

SALMON - An Architecture to Define, Store, Monitoring and Billing ISLAs

in a Server Farm

Juliana Silva da Cunha (jsc@cin.ufpe.br)1, Karen Appleby-Hougham (applebyk@us.ibm.com)2,
German Goldszmidt (german@us.ibm.com)2 and Fabio Q. B. da Silva (fabio@cin.ufpe.br)1

ABSTRACT

Salmon (Service Agreement Levels for Monitoring Océano coNtracts) defines an architecture
and prototype implementation of a system to specify and maintain Infrastructure Service
Level Agreements (ISLAs). A contract is used to establish an ISLA between a customer and a
service provider. Each contract includes multiple sections, such as report definition, violation
policy descriptions, penalties for disruption of service and charging. Salmon will evaluate that
the service provider has a sufficient number of resources to support the defined service level.
Salmon will monitor the enforcement of the contract and will trigger the policy engine
whenever a violation occurs. Contract violations are expressed as policies, which include a
violation scenario, start and stop time, the monitor and an action that must be fired in order to
calculate the violation penalty. The action is a procedure to correct the problem, and/or apply
a monetary penalty on the service provider. A charging engine is responsible for the billing
calculations. We address the problem of ISLA definition by using customer feedback and
providing a flexible way to define and monitor the quality of service.

Keywords: Service Level Agreements, Service Billing, Network and System Monitoring

1. INTRODUCTION

Salmon defines an architecture to specify and maintain Infrastructure Service Level
Agreements (ISLAs). It was developed as part of a larger project, Océano, which is a
prototype of a highly available, scalable, and manageable infrastructure for an e-business
computing utility [1]. It enables multiple customers to be hosted on a collection of shared
resources. However, at any point of time, each resource is assigned for use to only a single
hosted customer. That is, the hosting environment is divided into smaller, secure domains,
each supporting one customer. These domains are dynamic: the resources assigned to them
may be augmented when load increases and reduced when load dips. Océano manages the
resources of the computing utility so that each customer has the resources necessary to
provide a contracted level of service as specified by an Infrastructure Service Level
Agreement (ISLA) [3]. ISLAs are defined using a Contract and then translated into system
metrics that are monitored. Monitoring agents issue events when thresholds are exceeded or
failures occur. Events are correlated to identify root causes [2].

The relationship between the customer and the provider begins with the definition of a
contract that satisfies the service requirements. Ideally, the provider’s infrastructure should
offer the necessary resources, a fair pricing model and flexibility in dealing with changes.

This paper presents the approach used in Océano to define, store, monitor and bill ISLAs. A
high-level contract, between the customer and the provider, specifies “business requirements”
such as scenarios definition, appropriate QoS metrics, Infrastructure Service Level guarantees
and a charging model. This contract is translated into a set of interpreted policies that are then
monitored and enforced. A GUI interface is used to make updates in the contract, and to
generate customized reports.

1 Federal University of Pernambuco
2 IBM – T.J. Watson Research Center

149

The rest of this paper is organized is follow: Section 2 describes the ISLA Contract, Section 3
describes the policy language that is used to represent the information specified in the
contract; Section 4 presents the contract life-cycle process; Section 5 defines the architecture
used to define, represent, monitor and charge ISLAs, and Section 6 discusses the prototype
that was implemented.

2. THE ISLA CONTRACT

An Infrastructure Service Level Agreement is a contract between the provider and the
customer that guarantees levels of services [12] and relates them to an economic model [4, 5,
6, 7]. The proposed contract supports the definition of partners, qualities of services,
resources, violation policies, a charging model and reporting requirements. In this section we
will present the Océano ISLA contract definition and the hierarchy that allows contract
aggregation.

