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Introduction

The increasing demand for wireless communication systems has been the star-
ting point for many research activities and discussions about the best way to
make a cleaver usage of the available spectrum and the available power, in or-
der to satisfy the requirements of the users. In these systems, many are the
features that have to be taken into account, such as the mobility of the users,
the presence of time varying obstacles, power and bandwidth limitations, in
order to determine their Shannon-Capacity, i.e. the maximum amount of in-
formation that can be reliably delivered. Indeed, only in this way it is possible
to understand the real quality of services that can be offered to the users, and
consequently to determine the different types of applications that can be im-
plemented on such communication systems.
Most of the efforts done in Information Theoretic research in the study of wire-
less communication channels, has been conducted assuming coherent recep-
tion of the signals at the receiver side. The key result obtained is that the better
way to contrast the randomness of wireless channels (fading), which is the
main contribution in the limitation of the performance of a wireless system, is
the use of multiple antennas at both the transmitter and the receiver sides (spa-
tial diversity). Specifically, [1] [2] show that Multiple-Input-Multiple-Output
(MIMO) channels have a linear capacity growth with the number of antennas
for point-to-point wireless channels with rich scattering. This promise of linear
capacity growth has been generalized to the Multiple Access Channel (MAC),
[3] [4] [5], and Broadcast Channel, [6] [7], where the transmitters and the
receivers are equipped with multiple antennas. The potentiality of MIMO sy-
stems to contrast the fading, has been also exploited in the contest of RADAR
systems, [8] [9] , showing that the probability of detection can be improved
resorting to angle diversity, i.e. looking to the target from different perspective
angles.
However, especially in the Communication field, the aforementioned analy-
sis of MIMO systems requires the receiver to perform a noise-free, multi-

xi



xii Introduction

dimensional channel estimation, without using communication resources. In
practice, any channel estimation is noisy and uses system resources, so it is
very important to understand the performance of a communication system for
which only a partial information of the channel state is available at the re-
ceiver. For a single user MIMO channel, the trade-off between a good channel
estimation and an increase of achievable data rate has been considered in [10]
where the analysis is conducted using a lower bound for the capacity. In [11]
assuming gaussian input, a lower and an upper bound for the mutual infor-
mation are provided under the assumption that imperfect channel state infor-
mation is available at the receiver. The fundamental conclusion that can be
obtained is that the quality of the estimation has a great impact on the per-
formance limits of the system. Specifically, assuming that the quality of the
estimation doesn’t depend on the available power at the transmitter, the system
is interference limited, i.e. the achievable rate saturates; instead, if it is pos-
sible to obtain a consistent estimation of the channel at high signal-to-noise
ratio, the rate growth is essentially linear with the number of antennas, as long
as it is inferior to the coherent time of the channel. Obviously, moving to-
ward a multi-user setting, such as Multiple Access Channel (MAC), produces
a higher amount of information that has to be known to the receiver, for co-
herent reception, and the assumption of perfect knowledge of the channel state
information is totally unrealistic. Some efforts for two user MAC channels
with partial channel state information (CSI), has been performed in [12] [13].

The aim of this Thesis, (cf.[14, 15, 16]), is to generalize the previous re-
sults to an arbitrary multiple-user scenario where receiver and transmitters are
equipped with multiple, possibly correlated, antennas, and only a partial CSI
of the users is available at the receiver. In particular, focusing on the mutual
information conditioned on such a partial CSI, an inner and an outer bound
on the rate region achievable with Gaussian inputs for a MIMO MAC channel
with partial CSI, are provided. So the result about the sum-rate performance
for a MIMO MAC with partial CSI, obtained in [17], has been generalized
through this analysis. Moreover, the behavior of the gaps between the upper
and lower bounds of the mutual information terms, which define the achie-
vable rate region, is analyzed as function of: i) the number of the users, ii)
the number of the receiving antennas, and iii) the signal to noise ratio. Fur-
thermore, the problem of finding the precodings that attempt to maximize the
lower bound to the sum-rate, is considered too. Then the low-SNR and high-
SNR regime for a MIMO MAC with partial CSI at the receiver is described,
focusing, respectively, on the minimum energy per bit and on the multiacces
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slope region for the former, and on the high-SNR slope for the latter.

The aforementioned framework turns out to be very useful to describe the
performance limits of two relevant scenarios of MAC system, in which only
a partial CSI can be used at the receiver: Cooperative MIMO Networks and
Training Based Systems.

Concerning the Cooperative MIMO Networks, it is well known that the
optimal management of cochannel interference is of great importance for any
multiuser wireless network. In conventional cellular systems, each user is
served by a single base station, according to a pre-fixed criteria, such as signal
strength. Focusing on the uplink, each user then causes interference to users
served by all other base stations. However, if the received signals at all the base
stations could be jointly processed at a central processor (CP), there is no more
interference and all signals are information-bearing. While challenging to im-
plement, such joint processing is at least theoretically possible because the
base stations are typically connected by a high-speed backhaul network. This
decoding strategy has been referred as Cooperative MIMO network, multi-cell
processing, base station coordination, macrodiversity, etc, [18], [19]. Obviou-
sly, the ability to suppress interference through receivers cooperation, as above,
is crucially dependent on the availability and quality of the CSI for all the users
at the central processor. In practice, the assumption of perfect CSI is particu-
larly untenable in the context of multi-cell processing because of the need to
estimate very weak channels (from faraway users). Therefore, it becomes im-
portant to understand the fundamental limits imposed by imperfect CSI on the
performance of multi-cell processing. Consequently, the derived bounds can
be applied to study Gaussian interference networks with cooperative receiver
processing, assuming infinite-capacity backhaul links from the base stations to
the CP. Each user is supposed to be decoded according to the received signals
at Q base stations (Q the cluster size). Firstly, the case where the CP has full
CSI for each user at the Q base stations that form his processing cluster, and
no CSI (apart from the statistical characterization) for the other user-to-base
links, is considered. Then the same situation with the further refinement that
the CP has only quantized CSI instead of full CSI, is studied. In both cases,
the impact of partial CSI through the derived upper and lower bounds on the
sum rate (with Gaussian signaling) is analyzed, focusing in particular on the
impact of Q.

Concerning the Training Based Systems, in most of telecommunication
networks, before the transmission of the information, a synchronization phase
occurs, during which the receiver estimates the channel matrix. In particular a
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standard technique to allow the receivers to estimate the channel matrix con-
sists of the transmission from the users of training sequences among the data,
[20]. Then, the founded inner and outer bounds can be applied to a MIMO
MAC affected by block fading, where each block is divided into training and
data transmission phases. Since the partial CSI available at the receiver is re-
lated to a minimum-mean-square-error (MMSE) channel estimation process,
the attention is focused on the optimization of training signals, considering
two performance metrics: the trace and the determinant, respectively, of the
covariance matrix of the channel estimation error. Therefore, a robust design
of the training sequences is considered, and the problem of the precoding for a
Training Based System is solved. Finally, the impact of antennas’ correlation
at the transmitter and the receiver side on the performance of the system is
analyzed, using the inner and outer bounds.

The Thesis is organized as follows. Chapter 1 contains the Information
Theoretic results for a MIMO MAC with partial CSI; after describing the sy-
stem model and the assumptions for the multiple access channel under conside-
ration, an inner and an outer bound on the achievable rate region with partial
CSI at the receiver and Gaussian input, are derived. Furthermore, the proper-
ties of the lower and upper bounds, characterizing the achievable rate region,
are analyzed, and the problem of the optimal precoding applied by the users
of the network is considered. In Chapter 2, a Cooperative MIMO Network
and a Training Based System are characterized in an Information Theoretic
sense. In particular, in Section 2.1, the derived bounds are applied for studing
a Cooperative MIMO Network with incomplete and/or imperfect CSI, while
Section 2.2 deals with the special case in which the CSI at the receiver is ob-
tained through training sequences, and it contains the derivation of the optimal
structure of such sequences. Chapter 3 discusses with the asymptotic behav-
ior of a MIMO MAC with partial CSI in the low-SNR regime and high-SNR
regime, then the Conclusions.
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Notation: In the following, XT , X†, ‖X‖, and [X]k,i respectively de-
note the transpose, the Hermitian transpose, the Frobenius norm and the
element at the k-th row and the i-th column of the matrix X ∈ Cm×n.
X = [x1, . . . ,xn] ∈ Cm×n is a matrix containing the m−dimensional vectors
x1, . . . ,xn as its columns. A ⊗B ∈ Ckn×kn denotes the Kronecker (tensor)
product of the matrix A ∈ Cn×n with the matrix B ∈ Ck×k. tr{A}, |A|
and λmax(A) denote the trace, the determinant and the maximum eigenvalue
of a square matrix A. vec{X} ∈ Cmn indicates the vector obtained stacking
up the rows of the matrix X ∈ Cm×n. Im indicates the identity matrix of
order m. I(p)

m denotes the m × p matrix defined as follows: [I(p)
m ]i,j = δi,j .

em,i indicates a row vector of dimension m such that [em,i]j = δi,j . 1R is
the R-dimensional vector with all entries equal to 1. Finally, x|y indicates the
random variable x conditioned on y, E [·] denotes statistical expectation and
EY [·] denotes conditional statistical expectation with respect to Y.





Chapter 1

MIMO MAC with Partial CSI

In this chapter, the system model for a MIMO Multiple-Access Channel
is presented and its Information-Theoretic characterization is considered,
assuming a partial channel state information at the receiver side. In particular,
an inner and an outer bound to the achievable rate region for a MIMO MAC
with partial CSI, are derived. Some interesting properties about the lower and
upper bounds derived are shown, and the behavior of the gap with respect to
the number of the users and the receiving antennas, is analyzed. Finally, the
optimization of precodings that have to be used by the users, is considered.

1.1 MIMO MAC Model

A MIMO MAC with a base station (BS) equipped with L1 receiving antennas
and K users, each with M transmitting antennas is considered (the generaliza-
tion to the case of different numbers of antennas at the users is straightforward,
and will therefore not be considered here).

Using the standard discrete-time equivalent channel representation for flat-
flat fading channels 2, [21] [22] [23], the L-dimensional baseband complex

1Let us observe that in the case of cooperative MIMO networks, L is the sum of the receiving
antennas of the different BSs distributed in the network.

2If the fading process is frequency selective, the channel can be decomposed into parallel
noninteracting subchannels, each of which conforms to (1.1), considering simultaneous tran-
smission of narrowband signals on not-overlapping frequency bands.

1



2 Chapter 1 MIMO MAC with Partial CSI

signal received at the base station, is given by:

y =
K∑

k=1

H(k)x(k) + n, (1.1)

where H(k) is the L × M channel matrix between the k-th user and the base
station, x(k) is the M -dimensional input vector for the k-th user, and n is
the additive circularly symmetric zero-mean Gaussian noise. The single-sided
spectral density of the noise is denoted by

N0 =
E[‖n‖2]

L
(1.2)

and we assume its normalized spatial covariance to be

Φn ,
E[nn†]

N0
= IL. (1.3)

The input signals are assumed to be zero-mean with normalized input cova-
riance matrix

Pk =
E
[
x(k)x(k)†

]
P

, (1.4)

according to some power allocation policy, where P is the maximum available
power per user. Moreover, we consider a normalized input power constraints
tr{Pk} ≤ 1 and in the following we will indicate with SNR the quantity
SNR = P

N0
. By stacking the transmitted K input vectors in (1.1) to form an

MK-dimensional vector, x = [x(1)† . . .x(K)† ]†, we can write

y = Hx + n (1.5)

where H =
[
H(1),H(2), . . . ,H(K)

]
is the L × MK channel matrix whose

k-th block is the matrix H(k).

Let us now consider the statistical characterization of the channel matrices
H(k). We assume that H(k) are statistically independent across users and with
finite second order moments. Moreover, if explicitly stated, each channel H(k)

is supposed to be described by the UIU model [24], i.e. it turns out:

H(k) = U(k)
R H(k)

w U(k)†

T , k = 1, . . . ,K, (1.6)
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where U(k)
R is a L × L unitary matrix, U(k)

T is a M × M unitary matrix and
H(k)

w is a zero-mean L×M Gaussian random matrix of independent elements

with power profile Σ(k)
w , i.e. E

[∣∣∣[H(k)
w ]i,j

∣∣∣2] = [Σ(k)
w ]i,j .

Such a statistical characterization covers most of the channel models that
are considered in the literature. In particular, it encompasses the classical chan-
nel model of independent Rayleigh-faded gain, or the separable correlation
model, for which the correlation between two transmitting antennas does not
depend on the receiving antennas and, dually, the correlation between two re-
ceive antennas is independent of the transmitting antennas. It also includes
the virtual representation, which is amply utilized in the literature to describe
the channel gain for a MIMO system equipped with linear transmitting and
receiving arrays, and it is characterized by two Fourier matrices for U(k)

R and
U(k)

T . Let us observe that with this model we can take into account the differ-
ent path losses between the BS and the users, by choosing appropriately the
set of values for tr

{
Σ(k)

w

}
.

1.2 Information-Theoretic Analysis

In this section, we characterize in an information-theoretic sense a memory-
less MIMO MAC channel when a statistic S of the channel realization H, is
available at the receiver3. For every memoryless MAC channel with K users,
marginal power constraint E

[
||xk||2

]
≤ βk, k = 1, . . . K, and side informa-

tion S at the receiver, the direct achievable rate region is given by, [25] and
[26]:

A(β) =
⋃

xk: ∀k
E[||xk||2]≤βk

{
(R1, . . . , RK) :

∑
k∈A

Rk ≤ I(xA;y|S,xĀ) ∀ A ⊆ U

}

(1.7)
where β = [β1, . . . , βK ], A is a generic subset of the set of users while Ā is its
complementary subset with respect to U ≡ {1, . . . ,K}, and the union is over
independent distributions on the input alphabets.

As proved in [25] and [26], assuming that each user has a power constraint

3With respect to channel use variable i, we assume that {(Hi,Si)}i∈N is an i.i.d. random
process; the results still hold if {(Hi,Si)}i∈N is an ergodic process.
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E [||xi| |2] ≤ P , the Capacity rate region C(P ) is given by:

C(P ) =

(R1, . . . , RK) : (R1, . . . , RK , P, . . . , P ) ∈ co
⋃

βk>0,∀k

(A(β),β)


(1.8)

where co (S), is the convex hull of the set of points that belong to S , and
corresponds to the time sharing of different codebooks.

Let us, now, consider the system model given in (1.1), in the case of perfect
knowledge of the channel matrix H at the receiver side, i.e. S = H; it has been
shown in [27] [22], that the capacity rate region C(P ), defined in (1.8), can be
particularized as:

⋃
Qk�0:

tr{Qk}=P,
∀k

{
(R1, . . . , RK) :

∑
k∈A

Rk ≤ E

[
log
∣∣∣IL +

∑
k∈A

HkQkH
†
k

∣∣∣] ∀A ⊆ U

}

(1.9)

It can be observed that the capacity rate region, given in (1.9), corresponds to
the union of the achievable rate region A(P ) evaluated for independent zero
mean Gaussian random vectors, with covariance matrices Qk, subjected to the
power constraint tr{Qk} = P .

From the above discussion, it is evident that for a complete characterization
of the achievable rate regions A(β), and consequently for the capacity rate
region of the system, the following quantities must be analyzed:

I(xF ;y|S,xC) (1.10)

where F and C are generic disjoint subsets of the set U of all users. Indeed, a
special case of (1.10) is:

I(xA;y|S,xĀ) (1.11)

where A is a generic subset of the set of users while Ā is its complementary
subset with respect to U , which are used to define achievable rate regions for
the MIMO-MAC channel. The sum-rate of the MIMO MAC channel can be
obtained by evaluating (1.11) when A ≡ U , and the other terms correspond to
the corner points of the achievable rate region.
The evaluation of (1.10) is, in general, very difficult. In the following, we
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assume that:

Hypothesis 1 The input distribution of each user is zero mean Gaussian.

Hypothesis 2 Conditioned on S, the random matrix H|S is circularly sym-
metric Gaussian with mean Ĥ = ES[H]4. Notice that Ĥ can be seen as the
estimate of the channel matrix H based on S. Thus we are equivalently assu-
ming that, conditioned on S, the uncertainty

Z = H|S − ES[H] = H|S − Ĥ (1.12)

is a circularly symmetric zero-mean Gaussian random matrix whose entries
have a generic correlation structure.

Note that
Z =

[
Z(1), . . . ,Z(K)

]
,

where Z(k) = H(k)
|S − ES[H(k)] = H(k)

|S − Ĥ(k).
The assumption of zero mean Gaussian input distributions allows us to

evaluate an achievable rate region for the MIMO-MAC with partial channel
state information. Moreover, this analysis can be reinterpreted as a perturba-
tion analysis of the ideal situation of coherent reception, for which it is well
known the optimality of zero mean Gaussian distributions.

