[go: up one dir, main page]

计算机科学 ›› 2018, Vol. 45 ›› Issue (11A): 92-96.

• 智能计算 • 上一篇    下一篇

基于改进粒子群算法的电动汽车停车场V2G策略研究

邵炜晖1, 许维胜1, 徐志宇1, 王宁1, 农静2   

  1. 同济大学电子与信息工程学院 上海2018041
    贵州电网有限责任公司电网规划研究中心 贵阳5500032
  • 出版日期:2019-02-26 发布日期:2019-02-26
  • 作者简介:邵炜晖(1988-),男,博士生,主要研究方向为能源互联网下需求侧响应、虚拟电厂等,E-mail:shaoweihui@126.com;许维胜(1966-),男,教授,主要研究方向为应急管理、智能电网、大数据应用等;徐志宇(1982-),男,高级工程师,主要研究方向为先进控制策略在电力市场中的应用、信息融合理论等;王 宁(1992-),男,博士生,主要研究方向为能源互联网架构、超网络理论等;农 静(1973-),女,高级工程师,主要研究方向为电力系统新技术和电网规划等。
  • 基金资助:
    本文受国家自然科学基金项目(71401125,71540022,61773292),高等学校博士学科点专项科研基金资助项目(20130072110045),中国南方电网有限责任公司科技项目(GZKJXM20160635)资助。

Research of V2G Strategies for EV Parking Lot Based on Improved PSO

SHAO Wei-hui1, XU Wei-sheng1, XU Zhi-yu1, WANG Ning1, NONG Jing2   

  1. College of Electronic and Information Engineering,Tongji University,Shanghai 201804,China1
    Power Grid Planning and Research Center of Guizhou Power Grid Co.,Ltd.,Guiyang 550003,China2
  • Online:2019-02-26 Published:2019-02-26

摘要: 为解决电动汽车大规模并网带来的一系列问题,国内外逐步在城市商业停车场内提供电动汽车充电服务。在此背景下,提出一种基于电动汽车并网技术的电动汽车充放电停车场模型。该模型响应实时电价,对电动汽车的充电并网行为进行动态调度,继而与电网进行能量交互。在求解电动汽车最优调度策略时采用粒子群优化算法,从可行性编码、自适应搜索半径、边界变异修正等方面进行改进,以提高算法的效率及收敛精度。仿真实验采用美国PJM公司的实时电价数据及主流电动汽车的型号参数,对比分析了3种不同情景下电动汽车停车场的运营过程及结果,验证了所提模型的合理性以及改进算法的有效性。

关键词: V2G, 充放电策略, 电动汽车停车场, 粒子群算法, 实时电价

Abstract: Electric vehicle parking lot is built nearby commercial office buildings for electric vehicles charging and par-king to solve a series of problems broughtby large-scale grid-connected electric vehicles.A V2G based electric vehicle parking lot model (V2G_EVPL) was proposed to describe charging and discharging behaviors of electric vehicles in the parking lot based on vehicle to grid (V2G) technology.Under the conditions of the real-time pricing (RTP),V2G_EVPL dynamically schedules the electric vehicle charging or discharging,and then interacts with the grid for energy.Improved particle swarm optimization (IPSO) algorithm is applied to solve the optimal scheduling for electric vehicles.Improvements,such as feasibility coding,adaptive search radius and boundary variability correction,are made to improve the efficiency and the convergence accuracy of PSO.Real-time price data of PJM and the parameters of mainstream electric vehicles are used in simulation.The operation process and results of V2G_EVPL under three different scenarios are compared and analyzed.Results of the simulations show that the proposed model is reasonable and the improved PSO algorithm is both efficient and effective.