2.1. The Contract Definition

The contract template defined for Océano has 6 sections: Header, Customers, Scenarios,
Violation, Charging and Report. These sections contain components that are purely
informational and those that involve monitored elements. The focus of this work remains on
monitored elements. A description of each section follows:

Informational

Header Section

The Header Section contains generic data about the contract, which is not monitored by the
farm. Following is an example:

Contract Identification - Contract for ABC Company
Duration

StartDate - 01/10/2001 EndDate - 02/10/2002
Version - 2.0
Level - Main
Responsible – John O’Connor
Role Players Definition:

RolePlayer 1
Identification Name – Customer
Organization Name - ABC Company
Main Contact
 Name – Andrew White
 Address – 99, ABC Road
 e-Mail – andreww@abc.com
 Telephone – (914)999-9999
 FAX - (914)888-8888

RolePlayer 2
Identification Name - Provider
Organization Name – Oceano Project
Main Contact
 Name – John O’Connor
 Address – 99, XYZ Road
 e-Mail – john@abc.com
 Telephone – (914)555-5555
 FAX - (914)666-6666

Services: Backup Service, Firewall

The contract level is used to build the contract hierarchy (see Section 2.2).

By default every contract has 2 role players: the customer and the provider. This section
also includes a list of the services contracted by the customers, e.g., backup services.

150 LANOMS 2001

Monitored Sections

Customer Configuration Section

This section has two purposes. The first is to configure the values that describe the
customer segments. Each customer segment specifies different classes of traffic that may
have specific ISLA requirements (ex: browsing traffic, e-commerce traffic). Some of the
fields that must be filled are: the identification number, description, level, priority, port
number, virtual IP address and server pool identification number, etc. For example:

CustomerID="11"

CustomerSegID="9000111"

 CustomerSegDS - Description of Segment 111

 CustSegLevel - 1

 VipAddr – 1.2.3.4

 SegPortNo - 111

 Priority - 1

 ServerPoolID - 119000111

The second purpose is to specify the requirements that are defined for each customer
segment. These requirements define the ISLA metrics that must be used in the load
calculations and that characterize the desired QoS. The ISLA metrics chosen should be
measurable and reliable. A more detailed explanation about the metrics is in [1]. Some
examples are:

• Active Connections/server - The average number of active connections on a
server.

• Overall Response Time - Average time it takes for any request to be processed.

• Output Bandwidth - Average number of outbound bytes per second per server.

• DB Response Time - Average time it takes for any request to be processed by the
back-end DB.

Servers are allocated and deallocated based of threshold equations over these metrics. The
following three parameters are used to control this process.

• Maximum Server Load – A value that is based on a combination of metrics that
defines the point when the response time begins to deteriorate rapidly in response
to load.

• Minimum Server Load – Arbitrary point below the maximum where the load
curve is smooth.

• Load Calculation Function – This function is selected by the customers and is
used to compute the load based on allocation and deallocation thresholds. These
thresholds are a percentage of the minimum and maximum server load and are
used to trigger the server allocation process.

ISLA Scenarios Definition Section

The set of defined scenarios specifies how to allocate and de-allocate servers in order to
achieve the quality of service agreed upon. Each scenario is defined as follow:

• Server Requirements – defined in terms of floor, guaranteed-scalability-point,
and ceiling values. The floor value defines the minimum number of servers that
must be available to the customer at all times. The guaranteed-scalability-point
defines the number of servers that are guaranteed to be available for allocation.

151Network Management as a Strategy for Evolution and Development

The ceiling value defines the maximum number of servers that can be allocated to
the customer.

• Allocation Thresholds - defines the thresholds to be used to triger server
allocations and deallocations. These are given in terms of the server minimum and
maximum load.

• Period of time (start time and stop time) – defines the period of time where this
scenario is valid and must be applied.

• Priority – enables the definition of override scenarios in order to support special
and/or unexpected events.

Example:

 Scenario 1: {[Server_Set(4, 4, 2)], 00:00 Dec/01/2000, 24:59 Dec/31/2000, 1}

 Scenario 2: {[Server_Set(7, 7, 6)], 00:00 Dec/22/2000, 24:59 Dec/24/2000, 2}

The first scenario defines that the floor is 4 servers, the guaranteed-scalability-point is 8
servers and the ceiling is 13 during the year 2000, with priority 1. Scenario 2 specifies a
different range of values during the 3 days that proceed Christmas day. Scenario 2 will
have precedence over the first one because of its higher priority.