Let us now introduce the following notation which is going to be used in
the subsequent derivations. Given a user subset R ⊂ {1, . . . ,K}, we denote:

• by |R| the cardinality of the subset R;

• by xR the M |R|-dimensional vector obtained by concatenating the M -
dimensional vectors x(k), with k ∈ R (i.e. the input vectors of the users
indexed by the elements of R);

• by R ⊆ U the user subset such that R∪R ≡ U and R∩R ≡ ∅;

• by ĤR and ZR the matrices made up deleting the blocks, not indexed
by the elements of R, respectively of Ĥ =

[
Ĥ(1), . . . , Ĥ(K)

]
and of

Z =
[
Z(1), . . . ,Z(K)

]
;

4For technical conditions, the probability density function of H|S is assumed as a contin-
uous function of S, and that S has a smooth probability density function: such conditions are
satisfied, for example, when (S,H) are jointly Gaussian.
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• by PR the M |R|-dimensional block-diagonal matrix, containing along
its diagonal the M×M normalized covariance matrices Pk, with k ∈ R.
Note that, since tr{Pk} ≤ 1, for all k ∈ R, then tr{PR} ≤ |R|.

Under the previous hypotheses we derive lower and upper bounds for the
mutual information in (1.10), which are given in Theorem 1 using the follo-
wing definition.

Definition 1 Let A ⊆ U and B ⊆ U be arbitrary disjoint user subsets.
Then, IL(A,B)

5 is a function of the subsets A, B, defined as follows:

IL(A,B) =E
[
log
∣∣∣IL +

(
ΩB + ΓA∪B + ΦB + 1

snrIL

)−1 ΓA

∣∣∣] (1.13)

where for any arbitrary user subset R ⊆ U , ΓR and ΦR are defined as:

ΓR = ĤRPRĤ†
R,

and

ΦR =
1
P

ES,xR

[
ZRxRx†RZ†

R

]
, (1.14)

while ΩR = ES[ΦR].

Theorem 1 Let F ⊆ U and C ⊆ U be disjoint user subsets. Then, for every
fixed covariance matrix PU , the mutual information in (1.10) is lower and
upper bounded by:

IL(F ,C)≤I(xF ;y|S,xC)≤IL(C,C)− IL(F∪C,F∪C)+ ∆C
(1.15)

with

∆C = E
[
log

|IL + SNR ΩC + SNR ΦC |
|IL + SNR ΦU |

]
(1.16)

The expectation in (1.16) is over the joint Gaussian distribution of the input
vector x and over S.
Proof: See Appendix A Proof of Theorem 1

5When A = ∅, the convention is to assume IL(A,B) = 0 for any B.
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Note that the lower bound to the mutual information can be interpreted in terms
of a degraded channel, i.e., it is equivalent to the rate of a channel for which Ĥ
is perfectly known to the receiver and the noise covariance matrix is given by
SNR

(
ΩC + ΦC

)
+ IL � IL, where the inequality is a matrix inequality, that

correspond to an increase of the noise power in all the received directions. This
generalizes the same interpretation given in [10] for a single-user channel.

The above analysis is related to the generic performance analysis of the
system; we now give also a direct upper bound and lower bound to the sum
rate performance, that is the most significant figure of merit for the MAC
channels:

Corollary 1 A lower bound, ILower, and an upper bound, IUpper, of mutual
information, I(x;y|S), for every fixed covariance matrix PU , are given by:

ILower ≤ I(x;y|S) ≤ IUpper (1.17)

where

ILower = E
[
log
∣∣∣IL + SNR (IL + SNR ΩU )−1 ĤPUĤ†

∣∣∣]
and

IUpper = ILower + ∆U

with

∆U = E
[
log

|IL + SNR ΩU |
|IL + SNR ΦU |

]
(1.18)

Proof: It is easily obtained from Theorem 1 choosing the subset F ≡ U and
consequently C = ∅.

Note that, in Corollary 1, by definition ΩU and PU boil down to:

ΩU = ES

[
ZPUZ†

]
,

and to:

PU = diag (P1, . . . ,PK) (1.19)
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Let us observe that from the derived lower and upper bounds given in Theo-
rem 1, it is immediate to evaluate an inner bound and an outer bound on the
achievable rate region, with Gaussian input, starting from (1.7).

1.2.1 Lower Bound and Upper Bound: Properties and Behavior
for Large Dimensions

In this subsection, some properties concerning the lower and upper bounds,
previously derived, are presented. Some considerations about the obtained
lower bounds are in order. First of all, applying the Jensen’s inequality6, it
turns out that:

IL(A,B)=E
[
log
∣∣∣IL +

(
ΩB + ΓA∪B + ΦB + IL

snr

)−1
ΓA

∣∣∣]
>E
[
log
∣∣∣IL +

(
ΩB + ΓA∪B + ES[ΦB] + IL

snr

)−1
ΓA

∣∣∣]
=E
[
log
∣∣∣IL +

(
ΩU + ΓA∪B + 1

snrIL

)−1 ΓA

∣∣∣] . (1.20)

For any possible assignment of the indices {1, . . . ,K} to the K users, using
(1.20), the following sequence of inequalities holds:

I(x;y|S)=
K∑

k=1

I(x{k};y|S,x{1,...,k−1}) (1.21)

≥
K∑

k=1

IL({k},{1,...,k−1}) (1.22)

=
K∑

k=1

E
[
log
∣∣∣IL+

(
ΩB + ΓA∪B + ΦB + IL

snr

)−1
ΓA

∣∣∣]
(1.23)

>
K∑

k=1

Rk (1.24)

=ILower (1.25)

6Recall that the function log
∣∣∣I + A−1B

∣∣∣, for a fixed B, is a convex function with respect

to A and that f(Cx + b) is a convex function in x, if f(y) is a convex function in y, (affine
transformation).
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where (1.21) follows from the chain rule for the mutual information, (1.22) is
consequence of Theorem 1, (1.23) follows from (1.13) with:

B = {K, . . . , k} A ∪ B = {K, . . . , k + 1},

B = {1, . . . , k − 1} A = {k}

and finally (1.24) and (1.25) follows from (1.20) with

Rk = E
[
log
∣∣∣IL +

(
ΩU + Γ{k+1,...,K} + 1

snrIL

)−1 Γ{k}

∣∣∣] (1.26)

and

ILower = E
[
log
∣∣∣IL + SNR (IL + SNR ΩU )−1 ĤPUĤ†

∣∣∣] . (1.27)

From the above chain of inequalities, the following result is obtained:

Corollary 2 Denote by π a permutation which belongs to the symmetric
group, SK , (i.e. the set of all permutations of the indices {1, . . . ,K}). A
tighter lower bound on the sum rate I(x;y|S), which can be achieved exploi-
ting a successive interference cancelation strategy, is provided by:

I(x;y|S) ≥ max
π∈SK

ĨLower(π) ≥ ILower (1.28)

with

ĨLower(π)=
K∑

k=1

E
[
log
∣∣∣IL +

(
Qπ + 1

snrIL

)−1 Γ{k}

∣∣∣] (1.29)

where π is representative of the specific chosen ordering of the users, Qπ is
given by:

Qπ = Ω{π(K),...,π(k)} + Γ{π(K),...,π(k+1)} + Φ{π(1),...,π(k−1)}

and finally ILower is given in Corollary 1.

It is worth emphasizing that, in many case of interest, the lower bound and
the upper bound for the sum-rate are very tight. Consequently from Corollary
2, it follows that the successive interference cancelation is a useful decoding
strategy to ensure good performance in terms of the achievable sum-rate.
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Let us now observe that in the case of two user MIMO MAC channel,

IL({1},{2}) > E
[
log
∣∣∣IL +

(
ΩU + 1

snrIL

)−1 Γ{1}

∣∣∣]
IL({2},{1}) > E

[
log
∣∣∣IL +

(
ΩU + 1

snrIL

)−1 Γ{2}

∣∣∣]
and

max
(
IL({1}) + IL({2},{1}), IL({2}) + IL({1},{2})

)
>

E
[
log
∣∣∣IL +

(
ΩU + 1

snrIL

)−1 Γ{1,2}

∣∣∣]
where the terms on the lefthand side define our achievable rate region, while
the term terms on the righthand side define achievable rate region, derived in
[12] [13]. Then, our inner bound is larger than the one given in [12] [13],
describing better the performance limits of the system. The same conclusion
still hold for higher number of users, i.e.: the developed tools better describe
the achievable rate region, with respect to the multiple user extension of [12]
[13].

Theorem 1 essentially provides an inner bound and an outer bound on the
achievable rate region of a MIMO-MAC where a statistic S of the channel
realization H is available at the receiver. In order to provide some analyti-
cal considerations concerning the tightness of such bounds, in the following
the behavior of the the gaps between the lower bounds and the corresponding
upper bounds in (1.30) is analyzed.

Given a subset A ⊂ U of the user’s set U , by Theorem 1, we have that
I(xA;y|S,xA) is lower and upper bounded by:

IL(A,A)≤I(xA;y|S,xA)≤IL(A,A)+ ∆A
(1.30)

with

∆A = E
[
log

|IL + SNR ΩA + SNR ΦA|
|IL + SNR ΦU |

]
(1.31)

Proposition 1 Let A1 ⊂ U and A2 ⊂ U subsets of U such that:

A1 ⊆ A2.
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Then

∆A1 ≤ ∆A2 ≤ ∆U . (1.32)

Proof: See Appendix A Proof of Proposition 1.

This implies that ∆A is an increasing function of the cardinality of the user
subset A, otherwise stated as the number of users, indexed in the subset A,
increases, the gap increases. From the above proposition, it follows the subse-
quent result:

Theorem 2 The achievable rate region of a MIMO-MAC where a statistic S
of the channel realization H is available at the receiver, can be sandwiched
between two polytopes, between which the gap can be upper bounded by the
following quantity:

∆U = E
[
log

|IL + SNR ΩU |
|IL + SNR ΦU |

]
(1.33)

Note that ∆U , given in (1.33), represents also the gap between the upper
and the lower bound of the sum rate (cf. Corollary 1). Then this quantity can
be used to characterize with a single parameter, at any operating SNR , the gaps
between the upper bounds and the lower bounds. Another interesting result,
about the behavior of the gap to the sum-rate, is the following one:

Theorem 3 As function of SNR , ∆U (SNR ), given in (1.33), is an increasing
function.

Proof: See Appendix A Proof of Theorem 3. Consequently, from Theorem
2 and Theorem 3, the gaps between the upper and the lower bounds can be
uniformly upper bounded, on every range of signal to noise ratio considered,
evaluating the gap to the sum-rate at the highest SNR . Moreover, under some
mild conditions, like the assumption that the matrix Z is full rank with prob-
ability one, the gap converges to a finite value when the SNR diverges: this
value can be used to give an uniform upper bound, with respect to SNR , to the
function ∆U (SNR ).

The next two theorems study the asymptotic (in the sense of number of
receiving antennas or number of users) behavior of the gap between the inner
and the outer bound on the achievable rate region of a MIMO-MAC with a
statistic S of the channel realization available at the receiver, assuming that Z is
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statistically independent from S7. Consequently, an insight about the behavior
of the system can be obtained. Specifically, we can prove the following results:

Theorem 4 As the number of receiving antennas, L, grows, the gap between
the inner and the outer bound on the achievable rate region of a MIMO-MAC
when a statistic S, of the channel realization H, is available at the receiver,
goes to zero if:

• E[|xk|4] is finite ∀k ∈ 1, . . . ,K ,

• Z has independent elements

• σ2
i,j = o

(
1

L
1
2+ε

)
where σ2

i,j is the variance of [Z]i,j ,

Equivalently, as L →∞,

∆U
L→∞→ 0 (1.34)

where ∆U is given as in (1.33).

Proof: See Appendix A Proof of Theorem 4.
Let us observe that the condition given on the power profile of the estimation
errors does not imply that the overall error norm goes to zero, whereas it can
go to infinity.

Example 1 A scenario, in which the conditions of Theorem 4 are satisfied,
is the case of channel estimation with full rank training. In such scenario,
which will be described in the subsequent Subsection 2.2, if the k-th user has
one transmitting antenna, and the fading coefficients between the transmitting
antenna of k-th user and the receiving antennas are modeled as zero-mean
Gaussian random variables with variance σ2

k = φk
L (to take in account for the

energy conservation), Z is a gaussian random matrix whose entries are inde-
pendent and have common variance along the columns. Specifically, denoting
by (σ2

Z)k the common variance of the entries of the k-th column of Z, we have:

(σ2
Z)k =

1
(σ2

k)
−1 + PT

=
1

(φk
L )−1 + PT

=
φk

L + φkPT
, (1.35)

7If the conditions that we have considered are satisfied for each S, the results are easily
extended
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with PT denoting the power assigned by the k-th user with k = 1, . . . ,K to
the training. Then, defining C = max

k∈1,...,K
φk, we have that σ2

i,j ≤ C
L .

Let us now consider the asymptotic behavior of ∆U when the number of
users, K, increases.

Theorem 5 As the number of active users8, K̄, increases, the gap between
the inner and the outer bound on the achievable rate region of a MIMO-MAC
when a statistic S, of the channel realization H, is available at the receiver,
goes to zero if:

• E[|xk|4] is uniformly bounded, i.e. ∃ Gx > 0 : E[|xk|4] < Gx ∀k ∈
1, . . . ,K ,

• Z is constituted by independent elements with uniformly bounded
variances, i.e. ∃ Gσ > 0 : σ2

i,j < Gσ ∀(i, j), where σ2
i,j is the

variance of [Z]i,j ,

Equivalently, as K̄ →∞,

∆U
K̄→∞→ 0 (1.36)

where ∆U is given as in (1.33).
Proof: See Appendix A Proof of Theorem 5.

It is important to underline that the upper bound for the sum-rate proved in
Corollary1 for Gaussian distribution can be easily extended to zero mean input
distributions. Then, resorting to Theorem 5, we can conclude that the Gaussian
distributions are asymptotically optimal for all the input distributions with fi-
nite fourth order moments; this is due to the convergence of the upper bound to
the lower bound, which moreover is independent from input distribution and
is achievable for Gaussian ones. This consideration has a very simple inter-
pretation: when the number of users is high, for the Central Limit Theorem,
the random vectors 1√

K
Zx converge to a random gaussian vector, and then the

channel behaves as a Gaussian MIMO MAC channel with perfect channel state
information Ĥ and with an increased noise level, for which the optimality of
the Gaussian distribution is well known.

8Active users are those users whose transmitting power is strictly larger than zero.
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1.2.2 Precoding Optimization

Till now, we assumed fixed covariance matrices Pk of the input distributions.
However, such parameters represent a degree of freedom that we have in the
design of the system: we can therefore carefully choose the precodings matri-
ces Pk in order to optimize the performance of the network. The more natural
choice is to optimize the sum-rate of the system, i.e. the global amount of in-
formation reliably delivered. A closed form expression of the optimal power
allocation strategy for our MIMO-MAC is, unfortunately, not available. A pos-
sible alternative is to consider as figure of merit the lower bound on the sum
rate, which is given by

ILower(P)=E
[
log
∣∣∣IL+SNR (IL+SNR ΩU )−1ĤPUĤ†

∣∣∣] ,

(1.37)

with ΩU = ES

[
ZPUZ†], Ĥ = [Ĥ(1) . . . Ĥ(K)] and Ĥ(k) = ES[H(k)],

and finding the power allocation strategy that maximize such a lower bound.
Specifically we can prove the following results:

Theorem 6 Assume that S and H are such that:

H.1 Ĥ is modeled according to (1.6), i.e:

Ĥ(k) = UR(k)Ĥ(k)
w U(k)†

T , k = 1, . . . ,K

H.2 ΩU doesn’t depend on S and

Z̃(k) = Z(k)U(k)
T , k = 1, . . . ,K

are random matrices with independent columns, each column having
entries whose joint distribution is symmetric with respect to zero.

Then the eigenvectors of the input covariance matrix P∗
k that maximizes (1.37)

are given by the columns of U(k)
T .

Proof: See Appendix A Proof of Theorem 6

Let Λ∗
k be the eigenvalue matrix of the input covariance matrix, P∗

k, that
maximizes (1.37). From the block diagonal structure of PU , as defined in
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(1.19), it follows that the eigenvalue matrix, Λ∗
U , associated to the matrix

P∗
U = diag (P∗

1, . . . ,P
∗
K) is given by:

Λ∗
U = diag (Λ∗

1, . . . ,Λ
∗
K) (1.38)

We know that under the hypothesis of Theorem 6:

P∗
k = U(k)

T Λ∗
kU

(k)†

T , k = 1, . . . ,K (1.39)

The next theorem provides the structure of Λ∗
k with k = 1, . . . ,K .