Key words: Charge and discharge strategy, Electric vehicle parking lot, PSO, Real-time pricing, V2G

中图分类号: 

  • TP734
[1]刘蛲飞,张千帆,崔淑梅.电动汽车V2G技术综述[J].电工技术学报,2012,27(2):121-127.
[2]LUND H,KEMPTON W.Integration of renewable energy into the transport and electricity sectors through V2G[J].Energy Policy,2008,36(9):3578-3587.
[3]KEMPTON W,TOMIC J.Vehicle-to-grid power fundamentals:calculating capacity and net revenue[J].Journal of Power Sources,2005,144(1):268-279.
[4]KEMPTON W,TOMIC′ J.Vehicle-to-grid power implementa-tion:from stabilizing the grid to supporting large-scale renewable energy[J].Journal of Power Sources,2005,144(1):280-294.
[5]KEMPTON W,UDO V,HUBER K,et al.A test of vehicle-to-grid (V2G) for energy storage and frequency regulation in the PJM system[J].Example Journal,2009,1(2):3-4.
[6]FLUHR J,AHLERT K H,WEINHARDT C.A stochastic mo-del for simulating the availability of electric vehicles for services to the power grid[C]∥Shidler College of Business,University of Hawaii.Proceedings of the Annual Hawaii International Conference on System Sciences.Koloa,Kauai,HI,United States,2010.
[7]HUTSON C,VENAYAGAMOORTHY G K,CORZINE K A,et al.Intelligent scheduling of hybrid and electric vehicle storage capacity in a parking lot for profit maximization in grid power transactions[C]∥IEEE-SA,IEEE-NTDC,IEEE-PELS,IEEE-PES,Proceedings of Energy 2030 Conference.Atlanta,GA,United States,2008.
[8]吴红斌,侯小凡,赵波,等.计及可入网电动汽车的微网系统经济调度[J].电力系统自动化,2014,38(9):77-84.
[9]周天沛,孙伟.基于微网的电动汽车与电网互动技术[J].电力系统自动化,2018,42(3):98-104.
[10]HONARMAND M,ZAKARIAZADEH A,JADID S.Optimal scheduling of electric vehicles in an intelligent parking lot considering vehicle-to-grid concept and battery condition[J].Energy,2014,65(2):572-579.
[11]刘利兵,刘天琪,张涛,等.计及电池动态损耗的电动汽车有序充放电策略优化[J].电力系统自动化,2016,40(5):83-90.
[12]卢志刚,王荟敬,赵号,等.含V2G的虚拟电厂双层逆鲁棒优化调度策略[J].电网技术,2017,41(4):1245-1252.
[13]葛少云,王龙,刘洪,等.计及电动汽车入网的峰谷电价时段优化模型研究[J].电网技术,2013,37(8):2316-2321.
[14]KATHLEEN S,LESTER B L.Demand response and electricity market efficiency[J].The Electricity Journal,2007,20(3):69-85.
[15]PJM INT.Hourly integrated real-time LMP values for 201708[EB/OL].[2018-06-12].http://www.pjm.com/markets-and-operations/energy/real-time/monthlylmp.aspx.
[1] 徐汝利, 黄樟灿, 谢秦秦, 李华峰, 湛航.
基于金字塔演化策略的彩色图像多阈值分割
Multi-threshold Segmentation for Color Image Based on Pyramid Evolution Strategy
计算机科学, 2022, 49(6): 231-237. https://doi.org/10.11896/jsjkx.210300096
[2] 周天清, 岳亚莉.
超密集物联网络中多任务多步计算卸载算法研究
Multi-Task and Multi-Step Computation Offloading in Ultra-dense IoT Networks
计算机科学, 2022, 49(6): 12-18. https://doi.org/10.11896/jsjkx.211200147
[3] 邱旭, 卞浩卜, 吴铭骁, 朱晓荣.
基于5G毫米波通信的高速公路车联网任务卸载算法研究
Study on Task Offloading Algorithm for Internet of Vehicles on Highway Based on 5G MillimeterWave Communication