Figure 1 presents two graphics that shows an example of server allocation for Scenario 1
described in the previous example. The first graphic shows that for every time T the floor
is always available. New servers are allocated based on demand in the guaranteed-
scalability-point range (T2 and T3) until it reaches the maximum of eighth servers, then
new servers are allocated in the ceiling level range (T4). When the extra servers are not
necessary they are deallocated and the number of servers falls back to the floor level.

The second graph shows the variation in allocated servers over time.

Violation Policy Section

Violation Policies describe what to do when a scenario is violated. Each policy is described
in terms of:

• Scenario ID – The scenario identification (as described in the previous contract
section).

• Violator – The policy violator, which must be on of the role players. Usually, this
can be either the provider or the customer. A provider is considered the violator
when the infrastructure did not support the agreed QoS for some period of time.
The customer is the violator when it was not possible to maintain the ISLA
because of some application problem or incorrect QoS estimation.

• Grace Period – The duration of time that the monitor must observe the event
before it can classify it as a violation.

0

2

4

6

8

10

12

T1 T2 T3 T4 T5

Tim e

N
u

m
b

e
r

o
f

S
e
rv

e
rs

Figure 1 – Server Allocation over Time

0

2

4

6

8

10

Num be r

of

Se rve rs

T1 T2 T3 T4 T5

Tim e

Ce iling

Guarante e d-

Scalability

Floor

152 LANOMS 2001

• Penalty Action - A charge or other penalty that will be imposed on the violator.

Example:

Violation 1: {Scenario 1, Provider, 30min, Penalty 1}
Violation 2: {Scenario 2, Provider, 15min, Penalty 1}

Violation 3: {Scenario 2, Customer, 30min, Penalty 2}

Charging Model Definition Section

This section defines how to calculate charges for the contract itself and the penalties to be
applied in case of violations. Charges are classified as follows:

• Base Cost - δo (Fixed Operational Cost).

• Contracted Services - Csi (Cost per servicei).

• Scenarios Cost (per scenario i)- Cfi (floor level), Cgi (guaranteed level) and Cci
(ceiling level).

• Scenarios Violation (per scenario i) - Pfi (Penalty cost for server not available on
the floor level) and Pgi (Penalty cost for resource not available on guaranteed-
scalability-point).

Example:

Scenario 1: {[Server_Set(5,7,3)], 00:00 Dec/01/2000, 24:59 Dec/31/2000, 1}

Scenario 2: {[Server_Set(7,7,6)], 00:00 Dec/22/2000, 24:59 Dec/24/2000, 2}

Base Cost: $5000.00

Price per Scenario: Scenario 1 – floor = $5.00, guaranteed-scalability-point = $2.00, ceiling = $1.00

 Scenario 2 – floor = $8.00, guaranteed-scalability-point = $5.00, ceiling = $2.00

Prices per Service: Scenario 1 – $2.000,00

Prices per Penalty: Scenario 1 – floor = $4.00, guaranteed-scalability-point = $1.00

 Scenario 2 – floor = $7.00, guaranteed-scalability-point = $2.00

Based on these prices we can calculate the following charges:

• Contract Flat Charge – Is based on the agreed services, reserved resources (e.g.,
those on the floor level) and a constant operational charge. This value doesn’t
change in the contract.

• Usage-Based Charge – This is a variable charge, based on the actual resources
used.

• Sub Contract Addition – This value is calculated by the addition of sub-
contracts, as explained in Section 2.2, to support the new scenarios.

• Violation Penalty –A penalty occurs when a service or resource is unavailable,
i.e. resource unavailability occurs when the infrastructure did not allocate servers
at the required level determined by the allocation algorithm. This value can be
converted to an equivalent cash-back bonus or resource credit.

The equations to calculate these charges are shown in Section 3.1.3.