Theorem 7 Assume that:

•H .1-H.2 of Theorem 6 hold,

• the joint distribution of the channel matrix H(k) and of the statistic S is
such that:

SNR E
[
ZU†

TΛUUTZ†
]

= α(ΛU )IL (1.40)

with ΛU denoting the MK-diagonal matrix whose diagonal ele-
ments are the eigenvalues of PU as defined in (1.19), UT =
diag

(
U(1)

T , . . . ,U(K)
T

)
and α =

∑KM
i=1 ai[ΛU ]i,i.

Then, the input covariance matrices P∗
k, with k = 1, . . . ,K , maximizing

the lower bound on the sum rate, are given by:

P∗
k = Uk

TΛ
∗
kU

k†
T k = 1, . . . ,K (1.41)

where Λ∗
k = diag(λk∗

1 , . . . , λk∗
M ) with k = 1, . . . K are diagonal matrices,

whose diagonal elements are given by:

λ1∗
1
...

λ1∗
M
...

λK∗
1
...

λK∗
M


=
(
IKM − da†

)−1
d =

1
1− a†d

d (1.42)
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where
d = [d†1, . . . ,d

†
K ]†

is the KM -dimensional vector solution of the following convex optimization
problem:

max
{dk}

E

[
log
∣∣∣IL + SNR

K∑
k=1

Ĥ(k)U(k)
T diag (dk)U

(k)†

T Ĥ(k)†
∣∣∣]

s.t. :
M∑
i=1

dk,i ≤ 1− a†d, k = 1, . . . ,K.

(1.43)

where in (1.43) for all i = 1, . . . ,M and k = 1, . . . ,K , with dk,i we have
denoted the i-th element of dk.

Proof: See Appendix A Proof of Theorem 7.
Let us underline the importance of the convexity property of the optimiza-
tion problem (1.43); indeed, this implies that the auxiliary vector d can be
efficiently obtained through the interior point algorithm and then the optimal
power allocations Λ∗

k can be easily found.
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1.3 Appendix A

Proof of Theorem 1
In order to prove Theorem 1, let us firstly prove the lower bound. To this

end, initially, we assume that PF is positive definite and expand the mutual
information in the following way:

I(xF ;y|S,xC) = h(xF |S,xC)− h(xF |y,S,xC). (1.44)

Assuming xF |S,xC Gaussian distributed with covariance matrix PF , we have:

h(xF |S,xC) = log |πePF |. (1.45)

Recall here that:
P(k) = E[x(k)x(k)† ] = P P(k).

Moreover, we can upper bound the second term using the following inequali-
ties chain:

h(xF |y,S,xC) = h(xF |y,S,xC , x̂F (y,S,xC))
≤ h(xF |S,xC , x̂F (y,S,xC))
≤ E[h(εxF |S = S̄,xC = x̄C)]

(1.46)

where x̂F (y,S,xC) denotes an estimate of the input data vector xF , based
on y, S and xC , while εxF = xF − x̂F (y,S,xC) denotes the corresponding
estimation-error vector.

Letting x̂F (y,S,xC) be the conditional linear MMSE (LMMSE) estima-
tor, we have:

x̂F =PFĤ†
F

(
ĤFPFĤ†

F+ΘF ,C

)−1(
y−ĤCxC

)
(1.47)

where

ΘF ,C = PES[ΦC ] + PΓF∪C + PΦC + N0I (1.48)

while Ĥ(·), Φ(·), and Γ(·) are defined as in Section 1.2.
After some simple algebraic manipulations, the error covariance matrix of
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the estimator, conditioned on S and xC , in (1.47), can be expressed as, [28]:

PF −PFĤ†
F

(
ĤFPFĤ†

F + ΘF ,C

)−1
ĤFPF .

(1.49)

In order to provide a lower bound of (1.44), we will provide an upper bound
to the conditional differential entropy of the error in (1.46). For this purpose,
the entropy maximizing property of the Gaussian distribution with the same
covariance matrix is exploited. Specifically, applying the inversion Lemma 9

to the covariance matrix in (1.49), and exploiting (1.45) we obtain, that for
arbitrary F ⊆ U and C ⊆ U :

I(xF ;y|S,xC) ≥ IL(F ,C)

= E
[
log
∣∣∣IL + (ΘF ,C)

−1 ĤFPFĤ†
F

∣∣∣]
(1.50)

Let us now observe that I(xF ;y|S,xC) and the lower bound in (1.50), are con-
tinuous function of PF , in the set of the block diagonal matrices non-negative
definite, [29]. Moreover, it is well known that the closure of the set of the
block diagonal matrices positive definite is the set of the block diagonal ma-
trices non-negative definite; furthermore, we know that (1.50) holds in the set
of the block diagonal matrices positive definite. Then from sign permanence
Theorem, (1.50) still hold for all block diagonal matrices non-negative defi-
nite.
Let us now move on to the derivation of the upper bound for I(xF ;y|S,xC).
From the chain rule of the mutual information, we have that:

I(xF ;y|S,xC) = I(xC ;y|S,xC)
−I(xF∪C ;y|S,xF∪C) (1.51)

From (1.51), an upper bound for I(xS ;y|S,xC) can be obtained by upper
bounding I(xC ;y|S,xC) and lower bounding I(xF∪C ;y|S,xF∪C). Thus, in
summary, the derivation of an upper bound for (1.51), boils down to deriving
an upper and lower bound for I(xA;y|S,xA), where A is an arbitrary subset
of U . Concerning the lower bound, we can use (1.50) where A ≡ F and

9We exploit in our derivation the fact that for any square matrix A = B−BC†(CBC† +
D)−1CB, we may express its inverse as A−1 = B−1+C†D−1C and the well known relation
|A|−1 = |A−1|.
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A ≡ C. For the upper bound, we expand I(xA;y|S,xA) as:

I(xA;y|S,xA) = h(y|S,xA)− h(y|S,x). (1.52)

From (1.5) and (1.12), it is obtained that the covariance matrix of y, condi-
tioned on S,xA, is:

ES,xA
[yy†] = ĤAPAĤ†

A + PΩA + PΦA + N0IL.

Thus, the first term in right side of (1.52) is upper bounded by:

h(y|S,xA)≤ E!
[
log
∣∣∣ĤAPAĤ†

A+P (ΩA+ΦA)+N0IL

∣∣∣]
+L log(πe) (1.53)

where the expectation is over Ĥ and xA. Furthermore, from (1.5) and from
Hypothesis 2, y|S,x is distributed as Gaussian vector with covariance matrix
N0IL + PΦU and its differential entropy is given by:

h(y|S,x) = E
[
log
∣∣πe (N0IL + PΦU )

∣∣] (1.54)

with ΦU defined as in Section 2.2.1. Combining (1.52), (1.53) and (1.54), we
obtain:

I(xA;y|S,xA) ≤ IU(A,A)

= IL(A,A) + ∆A (1.55)

where the gap, ∆A, between the lower and the upper bound and is defined as:

∆A = E
[
log

|N0IL + PΩA + PΦA|
|N0IL + PΦU |

]
(1.56)

Replacing (1.50) and (1.55), in (1.51), we have:

I(xF ;y|S,xC) ≤ IU(F ,C)

= IL(C,C) − IL(F∪C,F∪C) + ∆C .

�
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Proof of Proposition 1 Let us consider two subsets A1 ⊆ A2 ⊂ U . Using
(1.31) we have:

∆A1= E
[
log

|IL + SNR ΩA1 + SNR ΦA1
|

|IL + SNR ΦU |

]
= E

[
log |IL + SNR ΩA1 + SNR ΦA1

|
]

− E [log |IL + SNR ΦU |]
(1.57)

Using Jensen’s inequality, taking into account that A1 can be decomposed as

A1 ≡ A1 −A2

⋃
A2

and the fact that input signals from different users are zero mean and indepen-
dent, it is obtained that:

ES,A2

[
ΦA1

]
= ES,A2

[
ΦA1−A2

]
+ΦA2

from which it follows that:

∆A1< E
[
log |IL+SNR ΩA1 +SNR ES,A2

[
ΦA1−A2

]
+SNR ΦA2

|
]

− E [log |IL + SNR ΦU |]

= E
[
log |IL+SNR ΩA2 +SNR ΦA2

|
]
−E [log |IL+SNR ΦU |]

= ∆A2 (1.58)

where we resort to the following equalities:

ES,A2

[
ΦA1−A2

]
= ΩA2−A1 (1.59)

ΩA1 + ΩA2−A1 = ΩA2 (1.60)

From (1.58) it follows that ∆A is an increasing function of the cardinality of
the user subset A. Thus the maximum gap is obtained when A ≡ U .

�
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Proof of Theorem 3 Let us evaluate the derivative ∆U (SNR ) with respect
to SNR ;

d

dSNR
∆U (SNR )=E

[
d

dSNR
log |IL + SNR ΩU |

− E
[

d

dSNR
log |IL + SNR ΦU |

]]
=E

[
N∑

i=1

λi

1 + SNR λi

− E

[
N∑

i=1

βi

1 + SNR βi

]]
(1.61)

≥E

[
N∑

i=1

λi

1 + SNR λi

−
N∑

i=1

E [βi]
1 + SNR E [βi]

]
(1.62)

≥ 0 (1.63)

where in (1.61), λi are the eigenvalues of ΩU in increasing order, while βi

are the random eigenvalues of ΦU , respect to x, again in increasing order; in
(1.62) we have applied Jensen’s inequality and finally in (1.63) we have used
the Schur concavity of the function

∑N
i=1

xi

1+SNR xi
and the fact that:

E[λ(ΦU )] � λ(E[ΦU ]) (1.64)

= λ(ΩU ), (1.65)

where in the above inequalities, the expectations are with respect to the input
vector x, and λ(B) denotes the vector containing the eigenvalues of the matrix
B. Now in order to prove the majorization given in (1.64), we demonstrate the
following lemma:

Lemma 1 Given a positive semi-definite random matrix B of dimension N ×
N , then E[λ(B)] � λ(E[B]), where the eigenvalues are taken in increasing
order.
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Proof: We have to prove that for all r = 1, . . . , N − 1:

E

[
r∑

i=1

λi(B)

]
≤

r∑
i=1

λi(E[B]) r = 1, . . . , N − 1 (1.66)

and

E

[
N∑

i=1

λi(B)

]
=

N∑
i=1

λi(E[B]) (1.67)

To this end, we have that:

E

[
r∑

i=1

λi(B)

]
= E

 min
U ∈ Dr

tr{U†BU}

 (1.68)

≤ min
U ∈ Dr

E[tr{U†BU}]

=
r∑

i=1

λi(E[B]) (1.69)

where in (1.68) we use [30, Corollary 4.3.18], while in (1.69) we use the con-
cavity of the minimum of a function. Finally, for r = N , we have:

E

[
N∑

i=1

λi(B)

]
= E [tr{B}]

= tr{E[B]} (1.70)

=
N∑

i=1

λi(E[B]) (1.71)

�

Proof of Theorem 4 In order to prove Theorem 4, let us recall here that:

∀x ≥ 0 : x− x2

2
≤ ln(1 + x) ≤ x (1.72)

From Theorem 2, we have that the gap between the inner and outer bound on
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the rate region can be upper bounded by

∆U = E
[
log

|IL + SNR ΩU |
|IL + SNR ΦU |

]
(1.73)

where:
ΩU =

1
P

E
[
Zxx†Z†

]
,

and
ΦU =

1
P

Ex

[
Zxx†Z†

]
Particularizing this expression to our scenario, due to the assumption that Z
has independent elements, we have that ΩU and ΦU are diagonal matrices
with diagonal entries given by:

[ΩU ]i,i =
K∑

k=1

M∑
j=1

σ2
i,k+j [Pk]j,j

and

[ΦU ]i,i =
K∑

k=1

M∑
j=1

σ2
i,k+j

|xk+j |2

P
.

Therefore, substituting these expressions in (1.73), we obtain:

∆ =
L∑

i=1

log

1 + SNR
K∑

k=1

M∑
j=1

σ2
i,k+j [Pk]j,j


− E

log

1 + SNR
K∑

k=1

M∑
j=1

σ2
i,k+j

|xk+j |2

P


(1.74)

Applying (1.72) to (1.74), we have:
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0 ≤ ∆≤
L∑

i=1

SNR
K∑

k=1

M∑
j=1

σ2
i,k+j [Pk]j,j

−
L∑

i=1

E

SNR
K∑

k=1

M∑
j=1

σ2
i,k+j

|xk+j |2

P


+

L∑
i=1

E


(

SNR
∑K

k=1

∑M
j=1 σ2

i,k+j
|xk+j |2

P

)2

2


≤ LE


(

SNR
∑K

k=1

∑M
j=1

C

L
1
2+ε

|xk+j |2
P

)2

2


≤ L−ε SNR 2C2

2

K∑
k=1

E
[
||xk||4

]
L→∞→ 0 (1.75)

where (1.75) follows from the fact that the fourth moment of the transmitted
signal is finite.

�

Proof of Theorem 5 From Theorem 2, we have that gap between the inner and
the outer bound on the rate region can be upper bounded by

∆U = E
[
log

|IL + SNR ΩU |
|IL + SNR ΦU |

]
(1.76)

where:
ΩU =

1
P

E
[
Zxx†Z†

]
,

and
ΦU =

1
P

Ex

[
Zxx†Z†

]
As in the proof of Theorem 4, due to the assumption that Z has independent
elements, we have that ΩU and ΦU are diagonal matrices with diagonal entries
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given by:

[ΩU ]i,i =
K̄∑

k=1

M∑
j=1

σ2
i,k+j [Pk]j,j

and

[ΦU ]i,i =
K̄∑

k=1

M∑
j=1

σ2
i,k+j

|xk+j |2

P
.

Therefore, substituting these expressions in (1.76), we obtain:

−∆=
L∑

i=1

E

log


1 + SNR

K̄∑
k=1

M∑
j=1

σ2
i,k+j

|xk+j |2

P

1 + SNR
K̄∑

k=1

M∑
j=1

σ2
i,k+j [Pk]j,j



 .

=
L∑

i=1

E
[
log
(
1 + yi

K̄

)]
(1.77)

where

yi
K̄ =

1
K̄

SNR
K̄∑

k=1

M∑
j=1

σ2
i,k+j

(
|xk+j |2

P
− [Pk]j,j

)
1
K̄

+
1
K̄

SNR
K̄∑

k=1

M∑
j=1

σ2
i,k+j [Pk]j,j

is a zero-mean random variable (i.e E
[
yi

K̄

]
= 0) with variance

E
[
(yi

K̄)2
]
=

1
K̄2

SNR 2
K̄∑

k=1

E

 M∑
j=1

σ2
1,k+j

(
|xk+j |2

P
−[Pk]j,j

)2
 1

K̄
+

1
K̄

SNR
K̄∑

k=1

M∑
j=1

σ2
1,k+j [Pk]j,j

2 .

Now notice that, using the Cauchy Schwartz inequality, E
[
(yi

K̄
)2
]

can be up-
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per bounded as follows:

E
[
(yi

K̄)2
]
≤

1
K̄2

SNR 2M
K̄∑

k=1

βk 1
K̄

+
1
K̄

SNR σ2
min

K̄∑
k=1

tr{Pk}

2 (1.78)

≤

1
K̄

SNR 2Mβ(
1
K̄

+ SNR σ2
minPmin

)2 (1.79)

where in (1.78)

βk =
M∑

j=1

E

[
σ4

1,k+j

(
|xk+j |2

P
− [Pk]j,j

)2
]
,

while in (1.79) β = max
k
{βk}, σ2

min denotes the minimum over all strictly

positive values of σ2
1,k+j , and Pmin = min

k
tr{Pk} which is strictly positive

since we are assuming K̄ > 0 active users. Recalling that σ2
1,k+j < Gσ and

E[|xk|4] < Gx ∀k ∈ 1, . . . , K̄ and j = 1, . . . ,M , we have that the {βk} are
uniformly bounded, from which it follows that yi

k converges in mean square
sense to zero, equivalently:

E
[
yi

K̄

]
→ 0 m.s.(1.80)

Let us now lower bound (1.77); to this end, we need to lower bound the func-
tion log (1 + x). Let us consider the function:

g(x) =

{
1− 1

1−δ −1 < x < −δ

1− 1
1+x x ≥ −δ

where δ is an arbitrary real number such that 0 < δ < 1. Then we have that

log (1 + x) ≥

{
log (1 + x) + g(x) −1 < x < −δ

g(x) x ≥ −δ .
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Let us observe that each random variable yi
K̄
≥ ai

K̄
, where

−1 < ai
K̄ =

− 1
K̄

SNR
K̄∑

k=1

M∑
j=1

σ2
i,k+j [Pk]j,j

1
K̄

+
1
K̄

SNR
K̄∑

k=1

M∑
j=1

σ2
i,k+j [Pk]j,j

< 0.