计算机科学, 2022, 49(6): 25-31. https://doi.org/10.11896/jsjkx.211100198
[4] 李晓东, 於志勇, 黄昉菀, 朱伟平, 涂淳钰, 郑伟楠.
面向河道环境监测的群智感知参与者选择策略
Participant Selection Strategies Based on Crowd Sensing for River Environmental Monitoring
计算机科学, 2022, 49(5): 371-379. https://doi.org/10.11896/jsjkx.210200005
[5] 孙振强, 罗永龙, 郑孝遥, 章海燕.
一种融合用户情感与相似度的智能旅游路径推荐方法
Intelligent Travel Route Recommendation Method Integrating User Emotion and Similarity
计算机科学, 2021, 48(6A): 226-230. https://doi.org/10.11896/jsjkx.200900119
[6] 刘炜, 李东坤, 徐畅, 田钊, 佘维.
应急通信网络中基于粒子群优化的信道分配算法
Channel Assignment Algorithm Based on Particle Swarm Optimization in Emergency Communication Networks
计算机科学, 2021, 48(5): 277-282. https://doi.org/10.11896/jsjkx.200400042
[7] 栾凌, 潘连武, 闫雷, 武小琳.
基于边缘计算的输变电工程全环节单元确认的精准造价智能管控技术研究
Research on Intelligent Control Technology of Accurate Cost for Unit Confirmation in All Links of Power Transmission and Transformation Project Based on Edge Computing
计算机科学, 2021, 48(11A): 688-692. https://doi.org/10.11896/jsjkx.201100200
[8] 张天瑞, 魏铭琦, 高秀秀.
基于IPSO-WRF的选择性激光烧结件气泡溶解时间预测模型
Prediction Model of Bubble Dissolution Time in Selective Laser Sintering Based on IPSO-WRF
计算机科学, 2021, 48(11A): 638-643. https://doi.org/10.11896/jsjkx.210300080
[9] 田梦丹, 梁晓磊, 符修文, 孙媛, 李章洪.
具有博弈概率选择的多子群粒子群算法
Multi-subgroup Particle Swarm Optimization Algorithm with Game Probability Selection
计算机科学, 2021, 48(10): 67-76. https://doi.org/10.11896/jsjkx.200800128
[10] 汤洪涛, 闫伟杰, 陈青丰, 鲁建厦, 詹燕.
自动化立体仓库货位分配与作业调度集成优化
Integrated Optimization of Location Assignment and Job Scheduling in Automated Storage andRetrieval System
计算机科学, 2020, 47(5): 204-211. https://doi.org/10.11896/jsjkx.190400042
[11] 李宝胜, 秦传东.
基于粒子群优化的SVM多分类的电动车价格预测研究
Study on Electric Vehicle Price Prediction Based on PSO-SVM Multi-classification Method
计算机科学, 2020, 47(11A): 421-424. https://doi.org/10.11896/jsjkx.191200132
[12] 孟利民, 王锟, 郑增乾, 蒋维.
基于粒子群算法的D2D内容边缘缓存架构策略
Architecture Strategy of D2D Content Edge Cache Based on Particle Swarm Optimization
计算机科学, 2020, 47(11A): 345-348. https://doi.org/10.11896/jsjkx.200500079
[13] 王改云, 王磊杨, 路皓翔.
基于混合群智能算法优化的RSSI质心定位算法
RSSI-based Centroid Localization Algorithm Optimized by Hybrid Swarm Intelligence Algorithm
计算机科学, 2019, 46(9): 125-129. https://doi.org/10.11896/j.issn.1002-137X.2019.09.017
[14] 张娜,滕赛娜,吴彪,包晓安.
基于粒子群优化算法的测试用例生成方法
Test Case Generation Method Based on Particle Swarm Optimization Algorithm
计算机科学, 2019, 46(7): 146-150. https://doi.org/10.11896/j.issn.1002-137X.2019.07.023
[15] 胡鑫楠.
基于改进型混沌粒子群优化算法的FIR高通数字滤波器设计
FIR High Pass Digital Filter Design Based on Improved Chaos Particle Swarm Optimization Algorithm
计算机科学, 2019, 46(6A): 601-604.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!