 Report Customization Section

The Report Section defines reports as follow:

• Type – Currently we support the following pre-defined reports: Standard,
Notification, Modification and Violation.

• Recipient – The report recipient can be a person, a URL, and/or an e-mail address.

• Time Interval – Time between the reports.

153Network Management as a Strategy for Evolution and Development

For example: Report: {Type = Violation, Interval = 24h, Recipient = http://www.customerA.com/reports}

2.2.The Contract Hierarchy

We defined a contract hierarchy that supports aggregation and overriding of contracts. Sub-
contracts re-define or add information and inherit the rest from their ancestors. Figure 2 shows
an example of a contract hierarchy that includes temporary special occasion contracts.

3. THE POLICY LANGUAGE

The contract presented in Section 2 describes the ISLA Contract in a high-level, human
readable language, appropriate for customer interaction. To perform conflict detection and
contract validation a formal machine-usable language is required. From the Contract we
extract a set of policies that are used by the following modules:

• Pricing

• Configuration Manager

• ISLA violation detector

• Reporting

The extraction process defines the following groups of policies: (1) Base, (2) Violation, and
(3) Pricing.

3.1.1. Base Policies

These policies define QoS parameters and the scenarios supported for each customer, they
correspond to the Customer Configuration and ISLA Scenarios Definition sections in the
ISLA Contract, see Section 2. In this sense, we define two types of base policies:
Configuration Policies and Scenario Definition Policies.

P1: Configure(CustomerID, CustomerSegmentID,

 [Parameter1:Value1,…,Parametern:Valuen]);

Where:

 Customer ID – Customer identification.

 Customer Segment ID – Customer segment identification.

Level 2

M ain

Contract

Contract A

Level 1

Sub Contract

2

 (Christmas)

Sub Contract

1

 (Summer
Sale)

Sub Contract

3

 (W inter Sale)

Sub Contract

2.2

(12/21/2000 –
12/24/2000)

Sub Contract

2.1

(12/01/2000 –
12/20/2000)

Level 3

Level 1

Figure 2 – Contract Hierarchy

154 LANOMS 2001

 Policy Name – Name of the policy.

Parameter List – List of configuration parameters and their values as defined in the
Customer Configuration section of the contract.

Example: P1: ConfigureCustomerSeg (11, 1101, [CustSegLevel:1, VipAddr:1.2.3.4, SegPortNo:111,

Priority:1, ServerPoolID:11101)

P2: ConfigureRequirements (11,1101,[ActiveConnections:100, OverallResponseTime:0.1,

 OutputBandwidth:0.025, DBResponseTime:0.075)

P2: DefineScenario(CustomerID, CustomerSegmentID, ScenarioID,

 StartTime, EndTime, Priority,

 ServerSet[floor, guaranteed, ceiling])

Where:

 Customer ID – Customer identification.

 Customer Segment ID – Customer segment identification.

 ScenarioID – Scenario identification.

StartTime and EndTime – Define the period of time when the scenario is valid, each
specified as hh:mm:ss mmddyy.

Priority – (Described in the contract section named ISLA Scenarios Definition).

Server Set – Specifies the values for the floor, guaranteed and ceiling.

3.1.2. Violation Policies

The Violation Policies define the penalties to be applied for a disruption in service. The policy
syntax is:

P3: Violation(CustomerID, CustomerSegmentID, ScenarioID,

 GraceTime, Violator,PenaltyID)

3.1.3. Pricing Policies

The pricing policies can be used to support differentiation of services, specify how to
calculate usage-based charges, and the penalty values for disruption of services. These
policies encapsulate a set of equations that calculate the Contract Fixed Charge, Usage-Based
Charge, Penalty Charges and Sub-Contract Charges [9,10,11]. New equations can be added
to represent specific aspects of different customers.

ContractFixedCharge (per month)

() δο++××= ∑ ∑1= =

n

i

m

j juii CsTfCfCFC
1

Where: CfI is the cost per server on the floor level per scenario i; fi is the number of servers

allocated on the f (floor) level; Csj is the cost per contracted service; δo is fixed Operational
Cost and Tu the number of hours on one month (the basic time unit is hour).

