline{x}_3 \ge 1\n\end{array}\right\} \qquad\n\left.\begin{array}{l}\n\overline{x}_1 + x_2 + x_3 \ge 1 \\
\overline{x}_2 + x_3 \ge 1 \\
\overline{x}_2 + \overline{x}_3 \ge 1\n\end{array}\right\} \qquad\n\left.\begin{array}{l}\n\overline{x}_1 + x_2 + x_3 \ge 1 \\
\overline{x}_2 + x_3 \ge 1 \\
\overline{x}_2 + \overline{x}_3 \ge 1\n\end{array}\right\} \qquad\n\left.\begin{array}{l}\n\overline{x}_1 + x_2 + x_3 \ge 1 \\
\overline{x}_2 + x_3 \ge 1 \\
\overline{x}_2 + \overline{x}_3 \ge 1\n\end{array}\right\}
$$

Step 2: XOR reasoning (via Gaussian elimination) add both XORs

$$
x_1 = 1
$$

Step 3: Reason clause generation

 $x_1 > 1$

Step 1: Translate XORs $x_1 + x_2 + x_3 > 1$ $x_1 + \bar{x}_2 + \bar{x}_3 \ge 1$ $\bar{x}_1 + x_2 + \bar{x}_3 > 1$ $\bar{x}_1 + \bar{x}_2 + x_3 > 1$ \mathcal{L} \int clausal encoding of $x_1 \oplus x_2 \oplus x_3 = 1$ \Rightarrow convert to pseudo-Boolean constraint $x_1 + x_2 + x_3 = 1 + 2y_1$ $\bar{x}_2 + x_3 \geq 1$ $x_2 + \bar{x}_3 \ge 1$ \mathcal{L} $x_2 \oplus x_3 = 0 \Rightarrow x_2 + x_3 = 0 + 2y_2$

Step 2: XOR reasoning (via Gaussian elimination)

$$
x_1 = 1
$$

add both XORs add both pseudo-Boolean constraints $x_1 + 2x_2 + 2x_3 = 1 + 2y_1 + 2y_2$

Step 3: Reason clause generation

 $x_1 > 1$

Step 1: Translate XORs $x_1 + x_2 + x_3 > 1$ $x_1 + \bar{x}_2 + \bar{x}_3 \ge 1$ $\bar{x}_1 + x_2 + \bar{x}_3 > 1$ $\bar{x}_1 + \bar{x}_2 + x_3 > 1$ \mathcal{L} \int clausal encoding of $x_1 \oplus x_2 \oplus x_3 = 1$ \Rightarrow convert to pseudo-Boolean constraint $x_1 + x_2 + x_3 = 1 + 2y_1$ $\bar{x}_2 + x_3 \geq 1$ $x_2 + \bar{x}_3 \ge 1$ \mathcal{L} $x_2 \oplus x_3 = 0 \Rightarrow x_2 + x_3 = 0 + 2y_2$

Step 2: XOR reasoning (via Gaussian elimination)

add both XORs add both pseudo-Boolean constraints $x_1 = 1$ $x_1 + 2x_2 + 2x_3 = 1 + 2y_1 + 2y_2$

Step 3: Reason clause generation

 $x_1 \geq 1$ $x_1 \geq 1$

Step 1: Translate XORs $x_1 + x_2 + x_3 > 1$ $x_1 + \bar{x}_2 + \bar{x}_3 \ge 1$ $\bar{x}_1 + x_2 + \bar{x}_3 > 1$ $\bar{x}_1 + \bar{x}_2 + x_3 > 1$ \mathcal{L} \int clausal encoding of $x_1 \oplus x_2 \oplus x_3 = 1$ \Rightarrow convert to pseudo-Boolean constraint $x_1 + x_2 + x_3 = 1 + 2y_1$ $\bar{x}_2 + x_3 \geq 1$ $x_2 + \bar{x}_3 \ge 1$ \mathcal{L} $x_2 \oplus x_3 = 0 \Rightarrow x_2 + x_3 = 0 + 2y_2$

Step 2: XOR reasoning (via Gaussian elimination)

add both XORs add both pseudo-Boolean constraints $x_1 = 1$ $x_1 + 2x_2 + 2x_3 = 1 + 2y_1 + 2y_2$

Step 3: Reason clause generation

 $x_1 \geq 1$ $x_1 \geq 1$

All steps easily expressible in VeriPB!