Thus we have

0 ≥ E
[
log
(
1 + yi

K̄

)]
≥ E

[
g
(
yi

K̄

)]
+
∫ −δ

ai
K̄

log
(
1 + yi

K̄

)
dµyi

K̄

≥ E
[
g
(
yi

K̄

)]
+ log

(
1 + ai

K̄

)
P (|yi

K̄ | > δ)

≥ E
[
g
(
yi

K̄

)]
+ log

(
1 + ai

K̄

) σ2
K̄

δ2
(1.81)

where σ2
K̄

=

1
K̄

SNR 2Mβ(
1
K̄

+ SNR σ2
minPmin

)2 .

Since g(x) is a continuous and bounded function, we have

E
[
g
(
yi

K̄

)]
→ 0 ∀i

(characterization of the convergence in distribution); moreover

log
(
1 + ai

K̄

) σ2
K̄

δ2
→ 0 ∀i and ∀δ,

since σ2
k goes to zero with K̄, like 1

K̄
, and x log(x) → 0 when x → 0. Conse-

quently, as K̄ →∞ we have that ∆ goes to zero.

�
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Proof of Theorem 6 Starting from (1.37), we have that:

ILower(P)=E
[
log
∣∣∣IL + SNR QĤPĤ†

∣∣∣] (1.82)

=E

[
log
∣∣∣IL + SNR Q

K∑
k=1

Ĥ(k)PkĤ(k)†
∣∣∣] (1.83)

=E

[
log
∣∣∣IL + SNR Q

K∑
k=1

U(k)
R Ĥ(k)

w P̃kĤ(k)†
w U(k)†

R

∣∣∣]
(1.84)

where in (1.82)

Q = (IL + SNR ΩU )−1

=
(
IL + SNR E

[
ZPZ†

])−1

=
(
IL + SNR E

[
Z̃P̃Z̃†

])−1
, (1.85)

in (1.83) we have used the fact that Ĥ(k) can be written as

Ĥ(k) = U(k)
R Ĥ(k)

w U(k)†

T

and finally in (1.84) and in (1.85) we have denoted P̃k = U(k)†

T PkU
(k)
T and

Z̃(k) = ZU(k)
T .

We want to show that nonzero off-diagonal entries in P̃k can only reduce
ILower(P). To reach this aim, we define Πj as a diagonal matrix all of whose
diagonal entries are 1 except for the (j, j)-th entry, which is −1. The entries
of ΠjP̃kΠ

†
j equal those of P̃k except for the off-diagonals in the j-th row and

j-th column, whose sign is reversed. Also we have tr{Pk} = tr{ΠjP̃kΠ
†
j}

and

ILower(ΠjP̃kΠ
†
j) = ILower(P̃k) (1.86)

where in (1.86) we have used the fact that, since the columns of Ĥ(k)
w and of

Z̃ are independent with a symmetric distribution, reversing the sign of the j-th
column does not alter the distribution. The matrix 1

2

(
ΠjP̃kΠ

†
j + P̃k

)
has the

same entries of P̃k except for the off-diagonal in the -th row and j-th column,
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which are zero. Invoking Jensen’s inequality:

ILower

(
1
2

(
ΠjP̃kΠ

†
j + P̃k

))
≥

ILower(ΠjP̃kΠ
†
j) + ILower(P̃k)
2

=ILower(P̃k)

Hence, nullifying the off-diagonal entries of any column and corresponding
row of P̃k can only lead to an increase of ILower(P̃k). Repeating the same pro-
cess KM times, we find that (1.37) is maximized when indeed P̃k is diagonal
for all k = 1, . . . ,K .

�

Proof of Theorem 7 Since the hypothesis of Theorem 6 are satisfied we know
that the input covariance matrix, P∗

k, that maximizes (1.37) is given by:

P∗
k = U(k)

T Λ∗
kU

(k)†

T , k = 1, . . . ,K (1.87)

with Λ∗
k denoting the eigenvalue matrix of P∗

k. Thus, letting:

H̃ = [Ĥ(k)U(1)
T , . . . , Ĥ(k)U(K)

T ]

and
Λ∗
U = diag (Λ∗

1, . . . ,Λ
∗
K)

with Λ∗
U denoting the eigenvalue matrix of P∗

U = diag (P∗
1, . . . ,P

∗
K), the

problem of maximizing (1.37) boils down to maximizing

E

[
log
∣∣∣IL +

SNR

1 + α(Λ∗
U )

K∑
k=1

Ĥ(k)U(k)
T Λ∗

kU
(k)†

T Ĥ(k)†
∣∣∣] , (1.88)

over all possible positive semi-definite diagonal matrices {Λ∗
k}K

k=1 such that
tr{Λ∗

k} ≤ 1; notice that, in (1.88), we assume that the joint distribution of the
channel matrix H(k) and of the statistic S is such that:

SNR ΩU = SNR E
[
ZP∗

UZ†
]

(1.89)

= α(Λ∗
U )IL (1.90)

with α =
∑KM

i=1 ai[Λ∗
U ]i,i.
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Next, define D as the following KM -dimensional diagonal matrix:

D =
1

1 + α(Λ∗
U )

Λ∗
U . (1.91)

Then, (1.88) can be rewritten as:

E

[
log
∣∣∣IL +

SNR

1 + α(Λ∗
U )

K∑
k=1

Ĥ(k)U(k)
T Λ∗

kU
(k)†

T Ĥ(k)†
∣∣∣]

= E
[
log
∣∣∣IL +

SNR

1 + α(Λ∗
U )

H̃Λ∗
UH̃†

∣∣∣]
= E

[
log
∣∣∣IL + SNR H̃DĤ†

∣∣∣] (1.92)

Denoting by λ∗ the vector of the diagonal elements of Λ∗
U =

diag (Λ∗
1, . . . ,Λ

∗
K):

λ∗ = [λ1∗
1 , . . . , λ1∗

M , . . . , λk∗
1 , . . . , λk∗

M , . . . , λK∗
1 . . . , λK∗

M ]T

and by d the KM -dimensional vector:

d = [d1,1, . . . , d1,M , . . . , dk,1, . . . , dk,M , . . . , dK,1 . . . , dK,M ]T ,

from (1.91) it follows that:

λ∗ = d (1 + α(Λ∗
U )) (1.93)

= d

(
1 +

KM∑
i=1

aiλ
d i

M
e∗

mod[i,M ]+1

)
(1.94)

= d
(
1 + aTλ∗

)
(1.95)

where a is the KM -dimensional vector a = [a1, . . . , aKM ]T . From (1.95),
after some algebraic manipulations , it follows that λ∗ and d are related by:(

1− aTd
)
λ∗ = d (1.96)

which is equivalent to:

λ∗ =
1

1− aTd
d. (1.97)
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Using (1.97), we can rewrite the power constraints, tr{Λ∗
k} ≤ 1 in terms of

elements of d. Specifically, if λ satisfies (1.97), then the power constraints
tr{Λ∗

k} ≤ 1 with k = 1, . . . ,K induce the following constraints on the ele-
ments of d: for all k = 1, . . . ,K ,

M∑
i=1

dk,i ≤ 1− a†d.

From the foregoing considerations and from (1.92), it follows that maximi-
zing (1.88) over all possible positive semi-definite diagonal matrices Λ∗

U =
diag(λ∗) such that tr{Λ∗

k} ≤ 1, is tantamount to:

• solving the following optimization problem:

D∗ = diag(d∗) = arg max
D

E
[
log
∣∣∣IL + SNR H̃DĤ†

∣∣∣]
over all possible positive semi-definite diagonal matrices D =
diag(d) = diag([d1,1, . . . , dk,i, . . . dK,M ]T ) such that their diagonal en-
tries {dk,i}:

M∑
i=1

dk,i ≤ 1− a†d, for all k = 1, . . . ,K,

• evaluating λ∗ via (1.97) i.e:

λ∗ =
1

1− aTd∗
d∗.

�





Chapter 2

Applications of MIMO MAC with
Partial CSI

In chapter 1, a MIMO MAC system, in which an arbitrary statistic S of the
channel realization H is available at the receiver, has been describer under an
Information-Theoretic point of view. In this chapter possible setups, where
such analysis is of interest, are described. In particular, two main scenarios
where the perfect coherent reception of signals is totally unrealistic are
considered; in this situation it is opportune to quantify the impact of partial
channel state information. The first analyzed case concerns a cooperative
MIMO network in which the received signals at several base stations are
collected and jointly decoded at a CP, assuming that only a partial CSI is
available to the CP. The second scenario, for which the analysis conducted
in chapter 1 is applied, regards a MIMO MAC channel in which the channel
knowledge at the receiver is obtained through training signals.

2.1 Application to Cooperative MIMO Networks

Coordinating the reception and transmission of signals across spatially dis-
tributed base stations has been shown to improve sum-rate performance by mit-
igating the effects of intercell interference in MIMO cellular networks, [18],
[19]. Concerning the uplink, full network coordination can be interpreted as
having a single base station receiver with spatially distributed antennas across
the network, yielding an instance of a MIMO MAC.

More precisely, let us consider a cellular network with N base stations,

33
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each of them equipped with L receiving antennas, and serving in total K users,
each of them equipped with M transmitting antennas. The received signal at
the j-th base station is given by:

yj =
K∑

k=1

H(k)
j x(k) + n(j) (2.1)

= Hjx + n(j) j = 1, . . . , N, (2.2)

where H(k)
j is the L×M channel matrix between k-th user and j-th base, x(k)

is the M -dimensional input vector for the k-th user and n(j) is the additive
symmetric zero-mean Gaussian noise. In (2.2), x = [x(1)† , . . . ,x(K)†]† is the
MK-dimensional stacked input vector and Hj =

[
H(1)

j ,H(2)
j , . . . ,H(K)

j

]
,

for all j = 1, . . . N , is an L × MK channel matrix, statistically independent
across j, whose blocks H(k)

j are statistically independent across k. We suppose

that each channel H(k)
j is described by the UIU model [24], i.e.,

H(k)
j = U(k,j)

R H(k,j)
w U(k,j)†

T , k = 1, . . . ,K, j = 1, . . . , N, (2.3)

where U(k,j)
R is a L×L unitary matrix, U(k,j)

T is a M ×M unitary matrix, and
H(k,j)

w is a zero-mean L×M Gaussian random matrix of independent elements
with power profile Σ(k,j)

w , i.e. E
[
|[H(k,j)

w ]i,j |2
]

= [Σ(k,j)
w ]i,j .

By stacking the N received signal vectors in (2.2) to form an LN -
dimensional vector, y = [y(1)† . . .y(N)† ]†, we can write

y = Hx + n, (2.4)

where H is the NL × MK channel matrix whose (j, k)-th block is the ma-
trix H(k)

j , x is the MK-dimensional stacked input vector, and n is the NL-
dimensional stacked noise vector.

In the subsequent subsections we analyze different types of statistic of the
channels available at the CP. In particular we consider two main scenarios
characterized by different quality of the side information, related to H, that
can be made available at the CP. In both cases the data vectors yj are assumed
as perfectly known to the CP.
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2.1.1 Cooperative MIMO Networks with Incomplete CSI and
infinite-capacity backhaul to a CP

In this subsection we analyze the performance limits of a cooperative uplink
MIMO network in which N base stations send their received signals to a CP
via backhaul links, for joint decoding. We assume that the backhaul links have
infinite capacity. For an ideal joint decoding, the CP requires full CSI (ampli-
tude and phase) for the link from every user to every base. In practice, achiev-
ing full CSI in a large network is very challenging because the low signal-to-
noise ratio on the link between distant bases and users would prevent accurate
channel estimation. Starting from these considerations we assume, denoting
U the set of all users in the network, for all j = 1, . . . , N , that the j-th base
station has perfect knowledge of the channel matrices of only a given subset of
users, which we denote by Cj ⊆ U , while for the remaining users Cj = U−Cj ,
only statistical channel state information (SCSI) is available at the j-th base.
In order to define the subset Cj of users whose channel matrices are perfectly
known at the j-th base station, we consider a user-based constraint: full CSI
(phase and amplitude) for a given user is known at Q ≤ N base stations and
each user independently chooses (based on a given criterion) its own set of Q
base stations. We refer to Q as degree of cooperation [17]. The joint deco-
ding process takes place at the CP wherein, in addition to the statistical CSI
of the channel from all users, for all j = 1, . . . , N , unquantized versions of
the received data vectors yj and the channels H(k)

j with k ∈ Cj ⊆ U are made
available, thanks to the assumption of infinite-capacity links between each base
station and the CP, that can be used for both the information that have to be
processed.

Under this framework, the statistic of the channel H available at the CP is
given by:

S = {H(k)
j : j = 1, . . . , N, and k ∈ Cj} (2.5)

Based on the aforementioned consideration, for each j = 1, . . . , N , we
define the a N ×K matrix Ē whose (j, k)-th element, [Ē]j,k is 1 if if the chan-
nel H(k)

j is known fully at the j-th base and 0 otherwise, which is equivalent
to saying that for all j = 1, . . . , N :

[Ē]j,k =
{

1 if k ∈ Cj ,
0 otherwise.

(2.6)
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Note that each column of Ē has only Q ones and the other entries are all zeros.

Let
H(k) = [H(k)†

1 , . . . ,H(k)†
N ]†

denote the channel matrix between the k-th user and the N base stations. Then,
using the notation introduced before, the set of channels, H(k c), characterizing
the links between the k-th user and its own set of Q base stations can be rep-
resented as:

H(k c) = H(k) �
(
Ēk ⊗ 1L1†M

)
, (2.7)

where Ēk denotes the k-th column of Ē. Consequently, H(k) can be re-written
as

H(k) = H(k c) + H(k i),

with

H(k i) = H(k) �
(
1LN1†M −

(
Ēk ⊗ 1L1†M

))
, (2.8)

where c and i respectively denote complete and incomplete channel knowledge.

Furthermore, we denote by E the LN × MK matrix E = Ē ⊗ 1L1†M .
Using the foregoing definition and by introducing

Hc = H�E, (2.9)

Hi = H� (1LN1†MK −E), (2.10)

where again c and i respectively denote complete and incomplete channel
knowledge, we can rewrite the channel matrix H in a compact form as

H = Hc + Hi. (2.11)

Since the matrices H(k c) and H(k i) are statistically independent, and by as-
sumption independent across k = 1, . . . ,K , we have that H, S, ES[H] and Z
as defined in (1.12) satisfy Hypothesis 2 given in Section 1.2. For this parti-
cular setting, we have

Ĥ = ES[H] (2.12)

= [H(1 c), . . . ,H(k c), . . . ,H(K c)] (2.13)

= Hc (2.14)
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and

Z = H|S − ES[H] (2.15)

= [H(1 i), . . . ,H(k i), . . . ,H(K i)] (2.16)

= Hi. (2.17)

Particularizing Theorem 1 to this scenario, we obtain that for any disjoint
user subsets F ⊆ U and C ⊆ U ,

IL(F ,C)≤I(xF ;y|S,xC)≤IL(C,C)− IL(F∪C,F∪C)+ ∆C
(2.18)

with

IL(F ,C) =E
[
log
∣∣∣ILN +

(
ΩC + ΓF∪C + ΦC + 1

snrILN

)−1 ΓF

∣∣∣] ,

and

∆C = E
[
log

|ILN + SNR ΩC + SNR ΦC |
|ILN + SNR ΦU |

]
(2.19)

where for any arbitrary user subset R ⊆ U ,

ΓR = Hc
RPRHc

R
†,

and

ΦR =
1
P

ExR

[
Hi
RxRx†RHi

R
†
]
,

while ΩR = E[ΦR].

Computing explicitly the above expectations we have that: ΩB is a NL×
NL block diagonal matrix with j-th block of dimension L× L, given by:∑

k∈B∩Cj

U(k,j)
R A(k,j)U(k,j)

R
†
, with j = 1, . . . , N,

where A(k,j) is a diagonal matrix, whose (i, i) entry is given by:

[A(k,j)]i,i = tr
{
U(k,j)

T PkU
(k,j)
T

†
D(k,j)

i

}
(2.20)
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with
D(k,j)

i = diag
(
[Σ(k,j)

w ]i,1, . . . [Σ(k,j)
w ]i,M ]

)
Similarly, ΦR is a NL × NL block diagonal matrix with j-th block, of

dimension L× L, given by:∑
k∈R∩Cj

U(k,j)
R B(k,j)U(k,j)

R
†

with j = 1, . . . , N, (2.21)

where B(k,j) is a diagonal matrix, whose (i, i) entry is given by:

[B(k,j)]i,i =
1
P

tr
{
U(k,j)

T xkx
†
kU

(k,j)
T

†
D(k,j)

i

}
. (2.22)

Let us, now, present a case of study to obtain insights about the behavior
of the system. We consider a cluster of N = 3 base stations, as illustrated in
Fig. 2.1, each at the center of an ideal hexagon, serving K = 2 users per cell
at any one time and frequency resource. We assume that the users are placed
uniformly inside each hexagon, of normalized ray R = 1, at a normalized
distance greater than 0.1, from the center.