UsageBasedCharge (per a T period of time)

() () i

n

i

n

i

iiiii TccCcTggCgUSB ××+××= ∑ ∑
= =1 1

Where: iii CcCgCf >>:1R iii gcc +≤:#2R

 iii fgg +≤:#3R ∑ ∑= =
+= n

i

n

i ii TcTgT
1 1

:4R

155Network Management as a Strategy for Evolution and Development

Cfi, Cgi and Cci are respectively the cost per server on the different levels of guarantee (floor,
guaranteed-scalability point and ceiling); #g and #c are the number of servers allocated on
demand on the level g and on the level c; Tgi and Tci are respectively the portion of time that
the resources on the levels g and c were allocated.

Penalty (per a T period of time)

() () i

n

i

n

i iiiii TggPgTffPfPenalty ××+××= ∑ ∑= =1 1

Where: ii PgPf >:5R ii ff ≤:#6R

 iiii gfgf +≤<#:7R ∑ ∑= =
+=∆ n

i

n

i ii TgTfT
1 1

:8R

Pfi and Pgi are respectively the penalty cost per server not available on the levels floor and
guaranteed; #f is the number of servers not allocated on the level f; #g is the number of
servers not allocated on demand on the level g. Tfi and Tgi are respectively the portion of time
that the resources on the levels f and g were not allocated.

Sub Contract Addition

Suppose that m new scenarios were created, then the cost of this modification will be a fixed
cost calculated as follow:

α+××= ∑ =
))#(()(

21 i

m

i ii TfCfmSCA

Where α is the fixed operational cost per modification. So, this charge is just the sum of fixed
cost of each new scenario multiplied by the period of time that they apply plus a constant.

4. THE CONTRACT LIFE-CYCLE PROCESS

Figure 3 describes the data workflow, processes in the contract life cycle and the on-line
process that implement violation processing.
Contract Definition (1) is the first step. The contract is then validated using the Validation

Process (2). Contract validation itself has two phases:

• Conflict and Syntax Check – Checks that the specified contract does not have
internal conflicts and that it is syntactically correct.

• Capacity Check - This establishes that the Océano farm has sufficient capacity to
support this contract.

If a validation problem occurred, contract processing will return to the Definition Process.
Once the contract has been validated, the Translation Process is started (3), which extracts
the set of policies that must be enforced in the system. The policies are inactive until the
Controlling Process (4) activates them, by storing them into the Océano database and
initializing the appropriate monitors.

The policies drive a constant Monitoring Process (5) that detects violations. When a
violation is detected a signal is sent to the Violation Analysis Process (6) that keeps track of
the violation and sends requests to the Penalty Calculator (7). A copy of an active policy can
be created and used for contract re-negotiation. When the new contract is ready the old
contract will be deactivated and replaced.

156 LANOMS 2001

Not Valid
Contract

Valid
Contract

Policies Set

Contract
Definition

2. Contract
Validation

1. Contract
Definition

4. Controling

3. Contract
Translation

Contract

8. Deletion

Off-line Processes

Policies
Retrieval

Active Monitors
Signal

Network

Polices
Activation

Polices
Deactivation

Monitoring
Information

On-line Processes

5. Monitoring

7: Penalty
Calculus

Violation
Signal

Violation
Data Correction

Action
6: Violation
Analyses

Figure 3 – Life-Cycle Process

5. THE ARCHITECTURE

Figure 4 shows the schema of the system components that support definition, storage,
monitoring, billing and reporting of infrastructure service level agreements.

The numbered arrows represent the transfer of data in the system, dashed lines for on-line
activities and solid for off-line. This architecture has 7 modules and 11 activities defined as
following:

GUI Interface – The GUI captures interactions between the provider, the customer and the
system. It allows one to edit contracts (1), visualize and modify existing contracts (11),
visualize reports (10) and alternative quotes (8). It also permits the customer to make requests
to add or change scenarios in order to support, for example, some marketing plan.