Stephan Gocht — stephan.gocht@cs.lth.se [Certified Parity Reasoning](#page-0-0) 8/ 14

legend: \checkmark can be verified, \checkmark does not need to be verified, \checkmark can not be verified

replace CNF encoding with internal XOR datastructure \checkmark

- replace CNF encoding with internal XOR datastructure \checkmark
- use gaussian elimination to detect propagation \checkmark

- replace CNF encoding with internal XOR datastructure \checkmark
- use gaussian elimination to detect propagation \checkmark
- generate reason clause \checkmark

- replace CNF encoding with internal XOR datastructure \checkmark
- use gaussian elimination to detect propagation \checkmark
- \vee generate reason clause
- detect CNF encoding of XORs with bloom filters [\[SM19\]](#page-57-2) \sim

- replace CNF encoding with internal XOR datastructure \checkmark
- use gaussian elimination to detect propagation \checkmark
- \vee generate reason clause
- detect CNF encoding of XORs with bloom filters [\[SM19\]](#page-57-2)
- \vee blast and recover XORs for inprocessing [\[SM19\]](#page-57-2)

- replace CNF encoding with internal XOR datastructure \checkmark
- use gaussian elimination to detect propagation \checkmark
- \vee generate reason clause
- detect CNF encoding of XORs with bloom filters [\[SM19\]](#page-57-2) \sim
- \vee blast and recover XORs for inprocessing [\[SM19\]](#page-57-2)
- use watched literals structure [\[HJ12\]](#page-55-3)

- \checkmark replace CNF encoding with internal XOR datastructure
- \vee use gaussian elimination to detect propagation
- \vee generate reason clause
- detect CNF encoding of XORs with bloom filters [\[SM19\]](#page-57-2) \sim
- \vee blast and recover XORs for inprocessing [\[SM19\]](#page-57-2)
- use watched literals structure [\[HJ12\]](#page-55-3)
- use sophisticated bit parallelism [\[HJ12,](#page-55-3) [SGM20\]](#page-56-2)

- replace CNF encoding with internal XOR datastructure \checkmark
- \vee use gaussian elimination to detect propagation
- \vee generate reason clause
- detect CNF encoding of XORs with bloom filters [\[SM19\]](#page-57-2)
- \vee blast and recover XORs for inprocessing [\[SM19\]](#page-57-2)
- ← use watched literals structure [\[HJ12\]](#page-55-3)
- \sim use sophisticated bit parallelism [\[HJ12,](#page-55-3) [SGM20\]](#page-56-2)
- sa generate reason clause only lazyly [\[SGM20\]](#page-56-2)

legend: \checkmark can be verified, \checkmark does not need to be verified, \checkmark can not be verified

- replace CNF encoding with internal XOR datastructure \checkmark
- \vee use gaussian elimination to detect propagation
- \vee generate reason clause
- detect CNF encoding of XORs with bloom filters [\[SM19\]](#page-57-2)
- \vee blast and recover XORs for inprocessing [\[SM19\]](#page-57-2)
- use watched literals structure [\[HJ12\]](#page-55-3)
- \sim use sophisticated bit parallelism [\[HJ12,](#page-55-3) [SGM20\]](#page-56-2)
- generate reason clause only lazyly [\[SGM20\]](#page-56-2)

Note:

- \triangleright proof logging verifies that propagations are correct
- \triangleright no guarantee that all propagations detected

legend: \checkmark can be verified, \checkmark does not need to be verified, \checkmark can not be verified

- replace CNF encoding with internal XOR datastructure
- \vee use gaussian elimination to detect propagation
- \vee generate reason clause
- detect CNF encoding of XORs with bloom filters [\[SM19\]](#page-57-2)
- \vee blast and recover XORs for inprocessing? [\[SM19\]](#page-57-2)
- use watched literals structure [\[HJ12\]](#page-55-3)
- \sim use sophisticated bit parallelism [\[HJ12,](#page-55-3) [SGM20\]](#page-56-2)
- generate reason clause only lazyly [\[SGM20\]](#page-56-2)