Figure 2.1: Cluster of N = 3 hexagonal cells.
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Each base station is equipped with two receiving antennas, L = 2. Fur-
thermore each user has M = 1 transmitting antenna. The channel matrices
H(k)

j are characterized according to (2.3):

H(k)
j = U(k,j)

R H(k,j)
w U(k,j)†

T (2.23)

=
√

d−γ
j,k U(k,j)

R Λ(k,j)
R w(k,j) (2.24)

where U(k,j)†

T =1 since M=1, H(k,j)
w =

√
d−γ

j,k Λ(k,j)
R w(k,j), and w(k,j) is an

i.i.d. L-dimensional zero-mean Gaussian vector with unit variance entries. In
(2.24), U(k,j)

R and Λ(k,j)
R count for the correlation at the receiving antennas,

while
√

d−γ
j,k counts for the path loss attenuation of the signal with dj,k denot-

ing the distance between the k-th user and the j-th base station. Specifically,
denoting by Σj,k

R = U(k,j)
R Λ(k,j)

R U(k,j)
R the L × L receive correlation matrix,

we assume:

[Σk
R]l,l′ = 1

2e−0.5d2
R|l−l′|ei2πf0/c cos(θk

R)(l−l′) (2.25)

where f0 is the carrier frequency, c is the speed of light, dR is the receiving
antennas spacing of the Uniform Linear Array (ULA) and θk

R is the angle be-
tween the direction defined by the receiving ULA of the base station and di-
rection passing through the base station position and the k-th user position.
For this example, we assume that each user selects the Q nearest BSs, taking
in account for the distance-based pathloss. Specifically, for each user index
k ∈ {1, . . . ,K}, we can always find Q base-stations indices (j1, . . . , jQ) such
that:

• k ∈
⋂Q

`=1 Cj`
,

• j` = arg min
n∈{1,...N}−{jp}`−1

p=1

dn,k.

In Fig. 2.2 we analyze the average sum-rate of the system, with respect
to the random position of the users, in terms of its lower and upper bound as
given in (2.18), for two possible degree of cooperations Q = 1 and Q = 2.

We see that the lower and upper bounds are very tight in both case and thus
they well describe the performance limits of the system. As expected, increas-
ing the degree of cooperation produces an improvement of the performance.
Moreover, in the case Q = 1, the system is interference limited since the ma-
trix ΩU is positive definite, for all user positions, while in the case Q = 2 the
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Figure 2.2: Lower and Upper bound of the sum-rate of a cooperative MIMO
Network with incomplete CSI and infinite-capacity backhaul to a CP, with
degree of cooperations Q = 1 and Q = 2.

sum-rate continues to increase, since, with a non-negligible probability, at least
one base station knows all the user channels. Finally, note that the degree of
Cooperation needed to obtain good performance compared with the ideal case,
has to increase with the amount of power used to send information, underling
the increasing importance of the quality of the side information, with respect
to the operating SNR .
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2.1.2 Cooperative MIMO Networks with Imperfect CSI and
infinite-capacity backhaul to a CP

In this subsection, we extend the analysis of a cooperative MIMO network with
degree of cooperation Q, as described subsection 2.1.1, to the case where only
a quantized version of the channel matrix Hc = [H(1 c), . . . ,H(K c)], with
H(k c) defined as in (2.7), is available at the CP. Denoting by S the statistic
of the channel realizations available at the CP and using the same notation
introduced in Subsection 2.1.1, we have that

S = [S(1), . . . ,S(K)], (2.26)

where S(k) = H(k c)
q , with H(k c)

q denoting the quantized version of the matrix
H(k c). This scenario can be a meaningful model for a time-division-duplex
(TDD) MIMO network where each user perfectly estimates his channels with
the own set of Q selected base stations, using powerful training signals trans-
mitted by those base stations, and then sends back to them a quantized version
of such channels, using system control channels 1.

Since the users are spatially separated, we have to consider the further con-
straint of distributed encoding: the k-th user, after perfectly estimating H(k c),
quantizes it independently from the other users, and consequently with inde-
pendent quantization errors. We assume that each user compresses H(k c) to
within a prescribed distortion level Dk, determined by the available feedback
bandwidth and the rate-distortion characteristics of the channel.

Given this setup, considering the optimal quantizer for Gaussian random
vectors, we have that:

Ĥ = [H(1 c)
q , . . . ,H(K c)

q ] (2.27)

and

Z = H|S − ES[H] (2.28)

= [Z(1), . . .Z(K)] (2.29)

1A second setting, where the above scenario can be a meaningful model, is a setup where the
base stations perfectly estimate their channels and forward a compressed version of the channels
to the CP through a lossless link of finite capacity.
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where

Z(k) = H(k)

|S(k) − ES(k) [H(k)] (2.30)

= H(k)

|H(k c)
q

−H(k c)
q (2.31)

= H(k i) + Z(k)
q . (2.32)

In (2.30), Z(k)
q is a zero-mean Gaussian random matrix independent across

k = 1, . . . ,K and such that vec{Z(k)
q } ∈ CLNM is an LMN -dimensional

zero-mean Gaussian vector whose covariance matrix, D(k)∗, is given by the
solution of the following optimization problem, [31], [32]:

min
D(k)

(
log
∣∣∣Ω(k)

∣∣∣+ − log
∣∣∣D(k)

∣∣∣+)
s.t. : 0 � D(k) � Ω(k), tr{D} ≤ D(k)

(2.33)

where D(k) is such that E
[
‖H(k c) −H(k c)

q ‖2
]
≤ Dk, while Ω(k) denotes

the covariance matrix of LMN -dimensional random vector vec{H(k c)} ∈
CLNM . From the solution of the optimization problem given in (2.33), it fol-
lows that D(k)∗ = UΩ(k)Λ(k)∗

D U†
Ω(k) where UΩ(k) is the eigenvector matrix of

Ω(k) while Λ(k)∗

D is the solution of the following reverse water-filling

[Λ(k)∗

D ]i,i =

{
η if η < [ΛΩ(k) ]i,i
[ΛΩ(k) ]i,i if η ≥ [ΛΩ(k) ]i,i

(2.34)

with η such that tr{Λ(k)
D } ≤ D(k).

Since Z(k)
q and H(k i) are Gaussian random matrices statistical indepen-

dent, independent across k = 1, . . . ,K and independent from S, then Hy-
pothesis 2 holds. Particularizing Theorem 1 to this scenario we have that: for
any disjoint user subsets F ⊆ U and C ⊆ U ,

IL(F ,C)≤I(xF ;y|S,xC)≤IL(C,C)− IL(F∪C,F∪C)+ ∆C
(2.35)
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with

IL(F ,C) =E
[
log
∣∣∣ILN +

(
ΩC + ΓF∪C + ΦC + 1

snrILN

)−1 ΓF

∣∣∣] ,

and

∆C = E
[
log

|ILN + SNR ΩC + SNR ΦC |
|ILN + SNR ΦU |

]
(2.36)

where for any arbitrary user subset R ⊆ U ,

ΓR = QRPRQR† ,

and

ΦR=
1
P

ExR

[
Hi
RxRx†RHi

R
†
]
+

1
P

ExR

[
ERxRx†RER

†
]
.

with ΩR = E[ΦR], while QR and ER represent matrices formed, respecti-
vely, from Hc

q=
[
H(1 c)

q , . . . ,H(K c)
q

]
and Zq =

[
Z(1)

q , . . . ,Z(K)
q

]
, by deleting

the blocks not indexed by the elements of R.

As in Section 2.1.1, 1
P ExR

[
Hi
RxRx†RHi

R
†
]

is a NL×NL block diagonal
matrix with j-th block, of dimension L× L, given by:∑

k∈R∩Cj

U(k,j)
R B(k,j)U(k,j)

R
†

with j = 1, . . . , N, (2.37)

where B(k,j) is a diagonal matrix, whose (i, i) entry is given in (2.22).

On the other hand, 1
P ExR

[
ERxRx†RER

†
]

is a NL × NL matrix which

depends on the set of matrices {D(k)}k∈R.

As case of study, we consider exactly the same scenario, the same propa-
gation model and the same proximity-based cooperation protocol considered
in Subsection 2.1.1. However, in this case we assume that the CP has only a
quantized version of the channel matrix Hc. Specifically, we assume that each
user perfectly estimates his channels with respect to his own set of Q base sta-
tions and then forwards a quantized version of the estimate to the base stations,
which send them and the received data signals to the CP via infinite-capacity
links.

For this scenario, we study the performance of the Cooperative MIMO
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Network as function of the quantization rate dedicated by each user in for-
warding the compressed version of his channels. We assume that all the users
set a given common feedback rate R(D) in order to send the quantized channel
coefficients.

In Fig. 2.3, we illustrate the mean lower and upper bounds, with respect to
the random position of the users, of the sum rate for a set of quantization rate
given by R(D) = {1, 2, 4, 8, 16}, when the degree of cooperation, Q, is equal
to 3. As we can see, increments of the quantization rate imply increments of
the lower bound and decrements of the gap between lower and upper bound
thanks to the reduction of the quantization error. Moreover, growing the oper-
ating SNR the quality of the channel state information, in terms of quantization
rate, has to increase to obatin good performance compared to the ideal case.
Let us, also, observe that the amounts of side information, appear to be high
with respect to achievable sum-rate. However, we have no-take in account the
coherent time of the system that reduce the effective quantization rate.
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Figure 2.3: Lower and Upper bound of the sum rate, with degree of coop-
eration Q = 3, for several values of the quantization rate, and quantization
performed by the users.

In Fig. 2.4, we illustrate the mean lower and upper bounds of the sum
rate when the degree of cooperation Q = 2 and the quantization is per-
formed by the BSs. Again, we consider as a set of quantization rate, given by
R(D) = {2, 4, 8, 16, 32}. We can note that, for low values of the rate R(D),
there is an improvement of the performance with respect to the behavior of the
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system when the quantization is performed by the users. In fact, although there
are some matrices that are not known, the base stations have more degrees of
freedom in order to better allocate the resources. However for high values of
the rate R(D) we can see a reversed behavior: in this case it becomes more
and more important to represent all the channel matrices. The limit behavior
for R →∞ is the one illustrated in Fig. 2.2.
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Figure 2.4: Lower and Upper bound of the sum rate, with degree of coop-
eration Q = 2, for several values of the quantization rate, and quantization
performed by the BSs.
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2.2 Training Based Systems

In most of telecommunication networks, before the transmission of the infor-
mation, there is a synchronization phase during which the receiver estimate
the channel matrix. In particular a standard technique to allow the receivers
to estimate the channel matrix consists in the transmission from the users of
training sequences among the data, i.e. a set of symbols whose location and
values are known to the receivers, [20]. Therefore, in this section we describe
a multiple-user, correlated MIMO channel where the channel statistic S is ob-
tained through a dedicated training phase, i.e. a training base system. Specif-
ically, we consider a MIMO MAC, with i.i.d. block fading, where each block
is divided into training and data transmission phases. The length of the trai-
ning phase is NT channel uses. Denoting by

√
PT t(k)

i the training vector of
dimension M sent by the k-th user at the i-th channel use, where PT is the
normalized (per antenna) available power for the training phase per user, from
the uplink channel model (1.1), the received signal at the i-th channel use,
i = 1, . . . , NT, is given by:

yi =
√

SNR THti + n, (2.38)

where yi is the L-dimensional output vector at the i-th channel use, ti =
[t(1)†

i , . . . , t(K)†
i ]† is the MK-dimensional normalized training vector at the

i-th channel use, SNR T = PT
N0

, H is the Channel matrix, assumed zero mean
Gaussian, and finally n is the additive circularly symmetric zero-mean Gaus-
sian noise with unit variance. Compacting the entire training phase in a matrix,
we have:

YT =
√

SNR THT + N, (2.39)

where YT = [y1, ...,yNT ] has dimension L × NT , T = [T(1)† , ...,T(K)† ]†

has dimension MK × NT, with T(k) = [t(k)
1 , ..., t(k)

NT
] denoting the M × NT

normalized training matrix for the k-th user, whose `-th row contains the nor-
malized training sequence transmitted by the k-th user from its `-th antenna.
Furthermore N is a zero mean Gaussian random matrix of dimension L×NT,
with i.i.d. entries of unit variance. We impose a power constraint on T(k),
specifically

1
MNT

tr
{
T(k)T(k)†

}
≤ 1, k = 1, . . . ,K. (2.40)
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For this scheme, we have that S = YT,

Ĥ = ES[H] = EYT [H],

and the innovation matrix is given by

Z = H− ES[H] = [Z(1), . . . ,Z(K)],

with
Z(k) = H(k) − ES[H(k)],

and satisfies Hypothesis 2. Let us characterize Z. Using a vector representa-
tion, (2.39) can be equivalently expressed as:

yT =
√

SNR T T̃h + n, (2.41)

where T̃ = IL ⊗ TT , yT = vec{YT}, h = vec{H} and n = vec{N} are
the column vector obtained by stacking, respectively, the rows of YT, H and
N. Now, evaluating the MMSE-estimation of the channel coefficients based
on observable yT, given in (2.41), we have:

ĥmmse =
√

SNR TChT̃†(ILNT
+ SNR T T̃ChT̃†)−1yT (2.42)

where Ch = E[hh†] is the covariance matrix of the channel random vector
h. Then, for a fixed training sequence T, the corresponding error covariance
matrix, Ce(T), is:

Ce(T) = E
[
(h− ĥmmse)(h− ĥmmse)†

]
(2.43)

= Ch−SNR TChT̃†
(
ILNT

+ SNR T T̃ChT̃†
)−1

T̃Ch

where e=vec{Z} =h− ĥmmse. If Ch is invertible, using the inversion lemma,
Ce admits the following expression:

Ce(T) = (C−1
h + SNR T T̃†T̃)−1. (2.44)

In the following, for sake of simplicity, with no loss of generality, we assume
that tr{Ch} = 1. In subsequent subsections, we discuss about the design of
the training sequences, the precodings that have to be used by users, conclud-
ing the section with some numerical results.
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2.2.1 Optimal Training-Sequences Design

In this subsection, we consider the optimization of the training sequences, fo-
cusing on two figures of merit:

• the trace of Ce(T), which is related to the expected square norm of the
error vector,

• the determinant of Ce(T), which is related to the average volume in
which is concentrated the error vector. Notice that |Ce(T)| 6= 0 if and
only if Ch is invertible.

For both the figures of merit we are interested in finding the minimum. In
particular the optimization problem that we consider is: min

T∈CMK×NT
f(T)

s.t. 1
MNT

tr
{
TiT

†
i

}
≤ 1 i = 1, . . . ,K

(2.45)

wherein f(T)=tr {Ce(T)} or f(T)=|Ce(T)|.
Let us now observe that in the case NT ≥ MK we have that the matrix

TT† can be full rank, while in case NT < MK the matrix TT† is rank-
deficient. We will discuss separately the two cases.

Full rank case
When NT ≥ MK, the two optimization problems can be transformed in con-
vex optimization problem, which can be efficiently solved through the interior
point method. However, an explicit expression for the optimal training se-
quences can be found as illustrated by the following theorems.

Theorem 8 Assuming that each channel matrix H(k) , k = 1, . . . ,K , is char-
acterized through the UIU model in (1.6), then the optimal training sequences
solving (2.45) with f(T)=tr {Ce(T)}, are given by:

T(k) = (eK,k ⊗U(k)
T

√
Υ(k)∗)IKM

(NT)V (2.46)

where V can be any arbitrary NT × NT unitary matrix, U(k)
T is defined as in

(1.6), and Υ(k)∗ is a M ×M diagonal matrix whose diagonal elements satisfy
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the following conditions:

Υ
(k)∗
j =


0 if

1
L

L∑
l=1

[Σ(k)
w ]

2

l,j ≤
1

MNT

M∑
j=1

β
(k)
j

MNTβ
(k)
j∑M

j=1 β
(k)
j

otherwise

(2.47)

where

β
(k)
j =

1
L

L∑
l=1

SNR Υ
(k)∗
j [Σ(k)

w ]
2

l,j

(1 + SNR [Σ(k)
w ]l,jΥ

(k)∗
j )2

.

Proof: See Appendix B Proof of Theorem 8.