Contract Builder – This component produces a contract using the data provided through the
interface, then sends the contract to the evaluator (2.1) and stores the valid contract into the
database by generating SQL statements (2.2).

Contract Evaluator – The Contract Evaluator performs the validation process (as defined in
the life cycle model).

ISLA Manager – The ISLA Manager has two components: The Response Automation
Module and The Violation Detection Module. These modules perform the following:

1. Receives pertinent data from a new contract or from the policies defined in a previous
contract (3).

2. Receives violation event notifications from the monitors (5). Poll for state information
(6). Both activities are performed through Yemanja [2], a model-based event
correlation engine for multi-layer fault diagnosis.

3. Keep track of violations until they finish.

4. Requests a penalty calculation from the Pricing Engine (7).

157Network Management as a Strategy for Evolution and Development

5. Finally, the collected information (violated scenario, start time, stop time, violator and
penalty) is stored into the database (4).

Monitors – Monitors collect information about system behavior. The monitors send violation
event notifications to the ISLA Manager (5). The ISLA Manager can also poll for state
information (6).

Pricing Engine – The Pricing Engine calculates the contract value, penalty charges (to the
customer and to the provider). It can also respond charging queries (8).

Report Generator – The Generator collects data from the database (9), formats the
information into customized reports and sends them to the recipients. The reports are
generated periodically or on demand.

6. THE SALMON PROTOTYPE

The Salmon prototype is currently [April 2001] still under construction. All the components,
except the GUI interface, are being implemented using Jbuilder 3.5 [8] and DB2. Here we
will describe only the most important components.

6.1.The GUI Interface

This interface is been implemented using HTML and provides contract visualization and
editing. Either the provider and the customer can interact with the system, in this sense the
GUI Interface provides a high-level language to specify and monitor ISLAs.

6.2.The Salmon Database

Figure 5, presents the most important classes and relationships defined by the database model.
The Salmon Database supports the definition of customer configuration data, scenario
definitions, violation policies, the violation log and pricing policies. Customer specific
information is pulled from the configuration database whenever is needed.

3

Monitors

2.1
10

GUI Interface

Contract
Builder

DB ISLA
Manager

Pricing
Engine

Reports

1

7

6

5

4

9

8

11

Contract
Evaluator

2.2

Yemanja

Figure 4 – The Salmon Architecture

Off-line activities

On-line activities

158 LANOMS 2001

As an example let’s look at the ViolationLog class. This class contains information on every
violation that was detected in the system. The violations are represented by the following
attributes: policy violation identification (ViolationID), start and stop time of the violation,
recovery time (time until the system came back to the correct behavior) and penalty value. For
every new violation the ViolationLog class queries the pricing engine for the penalty value.

The Salmon Database is a repository of both static and dynamic data used by Océano to
enforce, monitor and report on the contract in effect. This model was implemented in DB2.

6.3.The Pricing Engine

This component contains the pricing policies defined by the charging model, some equations
were described previously in Section 3.1.3. In the Pricing Engine the policies are divided in
two groups: contract policies and meta-policies. The contract policies are the ones defined per
contract and the meta-policies are policies applied over all the supported contracts.

The Pricing Engine receives requests from others components, including: the Salmon GUI
Interface, Salmon ISLA Manager and others Océano components that need pricing
information for decision making. Some of the supported operations are:

getPenalty(ScenarioID:int, NRServers:int, NAServers:int):float – this function returns the penalty charge given

the number of new servers requested and the number of servers not allocated (per scenario) once they were

needed. The time unit is fixed in one hour.