Note:

- \triangleright proof logging verifies that propagations are correct
- \blacktriangleright no guarantee that all propagations detected
- \triangleright SAT inprocessing requires to generalize DRAT (next slides)

More Notation

 \triangleright (partial) substitution $\omega = \{ y_1 \mapsto 0 \}$ function that maps variables to literals or $\{0,1\}$

 \blacktriangleright variable substitution

$$
(x_1 + x_2 + x_3 \ge 2y_1)_{\vert \omega} = x_1 + x_2 + x_3 \ge 0
$$

 \blacktriangleright $F \models F'$: satisfying assignment to F is also satisfying assignment to F'

Substitution Redundancy (generalizing [\[HKB17b,](#page-55-4) [BT19\]](#page-53-4) to pseudo-Boolean) Can add constraint C to formula F if and only if there is a witnessing partial substitution ω such that

 $F \wedge \neg C \models (F \wedge C)_{\alpha}$

 \triangleright C need not be implied, but F satisfiable if and only if $F \wedge C$ satisfiable

Substitution Redundancy (generalizing [\[HKB17b,](#page-55-4) [BT19\]](#page-53-4) to pseudo-Boolean) Can add constraint C to formula F if and only if there is a witnessing partial substitution ω such that

 $F \wedge \neg C \models (F \wedge C)_{\alpha}$

► C need not be implied, but F satisfiable if and only if $F \wedge C$ satisfiable as stated, to good to be true: can derive contradiction in one step

Substitution Redundancy (generalizing [\[HKB17b,](#page-55-4) [BT19\]](#page-53-4) to pseudo-Boolean) Can add constraint C to formula F if and only if there is a witnessing partial substitution ω such that

 $F \wedge \neg C \models (F \wedge C)_{\alpha}$

► C need not be implied, but F satisfiable if and only if $F \wedge C$ satisfiable as stated, to good to be true: can derive contradiction in one step \triangleright make efficiently verifiable by insisting implication easy to check

Substitution Redundancy (generalizing [\[HKB17b,](#page-55-4) [BT19\]](#page-53-4) to pseudo-Boolean) Can add constraint C to formula F if and only if there is a *witnessing* partial substitution ω such that

 $F \wedge \neg C \models (F \wedge C)_{\alpha}$

- ► C need not be implied, but F satisfiable if and only if $F \wedge C$ satisfiable
- \triangleright as stated, to good to be true: can derive contradiction in one step
- \triangleright make efficiently verifiable by insisting implication easy to check
- \triangleright generalizes DRAT [\[HKB17b\]](#page-55-4)
- $\triangleright \Rightarrow$ all SAT pre- and inprocessing techniques covered

For fresh variable y_1 (not appearing in F), want to add...

$$
C: \quad x_1+x_2+x_3 \geq 2y_1
$$

For fresh variable y_1 (not appearing in F), want to add...

$$
C: x_1 + x_2 + x_3 \geq 2y_1
$$

Choose witness $\omega = \{ y_1 \mapsto 0 \}$ Check condition $F \wedge \neg C \models (F \wedge C)_{\upharpoonright \omega}$, i.e.,

 $F \wedge (x_1 + x_2 + x_3 < 2y_1) \models F \wedge (x_1 + x_2 + x_3 > 2y_1)_{\text{tot}}$

For fresh variable y_1 (not appearing in F), want to add...

$$
C: x_1 + x_2 + x_3 \geq 2y_1
$$

Choose witness $\omega = \{ y_1 \mapsto 0 \}$ Check condition $F \wedge \neg C \models (F \wedge C)_{\upharpoonright \omega}$, i.e.,

 $F \wedge (x_1 + x_2 + x_3 < 2y_1) = F \wedge (x_1 + x_2 + x_3 > 0)$

For fresh variable y_1 (not appearing in F), want to add...