Theorem 9 Assuming that each channel matrix H(k) , k = 1, . . . ,K , is char-
acterized through the UIU model in (1.6) with Ch having full rank, then the
optimal training sequences solving (2.45) with f(T) = |Ce(T)| are given by:

T(k) = (eK,k ⊗U(k)
T

√
Υ(k)∗)IKM

(NT)V (2.48)

where V can be any arbitrary NT × NT unitary matrix, U(k)
T is defined as in

(1.6), and Υ(k)∗ is a M ×M diagonal matrix whose diagonal elements satisfy
the following conditions:

Υ
(k)∗
j =


0 if 1

L

L∑
l=1

[Σ(k)
w ]l,j ≤

1
MNT

M∑
j=1

(1− η
(k)
j )

MNT(1−η
(k)
j )∑M

j=1(1−η
(k)
j )

otherwise

(2.49)

where

η
(k)
j =

1
L

L∑
l=1

1

1 + SNR [Σ(k)
w ]l,jΥ

(k)∗
j

.

Proof: See Appendix B Proof of Theorem 9.
The key information that we obtain from the above Theorems are that, for both
the figures of merit, different users have to send orthogonal training sequences
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and not all the channel coefficients are equally important. In practice, refer-
ring to H(k)

w , those channel coefficients whose power is small compared with
the other channel coefficients and the background noise, are not important and
the transmitted power is better utilized in channel coefficients that exhibit a
higher mean square value. Obviously the way in which the power is allocated
depends on the specific figure of merits, considered. Let us observe that the
previous results generalize, to the multiple user setting, the design of the trai-
ning sequences given in [33], for the point-to-point MIMO channel. Moreover
we don’t restrict the attention to the only virtual channel representation, as
done in [33], and also find a fixed-point equation that have to be solved for the
optimal power allocation.

A totally close-form expression for the singular-eigenvalues of T can be
found for the setting illustrated in the subsequent theorem.

Corollary 3 If for all k = 1, . . . ,K H(k) is characterized through the sepa-
rable model with uncorrelated transmitting antennas, then uniform power al-
location policy across the singular-values of T is optimal, i.e. λ

(k)
j = NT

for all j = 1, . . . ,M and k = 1, . . . ,K , for both f(T)=tr {Ce(T)} and
f(T) = |Ce(T)|.

Let us observe that, as concerning the training dimensioning, if instead of
considering the MMSE covariance matrix, we consider the error covariance
matrix of maximum likelihood (ML) estimate, it is easy to prove that uniform
power allocation policy across the singular-values of T is optimal in the sense
of minimizing the trace or the determinant of the ML error covariance matrix.

Rank-deficient case
Let us now consider the case NT < MK. In general the problem (2.45), in the
rank-deficient case, cannot be converted to convex problems, and so the clas-
sical Lagrangian method cannot be used to solve it. The general optimization
problem in (2.45), when Ce(T) is an arbitrary matrix, is still an open problem.
However it can be proved that:

Theorem 10 If H(k), with k = 1, . . . ,K , are statistically equivalent, with
i.i.d. entries, then the optimal training sequences for the optimization problem
(2.45) are given by

T(k) =
√

MKU(k)V, (2.50)

where V can be any arbitrary NT×NT unitary matrix (for simplicity we could
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assume V = INT) and U(k) is a M ×NT unitary matrix given by

U(k) = (eK,k ⊗ IM)QπI
(NT)
MK

where Qπ is a per-column permuted version of a generic unitary matrix Q, of
dimension MK ×MK, such that, for all h = 1, . . . ,MK ,

NT∑
i=1

[Qπ]2h,i =
NT

MK
. (2.51)

Examples of such a Q are the Fourier matrices and the Hadamard matrices,
for which any permutation Qπ satisfies the condition (2.51).

Proof: See Appendix B Proof of Theorem 10.

In the following we give an heuristic algorithm whose outcome represents a
possible choice of training sequences in the case that NT < MK under the
assumption that NT = ϑK with ϑ ∈ {1, . . . ,M}.

Specifically we will assume that the users send orthogonal training se-
quences, and ϑ orthogonal direction are allocated to each one. Then the trai-
ning sequences that we consider are given by:

T(k) =
(
eK,k ⊗U(k)

T Υ(k)
1
2

)
V (2.52)

where U(k)
T is defined as in (1.6), V is a ϑK × ϑK unitary matrix and

√
Υ(k)

is a M × ϑ matrix with zero off-diagonal elements and whose ϑ diagonal
elements satisfy the following conditions,

Υ
(k)
j =


0 if 1

L

L∑
l=1

[Σ(k)
w ]2l,j ≤ 1

MNT

ϑ∑
j=1

β
(k)
j

MNTβ
(k)
j∑M

j=1 β
(k)
j

otherwise

(2.53)

where

β
(k)
j =

1
L

L∑
l=1

SNR Υ
(k)
j [Σ(k)

w ]
2

l,j

(1 + SNR [Σ(k)
w ]l,jΥ

(k)
j )2

,
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if f(T)=tr {Ce(T)}, otherwise, if f(T) = |Ce(T)|,

Υ
(k)
j =


0 if 1

L

L∑
l=1

[Σ(k)
w ]l,j ≤

1
MNT

ϑ∑
j=1

(1− η
(k)
j )

MNT(1−η
(k)
j )∑M

j=1(1−η
(k)
j )

otherwise

(2.54)

where

η
(k)
j =

1
L

L∑
l=1

1

1 + SNR [Σ(i)
w ]l,jΥ

(k)
j

.

Let us observe that the training sequences given in (2.52) achieve the same
performance of the one given in (2.46) or (2.48), when NT = KM , and, when
are satisfied the hypotheses of Theorem 10, we obtain the same performance
of the one given in (2.50).

2.2.2 Robust Training-Sequences Design

When the parameters characterizing the second order statistic of the channel
matrices H(k) are unknown to the transmitters, a robust training-sequence de-
sign is needed. More precisely, the training sequence can be designed follo-
wing a max-min approach, so that T is designed to minimize the worst-case
cost under all possible error covariance matrices. Specifically, in the case that
Ch has full rank, T is designed as the solution of the following min-max prob-
lem:

min
T

max
Ch

f((C−1
h + SNR T T̃†T̃)−1), (2.55)

where the minimum is over all possible training sequence such that
1

MNT
tr{T(k)T(k)†} ≤ 1, ∀k ∈ U and the maximum is over all possible cova-

riance matrices Ch such that tr{Ch} = 1. In (2.55) we assume either:

f((C−1
h + SNR T T̃†T̃)−1) = tr

{
(C−1

h + SNR T T̃†T̃)−1
}

,

or
f((C−1

h + SNR T T̃†T̃)−1) =
1

|C−1
h + SNR T T̃†T̃|

.
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In the following we assume that the transmitters have complete lack of
prior information on Ch . We further assume that NT ≥ MK. Under this
hypothesis, the training-sequences matrix T designed based on the min-max
approach, in (2.55), is given by the following theorem:

Theorem 11 The training-sequences matrix T which solves (2.55) i.e.:

min
T

max
Ch

f((C−1
h + SNR T T̃†T̃)−1),

where the minimum is over all possible training sequences satisfying the power
constraints in (2.40), while the maximum is over all covariance matrices Ch

such that tr{Ch} = 1, is given by:

T =
√

NT I(NT )
KM (2.56)

Proof: See Appendix B Proof of Theorems 11.

Theorem 11 still holds for the case that Ch can be not full rank. In this
case the only option for a robust design of the training sequences is focus on
the trace of the error covariance matrix Ce as given in (2.43). In this case we
can prove the following result:

Theorem 12 The training-sequences matrix T which solves:

min
T

max
Ch

tr
{
Ch − SNR TChT̃†

(
ILNT

+SNR T T̃ChT̃†
)−1

T̃Ch

}
,

where the minimum is over all possible training sequences satisfying the power
constraint in (2.40), while the maximum is over all covariance matrices Ch

such that tr{Ch} = 1, is given by:

T =
√

NT I(NT )
KM (2.57)

Proof: See Appendix B Proof of Theorems 12.

Then the robust training sequences, correspond to orthogonal and equi-
energetic sequences, as intuitively we could expect starting from an ML esti-
mation approach.
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2.2.3 Precoding Optimization for Training Based Systems

In this subsection we evaluate the optimal precoding for the lower bound to the
sum-rate, given in (1.37), in the context of training-based statistic S, specia-
lizing the results given in subsection 1.2.2. The attention is focused on the case
when T has full rank, since in rank-deficient condition the optimal training-
sequence structure is still an unsolved problem in general. Concerning the full
rank case, we can prove the following results:

Theorem 13 Assume that H is modeled according to (1.6), i.e: H(k) =

U(k)
R H(k)

w U(k)†

T for all k = 1, . . . ,K , and that NT ≥ KM .
If the training sequences are optimized based on Theorem 8 or Theorem 9,

then the eigenvectors of the input covariance matrix P∗
k that maximizes (1.37)

are given by the columns of U(k)
T .

Proof: See Appendix B Proof of Theorem 13.

Theorem 14 Assume that H is modeled according to (1.6), i.e:

H(k) = U(k)
R H(k)

w U(k)†

T

where for all k = 1, . . . ,K , Σ(k)
w is given by the outer product

Σ(k)
w = λ

(k)
R 1M

†

with λ(k)
R denoting a L-dimensional vector of non-negative entries 2. If

NT ≥ KM and the training sequence are optimized based on Theorem 8
or Theorem 9, then the input covariance matrix P∗

k that maximize (1.37) is a
scalar matrices, i.e.:

P∗
k =

%k

M
IM k = 1, . . . ,K (2.58)

where %k ≤ 1 k = 1, . . . ,K .

2Note that this assumption is equivalent to say that H is modeled according to a sepa-

rable model, i.e: H(k) = Σk
R

1
2 W(k)Σk

1
2

T for all k = 1, . . . , K where Σk
T = IM ,

Σk
R = U

(k)

R diag(λR)U
(k)

R
†

and W is a L×M matrix with i.i.d. entries.
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Furthermore, the set of {P∗
k}K

k=1 given as in (2.58) with %k = 1 k =
1, . . . ,K , is a Nash equilibrium point for the payoff function:

L = {L1, . . . , LK}

where Lk denotes the lower bound on the rate of the k-th user i.e.

Lk = E
[
log
∣∣∣I +

(
ΩU + Γ{π(k+1),...,π(K)} + 1

snrI
)−1 Γ{π(k)}

∣∣∣]
for a fixed chosen decoding ordering, π, of the users at the base station.

Proof: See Appendix B Proof of Theorem 14.

Theorem 15 Assume that H is modeled according to (1.6), i.e:

H(k) = U(k)
R H(k)

w U(k)†

T

where for all k = 1, . . . ,K , Σ(k)
w is given by the outer product

Σ(k)
w =

1
L

1Lλ
(k)
T

†

with λ(k)
T denoting a M -dimensional vector of non-negative entries. 3

If NT ≥ KM and the training sequence are optimized based on Theorem
8 or Theorem 9, then, the input covariance matrices Pk∗, with k = 1, . . . ,K ,
maximizing the lower bound on the sum rate (1.37), are given by:

Pk∗ = Uk
TΛ

∗
kU

k†
T k = 1, . . . ,K (2.59)

where Λ∗
k = diag(λk∗

1 , . . . , λk∗
M ), with k = 1, . . . K, are diagonal matrices,

whose diagonal elements are given by:

λ∗ =
1

1− (λT −ψ)† d
d (2.60)

where
3Note that this assumption is equivalent to say that H is modeled according to a separable

model, i.e: H(k) = Σk
R

1
2 W(k)Σk

1
2

T for all k = 1, . . . , K where Σk
T = U

(k)

T diag(λT)U
(k)

T
†
,

Σk
R = 1

L
IL and W is a L×M matrix with i.i.d. entries.
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• ψ = [Υ(1)∗
1 , . . . , Υ

(1)∗
M , . . . , Υ

(K)∗
1 , . . . , Υ

(K)∗
M ] with Υ

(k)∗
j given either

by (2.47) or (2.48),

• λT is the KM -dimensional vector defined as: λT = [λ(1)
T , . . . ,λ

(K)
T ].

• d = [d†1, . . . ,d
†
K ]† is the the KM -dimensional vector whose elements

are the non-negative solution of the following convex optimization prob-
lem:

max
{dk}

E

[
log
∣∣∣IL + SNR

K∑
k=1

Ĥ(k)U(k)
T diag (dk)U

(k)†

T Ĥ(k)†
∣∣∣]

s.t. :
M∑
i=1

dk,i ≤ 1− (λT −ψ)† d, k = 1, . . . ,K.

(2.61)

with dk,i denoting the i-th element of dk.

Proof: See Appendix B Proof of Theorem 15.

2.2.4 Numerical Results for Training Based Systems

In this subsection we present some numerical results to obtain insights about
the behavior of a training based system. In our numerical evaluations, we
consider a MIMO MAC with i.i.d. block fading, where each block is divided
into a training phase and a data-transmission phase. The coherence time of
the channel (i.e., the duration of each block) is denoted by Tc. The scenario
analyzed is constituted by a base station, located at the center of a hexagonal
cell of normalized unitary radius, and four users, K = 4, uniformly distributed
in the cell, with a normalized distance from the center greater than 0.1. We
assume that the base station is equipped with four receiving antennas, L = 4,
and the users are equipped with two transmitting antennas, M = 2. Moreover
we assume H modeled according to (1.6), precisely:

H(k) = U(k)
R H(k)

w U(k)†

T

where for all k = 1, . . . ,K , Σ(k)
w is given by an outer product of an L-

dimensional vector λ(k)
R

†
and an M -dimensional vector λ(k)

T
†

i.e. Σ(k)
w =

λ
(k)
R λ

(k)
T

†
. Under this model, which is commonly known as separable model,
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H(k) admits the following equivalent expression:

H(k) =
√

d−γ
k Σk

R

1
2 W(k)Σk

T

1
2 (2.62)

where W(k) is a 4 × 2 matrix of i.i.d. zero mean Gaussian random va-
riables with unit variance, dk is the distance between the k-th user and the

base station,
√

d−γ
k takes in account for the path loss attenuation of the signal,

Σk
T = U(k)

T diag(λT)U(k)
T

†
and Σk

R = U(k)
R diag(λR)U(k)

R
†

are, respectively,
the 2 × 2 correlation matrix at the transmitting antennas and the 4 × 4 corre-
lation matrix at the receiving antennas, described by the following parametric
models:

[Σk
T]l,l′ = e−0.5d2

T |l−l′| (2.63)

[Σk
R]l,l′ =

1
4
e−0.5d2

R|l−l′|ei2πf0/c cos(θk
R)(l−l′) (2.64)

where f0 is the carrier frequency, c is the speed of light, dT and dR are, respecti-
vely, the transmitting and receiving antennas spacing of the Uniform Linear
Array (ULA) and θk

R is the angle between the direction defined by the recei-
ving ULA of the base station and direction passing through the base-station
position and the k-th user position. In all our numerical results, we suppose
that all the users transmit at the maximum available power P , with covariance
matrix Pk = 1

M IM and that the training power PT , defined in Section 2.2,
equals P

M , i.e. we use the same power per antennas in both the phase.
In particular in Figs 2.5, 2.6, 2.7, and 2.8 we illustrate the behavior of the
training based system, for different transmitting and the receiving antennas
spacing, in terms of the average sum-rate (left plots):

I(x;y|S), (2.65)

and the average rate of the nearest user, which we denote by k∗, to the base
station that we assume to be the first decoded using successive interference
cancelation (right plots):

I(xF ;y|S,xC). (2.66)

with F = {k∗} and C = ∅. In order to evaluate (2.65) and (2.66), we use the
proposed bounds, given in Corollary 1 and Theorem 1. For each scenario
we consider two different values of the training duration NT , specifically:
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NT = 8, for which we are in the case of full rank condition, and NT = 4.
In the first case we use the results given in Subsection 2.2.1, Figs 2.5 and
2.7, and given in Subsection 2.2.2, Figs 2.6 and 2.8, to design the training se-
quences, while in the second case we assume that the users send Hadamard
training sequences, although there is no optimality criteria. As already said,
for all the plots we assume isotropic inputs (i.e. Pk = 1

M IM ) due to different
motivations. First of all, in the case of independent transmitting antennas it
represents the Nash equilibrium solution and is the optimal one when we con-
straint the transmitted power to be the maximal one; moreover it is the optimal
approach (in the min-max sense) when no prior information on the channel
characterization is available at the transmitter; finally, since we are not able to
optimize, in no-full rank case, the lower bound to the the sum rate, we can at
least conduct a fair comparison between the performance of the full rank and
no-full rank scenarios. From the plots, we see that, in all the situations, the
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Figure 2.5: Sum-rate (left plot) and nearest user’s rate (right plot) of a
MIMO MAC with uncorrelated transmitting antennas, dR = λ

2 , and either
NT = 8 or NT = 4.