Composition
1

1..*

1

1..*

Has

Sets

Queries

Customer

-CustomerID:Int

Contract

ContractID:Int

ReportDef

-Interval:Int
-Recipient:Char

CustomerSegm

-CustomerID:Int
-CustSegID:Int

Scenario

-ScenarioID:Int
-ScenarioDs:Char
-RQMT_ID:Int

-StartTM:Time
-StopTM:Time
-Priority:Int

SLA_Requirement

-RQMT_ID:Int
-RQMT_Type:Char

SLA_Requirement_Value

-RQMT_ID:Int
-RQMT_VL:float

ThresholdMonitor

PricingPolicy

PricingEngine

+getPenalty(…)
+getAllocationPrice(…)

ISLAManager

+setViolation_log(…)

+setAllocation_log(…)

IImplements

Relates To

1..*

1..*

1

1

Monitors

Has

Figure 5 – The Salmon Database

ViolationPolicy

-ViolationID:Int
-ScenarioID:Int
-Violator:Char

-GraceTM:Timestamp
-PenaltyID:Int

Allocation_Log

Violation_Log

Allocation

159Network Management as a Strategy for Evolution and Development

getServerPrice(ScenarioID:int, CNServers:int, NRServers:int):float – this function returns the price for

additional servers given the current number of servers and the number of added servers. The time unit is fixed in

one hour.

getViolation(ContractID:int, StartTime:timestamp, EndTime:timestamp):float – returns the total penalty charge

for all violations occurred to specific contract in a period of time.

7. CONCLUSIONS

Salmon is a prototype implementation of a system to specify and maintain Infrastructure
Service Level Agreements (ISLAs) in server farms. In contrast to other earlier approaches,
Salmon’s emphasis is on providing ISLA enforcement and guarantees based on a set of
scenarios and violation policies. The contract structure that we described combines the QoS
definition with a charging model that supports penalties for disruption of service and charges
based on demand. Salmon monitors contract violations, and triggers actions to calculate
violation penalties. We expect Salmon to be fully functional by May 2001.

REFERENCES

[1] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M. Kalantar, S. Krishnakumar, D.
Pazel, J. Pershing, B. Rochwerger. Océano – SLA Based Management of a
Computing Utility. Integrated Network Management, Atlanta, USA, May 2001.

[2] K. Appleby, G. Goldszmidt, M Steinder. Yemanja − A Layered Event Correlation
Engine for Multi-domain Server Farms. Integrated Network Management,
Atlanta, US, May 2001.

[3] Dinesh Verma. Supporting Service Level Agreements on IP Networks. Macmillan

Technology Series, 1999.

[4] Gupta, A, D.O. Stahl and H.R. Varian. Pricing of Services on the Internet. Technical

Report, University of Texas, Austin, Texas, 1995.

[5] Costas Courcoubetis and Vasilios A. Siris. Managing and Pricing Service Level
Agreements for Differentiated Services. Proceedings of IFIP/IEEE IWQoS’99,
London, UK, May 1999.

[6] Courcoubetis C. Pricing and Economics of Networks. Infocom Presentation, 1998,
URL– http://www.ics.forth.gr/~courcou/

[7] Odlyzo, A. Internet Pricing and History of Communications. AT&T Labs-Research,
URL - http://www.research.att.com/~amo

[8] Neal Ford, Ed Weber, Talal Azzouka, Casey Williams. JBuilder 3 Unleashed. Sams,
August 1999.

[9] Courcoubetis, C., F. Kelly and R. Weber. Measurement-Based Usage Charges in
Communications Networks. Statistical Laboratory Research Report 1997-19,
University of Cambridge.

[10] Felix Hartano and Georg Carle. Policy-Based Billing Architecture for Intranet
Differentiated Services. Proceedings of IFIP Fifth International Conference on

Broadband Communications, Hong Kong, Japan, December 1999.

[11] Fishburn, P.C., Odlyzko, A. M. Dynamic Behavior of Differential Princing and
Quality of Service Options for the Internet. Proceeding First Intern. Conf. on

Information and Computation Economies, Charleston, USA, October 1998.

[12] Robert Kearney, Richard King, Martin Sachs, Asit Dan and Daniel Dias. Electronic
Service Level Agreements (eSLA) for Application Hosting. Internal Report, IBM
- T.J. Watson Research Center, May 2000.

160 LANOMS 2001