$$
C: x_1 + x_2 + x_3 \geq 2y_1
$$

Choose witness $\omega = \{ y_1 \mapsto 0 \}$ Check condition $F \wedge \neg C \models (F \wedge C)_{\upharpoonright \omega}$, i.e.,

$$
F \wedge (x_1 + x_2 + x_3 < 2y_1) \models F \wedge (x_1 + x_2 + x_3 \ge 0)
$$

concrete proof format:

red 1 x1 +1 x2 +1 x3 -2 y1 >= 0 ; y1 -> 0

Experiments

- Implemented "plug and play" XorEngine with proof logging¹ in MiniSAT²
- \blacktriangleright Evaluated on crafted benchmarks (Tseitin-Formulas) represent worst case with single large XOR matrix
- \triangleright DRAT proof for comparison [\[PR16\]](#page-56-3)

1 <https://gitlab.com/MIAOresearch/xorengine> 2 https://gitlab.com/MIAOresearch/minisat_with_xorengine

Stephan Gocht — stephan.gocht@cs.lth.se [Certified Parity Reasoning](#page-0-0) 13/14

Conclusion

- \triangleright proof logging is well-established standard for SAT solving
- \triangleright so far, prohibitively expensive for some techniques (XOR reasoning, counting arguments, symmetry breaking)

Conclusion

- \triangleright proof logging is well-established standard for SAT solving
- \triangleright so far, prohibitively expensive for some techniques (XOR reasoning, counting arguments, symmetry breaking)
- Our work: Proof logging for SAT solving and XOR reasoning with VeriPB³
	- \triangleright simple to implement $+$ efficient proof checking

3 <https://gitlab.com/MIAOresearch/VeriPB>

Conclusion

- \triangleright proof logging is well-established standard for SAT solving
- \triangleright so far, prohibitively expensive for some techniques (XOR reasoning, counting arguments, symmetry breaking)
- Our work: Proof logging for SAT solving and XOR reasoning with VeriPB³
	- \triangleright simple to implement $+$ efficient proof checking

Future work:

- \triangleright capture more types of reasoning within SAT solvers
	- \triangleright counting arguments (should be straightforward)
	- \blacktriangleright symmetry breaking
- \triangleright provide efficient proof logging also for other paradigms (MaxSAT, pseudo-Boolean optimization, MIP)
- \blacktriangleright new expressive proof formats and verifiers for competitions (why not with VeriPB ;-))

³ <https://gitlab.com/MIAOresearch/VeriPB>

References I

References II

References III

[HJ12] Cheng-Shen Han and Jie-Hong Roland Jiang. When boolean satisfiability meets Gaussian elimination in a Simplex way. In Computer Aided Verification, CAV, pages 410–426, 2012. [HKB17a] Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere. Short proofs without new variables. In Leonardo de Moura, editor, Automated Deduction - CADE 26 - 26th International Conference on Automated Deduction, Gothenburg, Sweden, August 6-11, 2017, Proceedings, volume 10395 of Lecture Notes in Computer Science, pages 130–147. Springer, 2017. [HKB17b] Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere. Short proofs without new variables. In Proceedings of the 26th International Conference on Automated Deduction (CADE-26), volume 10395 of Lecture Notes in Computer Science, pages 130–147. Springer, August 2017. [KFB20] Daniela Kaufmann, Mathias Fleury, and Armin Biere. The proof checkers pacheck and past \tilde{A} que for the practical algebraic calculus. In Ofer Strichman and Alexander Ivrii, editors, Formal Methods in Computer-Aided Design, FMCAD 2020., volume 1, pages 264–269. TU Vienna Academic Press, 2020. [Lin] Lingeling, Plingeling and Treengeling. <http://fmv.jku.at/lingeling/>.

References IV

References V

[SM19] Mate Soos and Kuldeep S. Meel. BIRD: engineering an efficient CNF-XOR SAT solver and its applications to approximate model counting. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages 1592–1599, 2019. [SNC09] Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT Solvers to Cryptographic Problems. In Proc. of SAT, 2009. [WHH14] Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt Jr. DRAT-trim: Efficient checking and trimming using expressive clausal proofs. In Proceedings of the 17th International Conference on Theory and Applications of Satisfiability Testing (SAT '14), volume 8561 of Lecture Notes in Computer Science, pages 422–429. Springer, July 2014.