upper and lower bound are tight, specially in the full rank condition, thus, the
lower bound describes well the limiting performance of the system. Moreover
the loss with respect to the ideal case of coherent reception is moderate in full
rank condition. We can also observe that in the case of rank deficient condi-
tion, the correlation at the receive antennas has a large impact on the limiting
performance of the system. More precisely, in the presence of high correlation
between the receive antennas, the lower bound increases with SNR , in the ana-
lyzed range, while in the case of low correlation, we observe a quick saturation
in the performance. Intuitively, high correlation between the receive antennas
makes it easier to isolate the users by direction of arrival, which lowers inter-
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Figure 2.6: Sum-rate (left plot) and nearest user’s rate (right plot) of a
MIMO MAC with dT = λ

2 , dR = λ
2 , and either NT = 8 or NT = 4.

ference between users sending the same training sequences and permits better
channel estimation. This in turn allows the sum rate to not quickly saturate
with SNR. Another important figure of merit to analyze is the total throughput
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Figure 2.7: Sum-rate (left plot) and nearest user’s rate (right plot) of a
MIMO MAC with uncorrelated transmitting antennas, uncorrelated receiving
antennas, and either NT = 8 or NT = 4.

of the MIMO MAC, which is defined as:

T =
Tc −NT

Tc
I(x;y|S), (2.67)
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Figure 2.8: Sum-rate (left plot) and nearest user’s rate (right plot) of a
MIMO MAC with dT = λ

2 , uncorrelated receiving antennas, and either
NT = 8 or NT = 4.

where Tc is the coherent time, the statistic S available at the receiver is ob-
tained from training data as in (2.39), and finally the factor Tc−NT

Tc
takes in

account the overhead introduced by the training. In Figs 2.9 and 2.10 we as-
sume uncorrelated transmitting and receiving antennas. We also consider two
different values of the training duration NT = 8 or NT = 4 and two different
value of SNR : for the left plots we assume SNR = −10dB and for the right
plots we have SNR = 10dB. For comparison purposes, all the figures also il-
lustrate the throughput for the case of perfect CSI. More precisely, in Fig. 2.9,
we illustrate lower and upper bounds for the total throughput given in (2.67).
In order to evaluate such lower and the upper bounds, we simply replace, in
(2.67), I(x;y|S) with its proposed lower and upper bounds, as given in Corol-
lary 1. Figure 2.10, instead, illustrates the throughput of the nearest user that
we assume to be the first decoded, using successive interference cancelation,
at the base station. As previously seen, plots show that for both NT = 8 and
NT = 4, the upper and lower bounds are tight. From the plots, it is also clear
that a reduction factor of 2 in the training-sequence length translates into a re-
duction in the throughput that is more and more evident for high Tc. It is worth
noticing that the tightness of the lower and upper bounds, as well as the bene-
ficial effect of full-rank training matrix T (i.e., orthogonal training sequence),
compared with rank-deficient training matrix T, holds also for different values
of SNR .
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Figure 2.9: Total throughput of a MIMO MAC with NT = 8 and NT = 4:
the left curve is for -10 dB and the right curve for 10dB.
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Figure 2.10: Nearest user’s throughput of a MIMO MAC with NT = 8 and
NT = 4: the left plot is for -10 dB and the right plot is for 10 dB.
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2.3 Appendix B

Proof of Theorem 8 We first prove the result for the case when Ch is full rank.
In proving Theorem 8 we proceed by steps:
Step 1: We start by finding a lower bound of the MMSE on the estimate of the
channel matrix H;
Step 2: We find a set of training sequences that achieve such a lower bound.

Step 1: Let us observe that a lower bound for the MMSE of H is given by:

tr {Ce(T)}=
K∑

k=1

mmse(H(k)|Y;T)

≥
K∑

k=1

mmse(H(k)|Y, {H(j)}j 6=k;T)

=
K∑

k=1

E
[∣∣∣H(k) − E

[
H(k)|Y, {H(j)}j 6=k

] ∣∣∣2]

=
K∑

k=1

E
[∣∣∣H(k) − E

[
H(k)|H(k)T(k) + N

] ∣∣∣2]
(2.68)

A further lower bound can be found by minimizing (2.68) with respect to T.
Given the fact that the power constraint on T is a disjoint power constraint
over each T(k) with k = 1, . . . ,K , then minimizing (2.68) is equivalent to
minimizing for each k = 1, . . . K, the term:

g(T(k)) = E
[∣∣∣H(k) − E

[
H(k)|H(k)T(k) + N

] ∣∣∣2]
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with respect to T(k). To this end notice that, since H(k) = U(k)
R H(k)

w U(k)†

T , we
have that:

g(T(k)) = E
[∣∣∣H(k) − E

[
H(k)|H(k)T(k) + N

] ∣∣∣2]
= E

[∣∣∣H(k)
w − E

[
H(k)

w |H(k)T(k) + N
] ∣∣∣2]

= E
[∣∣∣H(k)

w − E
[
H(k)

w |H(k)
w T̂(k) + N

] ∣∣∣2] (2.69)

= tr{(C−1

h
(k)
w

+ SNR T T̃(k)†T̃(k))−1} (2.70)

≥ tr{(C−1

h
(k)
w

+ SNR TD(k))−1} (2.71)

where in (2.69) T̂(k)=U(k)
T T(k), while in (2.70) T̃(k)=IL⊗ T̂(k)T

,

h(k)
w =vec{H(k)

w }, and C
h

(k)
w

=E[h(k)
w h(k)

w

†
] is the LMK-dimensional diago-

nal covariance matrix of h(k)
w . Finally in (2.71) we have used the fact that,

given a n× n invertible matrix:

[A−1]i,i ≥ [A]−1
i,i

where the equality holds for the case of A diagonal and we have defined the
diagonal matrix D(k) in the following way:

[D(k)]i,i = [T̃(k)†T̃(k)]i.i.

From (2.71), the problem of minimizing g(Tk) with respect to Tk boils
down to solving:

min tr{(C−1

h
(k)
w

+ SNR TD(k))−1}

over all LM × LM diagonal matrices having the following block structure:

D(k) = IL ⊗Υ(k)

and such that 1
MNT

tr
{
Υ(k)

}
≤ 1 with Υ(k) denoting a M × M diagonal

matrix. This is a classical convex problem, which can be solved considering
the KKT condition, from which it follows that optimal Υ(k)∗ is a diagonal
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matrix with the diagonal elements given by:

Υ
(k)∗
j =


0 if 1

L

L∑
l=1

[Σ(k)
w ]2l,j ≤ 1

MNT

M∑
j=1

β
(k)
j

MNTβ
(k)
j∑M

j=1 β
(k)
j

otherwise

(2.72)

with

β
(k)
j =

1
L

L∑
l=1

SNR Υ
(k)∗
j [Σ(k)

w ]
2

l,j

(1 + SNR [Σ(k)
w ]l,jΥ

(k)∗
j )2

.

Step 2: From all the above considerations, using (2.68), (2.71), is follows
that:

tr {Ce(T)} ≥
K∑

k=1

tr{(C−1

h
(k)
w

+ SNR TD(k)∗)−1} (2.73)

with D(k)∗ = IL ⊗ Υ(k)∗ and Υ(k)∗ denoting a diagonal matrix with the
diagonal elements given by (2.72). A sufficient condition for the equality in
(2.73) being achieved is that the training sequences T(k) are orthogonal and
are such that:

D(k)∗ = IL ⊗ (U(k)†
T T(k)†T(k)U(k)

T ).

Putting those considerations together, it follows that the equality in (2.73) is
achieved for

T = [T(1)†, . . . ,T(K)†]†

such that:

T(k) =
(
eK,k ⊗U(k)

T

√
Υ(k)∗

)
I(NT )
KM k = 1, . . . ,K (2.74)

with Υ(k)∗ denoting a diagonal matrix with the diagonal elements given by
(2.72). From (2.74), if follows that the T̃(k)∗ with k = 1, . . . ,K that minimize
tr{Ce} when Ch have full rank, are:

T̃(k)∗ = IL ⊗
((

eK,k ⊗
√

Υ(k)∗
)
I(NT )
KM

)T

, k = 1, . . . ,K.

This proves Theorem 8 for the case when the covariance matrix, Ch, of the
channel vector h = vec{H} has full rank.
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If the Ch is not invertible, the same foregoing considerations made for the
function in (2.71), apply to the following function

tr{C
h

(k)
w
} − tr

{
C

h
(k)
w

T̃(k)†
(

1
SNR T

I+T̃(k)C
h

(k)
w

T̃(k)†
)−1

T̃(k)C
h

(k)
w

}
which, again, is maximized by T̃(k)∗ having the following structure:

T̃(k)∗ = IL ⊗
(
(eK,k ⊗

√
A(k)∗)I(NT )

KM

)T
, k = 1, . . . ,K.

where A is an M × M diagonal matrix satisfying the power constraint
tr{A(k)} ≤ MMT . Again, solving the convex optimization problem via KKT
conditions, we have that

A(k)∗ = Υ(k)∗

with Υ(k)∗ defined as in (2.72).

�

Proof of Theorem 9 We want to minimize the determinant of the error cova-
riance matrix (2.44). This is equivalent to maximizing the log-det of the in-
verse of the error covariance matrix. Finally this is the same as maximizing
the mutual information between the channel matrix H and the observable YT ,
i.e.:

I (T) = I
(
H(1),H(2), . . . ,H(K);YT

∣∣T) . (2.75)

Again, as in the proof of Theorem 8, in proving Theorem 8 we proceed by
steps:
Step 1: We start by finding an upper bound for (2.75);
Step 2: We find a set of training sequences that achieve such a upper bound.

Step 1: Using the chain rule we obtain that an upper bound for (2.75) is
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given by:

I (T) ≤
K∑

k=1

I
(
H(k);YT

∣∣{H(j)}j 6=k,T
)

(2.76)

=
K∑

k=1

I
(
H(k);H(k)T(k) + N

∣∣T(k)
)

(2.77)

=
K∑

k=1

I
(
H(k)

w ;H(k)
w T̂(k) + N

∣∣T̂k

)
(2.78)

=
K∑

k=1

log det(IML + T̃(k)C
h

(k)
w

T̃(k)†) (2.79)

where in (2.78) T̂k=U(k)
T T(k), while in (2.79) T̃(k)=IL⊗T̂(k)T

,

h(k)
w =vec{H(k)

w }, and C
h

(k)
w

=E[h(k)
w h(k)

w

†
] is the LMK-dimensional

diagonal covariance matrix of h(k)
w .

A further upper bound can be found maximizing (2.79) with respect to T.
Given the fact that the power constraint on T is a disjoint power constraint
over each T(k) with k = 1, . . . ,K , then maximizing (2.68) is equivalent to
maximizing each term of the summation

g(Tk) = log det(IML + T̃(k)C
h

(k)
w

T̃(k)†)

over all possible T̃(k) having the following structure:

T̃(k) = IL ⊗ T̂(k)T

with the constraint that 1
MNT

tr
{
T̃(k)T̃(k)†

}
≤ 1. This is a classical convex

optimization problem and applying the classical KKT condition, we obtain that
the optimal T̃(k)∗ is given by:

T̃(k)∗ = IL ⊗
(
(eK,k ⊗

√
Υ(k)∗)I(NT )

KM

)T
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with Υ(k)∗ an M ×M diagonal matrix whose diagonal elements are given by:

Υ
(k)∗
j =


0 if 1

L

L∑
l=1

[Σ(k)
w ]l,j ≤

M∑
j=1

(1−η
(k)
j )

MNT

MNT (1−η
(k)
j )∑M

j=1(1−η
(k)
j )

otherwise

(2.80)

with

η
(k)
j =

1
L

L∑
l=1

1

1 + SNR [Σ(k)
w ]l,jΥ

(k)
j

.

Step 2: Using (2.79), we have that:

I (T) ≤
K∑

k=1

log det(IML + T̃(k)∗C
h

(k)
w

T̃(k)∗†). (2.81)

From all the above considerations, it follows that a sufficient condition for
the equality in (2.81) being achieved is that the training sequences T(k) are
orthogonal and are such that:

IL ⊗
(
U(k)

T T(k)
)

= IL ⊗
(√

Υ(k)∗I(NT )
M

)T

Putting those considerations together, it follows that the optimal training
set for which the determinant of the error covariance matrix (2.44) is mini-
mized is:

Tk = (eK,k ⊗U(k)
T

√
Υ(k)∗) k = 1, . . . ,K. (2.82)

�

Proof of Theorem 10
Let us first prove Theorem 10 for the case that f(Ce(T)) = |Ce(T)|. In this
case we have NT < KM and Ch = IKML. Thus, as already underline in the
proof of Theorem 9, minimizing |Ce(T)| is equivalent to maximizing:

max
T̃

log
∣∣IKML + SNR T̃†T̃

∣∣. (2.83)

over all possible training sequences T̃ = IL ⊗TT such that:

T = [T(1)†, . . . ,T(K)†]†



68 Chapter 2 Applications of MIMO MAC with Partial CSI

with 1
MNT

tr
{
T(k)T(k)†} ≤ 1.

From (2.83), it follows that the right eigenvector of T do not change the
value of the objective function as well do not violated the constraints, and then
can be arbitrarily chosen.

From the fact that NT < MK, it follows that the non-zero eigenvalue
of TT† are at most NT . Let indicate by λ+

i i = 1, . . . , NT , such non-zero
eigenvalues We have that the objective function can be expressed as:

log
∣∣IKML + SNR T̃†T̃

∣∣ = L

NT∑
i=1

log
(
1 + SNR λ+

i

)
(2.84)

Let us observe that the constraints 1
MNT

tr
{
TkT

†
k

}
≤ 1 for all k = 1, . . . ,K ,

implies that

tr
{
TT†

}
=

NT∑
i=1

λ+
i (2.85)

≤ KMNT (2.86)

Thus, from (2.85), since the function in (2.84), is schur-concave with respect
to λ1, . . . , λNT

, it follows that the maximum of log
∣∣IKML + SNR T̃†T̃

∣∣ is
achieved when the NT non-zero eigenvalues of TT† are given by:

λ+
i = MK i = 1, . . . , NT (2.87)

In order to conclude the proof, we need to prove that there exist a training
matrix:

T = [T(1)†, . . . ,T(K)†]†

with 1
MNT

T(k)T(k)† ≤ 1 for all k = 1, . . . ,K , such that its non-zero NT

singular values,
√

λ+
i satisfies:

λ+
i = MK i = 1, . . . , NT (2.88)

To this end, denoting by: ΛT = diag(λ1, . . . , λMK) the MK × MK
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diagonal matrix defined as follows:

λi = MK i = 1, . . . , NT (2.89)

λi = 0 i ≥ NT , (2.90)

(2.91)

let us consider an unitary matrix U of dimension MK such that, for all h =
1, . . . ,MK:

NT∑
j=1

[U]2h,j =
NT

MK
, (2.92)

Thus, we obtain that:[
UΛTU†

]
i,i

= NT i = 1, . . . MK,

Property (2.92) is equivalent to say that the partial sum of the square of the
first NT components of each row is equal to NT

MK . Note that Fourier matrices
as well as Hadamard matrices of dimension MK are examples of orthogonal
matrices that satisfy such a property. This concludes the proof for the case that
f(Ce(T)) = |Ce(T)|.

Let us now move to the case when f(Ce(T)) = tr{Ce(T)}. Note that
since

tr{Ce(T)} = tr{
(
IKML + SNR T̃†T̃

)−1
}

is schur-convex with respect to the eigenvalues of T̃†T̃ or equivalently with
respect to the eigenvalues of TT†, then arguments similar to the one conducted
above can be applied to this second case, from which Theorem 10 follows.

�

Proof of Theorems 11 and 12
Let us consider the following min-max problem

min
T

max
Ch

tr {Ce(T,Ch)} (2.93)

where Ce(T,Ch) denotes the error covariance matrix of the estimation,
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ĥmmse, of the channel vector h, i.e.:

Ce = E
[
(h− ĥmmse)(h− ĥmmse)†

]
(2.94)

= Ch−SNR TChT̃†
(
ILNT

+ SNR T T̃ChT̃†
)−1

T̃Ch

and where the minimum is over all possible training sequences satisfying the
power constraint in (2.40), while the maximum is over all possible covariance
matrices Ch such that tr{Ch} = 1. To solve this min-max problem let us
consider the following Lemma:

Lemma 2 Let us consider a min-max problem:

min
x∈Dx

max
y∈Dy

g(x,y). (2.95)

Then, if ∃ (x,y), such that:

g(x,y) ≤ g(x,y) ∀y ∈ Dy (2.96)

and

g(x,y) ≥ g(x,y) ∀x ∈ Dx (2.97)

(x,y) is a min-max point.

Proof:it is given in [34]; for completeness we also present the derivation

min
x∈Dx

(
max
y∈Dy

g(x,y)
)
≤ max

y∈Dy

g(x,y) = g(x,y) (2.98)

since minx∈Dx h(x) ≤ h(x). Moreover we have:

min
x∈Dx

(
max
y∈Dy

g(x,y)
)
≥ min

x∈Dx

g(x,y) = g(x,y) (2.99)

since maxy∈Dy g(x,y) ≥ g(x,y) ∀x ∈ Dx. Then the minimum of(
maxy∈Dy g(x,y)

)
is blocked to be g(x,y) and this value is obtained at sad-

dle point (x,y).

�

Let us now consider the function tr {Ce(T,Ch)}; we want to prove that T =
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√
NT I(NT )

KM and Ch = 1
KMLIKML satisfy Lemma 2, i.e. it is a saddle point.

From Corollary 3, we know that:

tr
{
Ce(T,Ch)

}
≥ tr

{
Ce(T,Ch)

}
. (2.100)

Moreover we have that for all positive definite matrix Ch:

tr
{
Ce(T,Ch)

}
= tr

{
(C−1

h + SNR TNT IKML)−1
}

(2.101)

≤ tr
{
Ce(T,Ch)

}
. (2.102)

where (2.102) follows from the schur-concavity, with respect to the eigenvalue
of Ch, of the function tr

{
(C−1

h + SNR TNT IKML)−1
}

; then Theorem 11,
when the figure of merit is the mean square error, is proved. Moreover, since
the function

tr
{
Ce(T,Ch)

}
is a continuous function with respect to Ch, and the set of positive semi-
definite matrix with tr {Ch} = 1 is the closure of the set of positive definite
matrix with tr {Ch} = 1, (2.101) still old for every matrix with tr {Ch} = 1.
Then Theorem 12 is proved. The same technique can also be used in the case
that Ch has full rank and the min-max optimization problem is given by:

min
T

max
Ch

|Ce(T,Ch)| (2.103)

where Ce(T,Ch) is given in (2.94). Moreover we can also prove the results
with a different derivation:

min
T

max
Ch

log |Ce| = min
T

max
Ch

log |Ce(T,Ch)|

= min
T

max
Ch

log |(C−1
h + SNR T T̃†T̃)−1|

≤ max
Ch

log |Ch|+

min
T

max
Ch

log |(IKML + SNR TChT̃†T̃)−1|.

Let us note that the maximum of log |Ch| is achieved when Ch = 1
KMLIKML,
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for the schur concavity of the log-det function. Moreover notice that:

log |(IKML + SNR TChT̃†T̃)−1| =

−
KML∑
i=1

log(1 + SNR T λi(ChT̃†T̃)) (2.104)

≤ − log(1 + SNR T tr{ChT̃†T̃}) (2.105)

≤ − log(1 + SNR T tr{Ch}λmin(T̃†T̃)). (2.106)

Thus, as to the max-part, we have that (2.104) is maximized by a Ch whose
eigenvectors coincide with the eigenvector or the eigenvectors (in the case of
multiplicity larger than 1) corresponding the minimum eigenvector of T̃†T̃

As to the min-part, starting from (2.106), we have that minimizing (2.104)
is equivalent to maximizing

λmin(T̃†T̃)

which is Schur-concave function of the eigenvalues of T̃†T̃ and it is, thus,
again maximized by a T̃†T̃ such that for all for all i = 1, . . . ,KML, λi(T̃†T̃)
equals a constant satisfying the power constraint tr{T̃†T̃} = NT LKM . Thus,
(2.104) is minimized by T =

√
NT I(NT )

KM , from which Theorem 11, for the
case when the figure of merit is the determinant of the error covariance matrix,
follows.

�

Proof of Theorem 13
In order to prove Theorem 13, it is enough to verify that the hypotheses H.1
and H.2 of Theorem 6 are satisfied.

To this end notice that, by assumption, H is modeled according to (1.6) i.e.

H(k) = UR(k)H(k)
w U(k)†

T (2.107)

with H(k)
w a zero-mean L × M Gaussian random matrix of independent ele-

ments. From (2.107), since the optimal training sequences are given either by
(2.46) or by (2.48), we have that:

Ĥ(k) = ES[H(k)] = UR(k)EYT
[H(k)

w ]UT(k)†

where Ĥ(k)
w = EYT

[H(k)
w ] is a zero mean Gaussian random matrix with inde-

pendent elements, then hypotheses H.1 holds.
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Furthermore, ΩU doesn’t depend from S, since Z is statistically indepen-
dent from S, and it is easy to prove, after some algebraic manipulations, that:

Z̃(k) = Z(k)U(k)
T

= U(k)
R Z(k)

w

with Z(k)
w the estimation error matrix of H(k)

w , are random matrices with inde-
pendent columns, each column having entries whose joint distribution is sym-
metric with respect to zero. From this, it follows thatH.2 also holds. Thus, the
hypotheses of Theorem 6 are satisfied and Theorem 13 follows immediately.

�

Proof of Theorem 14 In proving Theorem 14, we proceed by steps:
Step 1: we prove that (2.58) holds;
Step 2: we prove that {P∗

k = %
M IM k = 1, . . . ,K} is a Nash equilibrium

point.

Step 1: By assumption we have that H is modeled according to (1.6), i.e:

H(k) = U(k)
R H(k)

w U(k)†

T

where for all k = 1, . . . ,K , Σ(k)
w = λ

(k)
R 1M

†. This is equivalent to assume

that U(k)†

T = IM , from which it follows, using Theorem 13 that P∗
k has to be

diagonal. Furthermore, from the assumptions done, we have that {Z(k)
w }, k =

1, . . . ,K , is a set of random matrices whose columns are independent and
whose rows have independent and identically distributed entries along each
row. Thus,

ΩU = E
[
ZPZ†

]
=

K∑
k=1

E
[
Z(k)PkZ(k)†

]
=

K∑
k=1

Uk
RE
[
Z(k)

w PkZ(k)†
w

]
Uk

R
†

(2.108)

depends from P = diag(P1, . . . ,PK) only through {tr{P1}, . . . , tr{PK}}.
From all above, it follows that the lower bound on the sum rate, ILower(P),
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given in (1.37) can be re-written as follows:

E

[
log
∣∣∣IL + Q

K∑
k=1

Θ(k)
R W(k)P∗

kW(k)†Θ(k)†
R

∣∣∣] , (2.109)

where Θ(k)
R = U(k)

R

√
diag(λ̂

(k)

R ), with λ̂
(k)

R the variance vector of an arbitrary

column of Ĥ(k)
w ,

Q = SNR

(
IL + SNR

K∑
k=1

tr{Pk}E
[
Z(k)Z(k)†

])−1

and {W(k)} for k = 1, . . . ,K denote a set of Gaussian random matrices in-
dependent across k with i.i.d. zero-mean Gaussian entries. Note that, since
{W(k)} are i.i.d. zero-mean Gaussian matrices, (2.109) and consequently the
lower bound on the sum rate, ILower(P), is invariant to circular shift of the
elements of Pk for all k = 1, . . . ,K , from which it follows, using Jensen’s in-
equality, that the maximum of (2.109) is achieved when for all k = 1, . . . ,K ,
the diagonal entries of Pk are equal i.e.

P∗
k =

%k

M
IM

with %k subject to the power constraint %k ≤ 1.

Step 2. Let:
p̄ = [1, 1, . . . 1︸ ︷︷ ︸

π(k−1)

, %π(k), 1 . . . , 1︸ ︷︷ ︸
K−π(k)

]

and
p∗ = [1, 1, . . . 1, 1, 1 . . . , 1︸ ︷︷ ︸

K

]

with %π(k) ∈ ]0, 1]. We want to show that ∀k = 1, . . . ,K:

Lk(p̄) = E
[
log
∣∣∣I + %π(k)Ĥ

(π(k))Ĥ(π(k))†Ψ−1
π (p̄)

∣∣∣]
≤ Lk(p∗) (2.110)

= E
[
log
∣∣∣I + Ĥ(π(k))Ĥ(π(k))†Ψ−1

π (p∗)
∣∣∣]
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where %π(k) ∈]0, 1],

Ψπ(p̄) = %π(k)E
[
Z(π(k))Z(π(k))†

]
+ Ξπ,

Ψπ(p∗) = E
[
Z(π(k))Z(π(k))†

]
+ Ξπ,

and
Ξπ = Ω

π(k)
+ Γ{π(k+1),...,π(K)} + 1

snrI.

In order to show (2.110), notice that:

1
%π(k)

Ξπ � Ξπ.

Consequently:(
E
[
Z(k)Z(k)†

]
+

1
%π(k)

Ξπ

)−1

�
(
E
[
Z(k)Z(k)†

]
+ Ξπ

)−1
.

Now recalling that for every A �, B � 0 and C � 0:

log
∣∣∣I + AB

∣∣∣ ≥ log
∣∣∣I + CB

∣∣∣ ifA � C, (2.111)

it follows that (2.110) holds for every k = 1, . . . ,K and decoding order and
so we obtain the thesis.

�

Proof of Theorem 15 By assumption we have that H is modeled according
to (1.6), i.e:

H(k) = U(k)
R H(k)

w U(k)†

T (2.112)

where for all k = 1, . . . ,K , Σ(k)
w = 1

L1Lλ
(k)†
T , which is equivalent to assume

that U(k)†

R = IL. Just from (2.112), through the same steps followed in the
proof of Theorem 13, it can be proved that the hypothesesH.1-H.2 of Theorem
6 hold, from which it follows that:

P∗
k = U(k)

T Λ∗
kU

(k)†
T (2.113)

From (2.113) and from the fact that U(k)†

R = IL, it follows that
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{Z(k)
w }, k = 1, . . . ,K , is a set of random matrices whose columns are inde-

pendent and each column has independent and identically distributed entries.
Consequently:

ΩU = E
[
ZP∗

UZ†
]

(2.114)

=
K∑

k=1

E
[
Z(k)P∗

kZ
(k)†
]

=
K∑

k=1

E
[
Z(k)

w U(k)
T P∗

kU
(k)†
T Z(k)†

w

]
=

K∑
k=1

E
[
Z(k)

w Λ∗
kZ

(k)†
w

]
=

(
K∑

k=1

M∑
i=1

σw
(k)
i [Λ∗

k]i,i

)
IL (2.115)

Thus, we can apply Theorem 7, from which Theorem 15 follows immediately.

�



Chapter 3

Asymptotic Behavior of MIMO MAC
with Partial CSI

In this chapter, the performance of a MIMO MAC with partial CSI in asymp-
totic regimes, is analized. In particular, the low-SNR regime is described, an-
alyzing both the minimum energy per bit required for reliable communication
and the multiaccess slope region. Moreover the high SNR behavior is studied,
evaluating the high SNR slope, i.e. the behavior of the sum rate with respect
to log SNR function. In the following sections, firstly the most important pa-
rameters used for the characterization of the system in these two asymptotic
regimes are introduced, and they are particularized in the case of partial CSI.

3.1 Low SNR Characterization

As discussed in [35], the key performance measures in the low-SNR regime
for MIMO point-to-point channel are Eb

N0 min
, which is the minimum energy

per information bit required to convey any positive rate reliably, and S0, which
is the capacity slope therein in bits/s/Hz/(3 dB). These two quantity are defined
1 as:

Eb

N0 min
= inf

SNR

SNR

C(SNR )
(3.1)

= lim
SNR ↓0

SNR

C(SNR )
(3.2)

1In this section the capacity is assumed normalized to the number of receiving antennas, i.e.

the spatial dimension , and SNR =
E[||x||2]

N0L
, as discussed in [35].

77
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while the slope S0 of spectral efficiency in b/s/Hz/(3 dB) at the point Eb
N0 min

is
given by:

S0 , lim
Eb
N0

↓Eb
N0 min

C( Eb
N0

)
Eb
N0

∣∣
dB
− Eb

N0 min

∣∣
dB

3dB (3.3)

where

C
(

Eb

N0

)
= C(SNR ),

with SNR such that
Eb

N0
=

SNR

C(SNR )
,

is the spectral efficiency. Let us observe that Eb
N0 min

and S0 determine the first-

order behavior of the spectral efficiency as function of Eb
N0

(in dB) via:

C
(

Eb

N0

)
= S0

Eb
N0

∣∣
dB
− Eb

N0 min

∣∣
dB

3dB
+ ε (3.4)

where ε = o
(

Eb
N0

− Eb
N0 min

)
.

Let us now consider the multiple access channel. Without loss of generality
we consider the case of two users, since the generalization to a greater number
of users is very straightforward. As described in [36] and [37], in this case the
fundamental limits of interest, in the low-SNR regime, are described as func-
tion of the ratio θ = R1

R2
with which the information rate of the first user, R1,

and the information rate of the second user R2, go to zero. Specifically, indi-
cating with C (SNR 1, SNR 2) the capacity rate region of the considered MIMO
MAC channel, when the first user uses a power P1=SNR 1N0L and the second
user uses a power P2=SNR 2N0L, we have that:(

E1

N0

(θ)

min
,
E2

N0

(θ)

min

)
, lim

(SNR 1,SNR 2)↓(0,0)

(
SNR 1

R1
,

SNR 2

R2

)
(3.5)

with the constraint that (R1, R2) ∈ bd {C (SNR 1, SNR 2)} and that R1
R2

=θ,
where bd {A} is the boundary set of the set A. Moreover, we define the achie-
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vable segment of rates for user 1, when R1
R2

= θ and for fixed E1
N0

and E2
N0

as:

Rθ

(
E1

N0
,
E2

N0

)
, {R1 ≥ 0 : ∃(SNR 1, SNR 2) (3.6)

s.t.

(
R1,

R1

θ

)
∈ C (SNR 1, SNR 2) , (3.7)

SNR 1

R1
=

E1

N0
,

SNR 2

R2
=

E2

N0

}
(3.8)

The multiaccess slope region is, then, defined as the set of slope pairs S (θ)
that result from:

S1 (θ) , lim
E1
N0

↓E1
N0 min

R1

E1
N0

∣∣
dB
− E1

N0

(θ)

min

∣∣
dB

10 log10 2

S2 (θ) ,
1
θ

lim
E2
N0

↓E2
N0 min

R1

E2
N0

∣∣
dB
− E2

N0

(θ)

min

∣∣
dB

10 log10 2

for
(
R1,

R1
θ

)
vanishing with E1

N0
↓ E1

N0 min
and E2

N0
↓ E2

N0 min
, respecting the

membership

R1 ∈ Rθ

(
E1

N0
,
E2

N0

)
.

3.1.1 Low SNR Analysis of MIMO MAC with Partial CSI

In this subsection, the analysis for low SNR of the MIMO MAC where only a
channel-realization statistic S is available at the receiver, is considered. With
no loss of generality we focus on the case of two-users MIMO MAC. Before
analyzing the multi-user setting, some results from [35] [38] [39] , for the
single user scenario2 are here reported.

Theorem 16 Let us consider a non-coherent point-to-point MIMO channel,

y =
√

SNR Hx + n, (3.9)

where H is an L × M random matrix with mean H and such that
E[||H||4+α] ≤ ∞ for some α > 0, x is the M-dimensional input vector with
mean x, subject to the constraint tr{xx†} ≤ 1 and n is the L-dimensional

2In the following we assume that each user only knows his own channel probabilistic char-
acterization (Statistical CSI).
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additive circularly symmetric zero mean Gaussian noise with i.i.d. entries,
satisfying tr{nn†} = 1..
Then we have [35]:

dC(SNR )
dSNR

∣∣∣
SNR =0

= Ċ(0) = λmax(E[H†H]), (3.10)

or, equivalently,

Eb

N0 min
=

loge 2
Ċ(0)

=
loge 2

λmax(E[H†H])
. (3.11)

Further, on-off signaling is first order optimal, i.e. there exists an on-off signal
such that (3.10) is achieved [26].
Moreover for a practical signaling, i.e. a proper-complex random vector 3 x,
satisfying the following condition:

P {||x|| > δ} ≤ exp {−δν} (3.12)

for all δ ≥ δ0, where δ0 > 0 and ν > 0 are some positive constants, we have
[38]:

dI(SNR )
dSNR

∣∣∣
SNR =0

= İ(0) = LE
[
||H(x− x)||2

]
(3.13)

or equivalently the transmitted energy per information bit relative to the noise
spectral level, for low SNR , is given by,

Eb

N0
=

loge 2 L

İ(0)
=

loge 2
E
[
||H(x− x)||2

] . (3.14)

Furthermore, particularizing the statistical characterization of H to be an L×
M circularly symmetric zero mean Gaussian random matrix with unit variance
i.i.d. elements, we can relax the condition (3.12), to the following one [39]:

• ∂f(x, SNR )/∂SNR exists in SNR = 0, where f(x, SNR ) is the family of
probability distribution function of the random vector x, parameterized
in SNR ,

• limSNR→0 SNR E[||x||4] = 0,

3A complex valued random vector is said proper complex if E
[
xxT

]
= E [x] E [x]T , [38].
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and obtain:

dI(SNR )
dSNR

∣∣∣
SNR =0

= İ(0) = 0 (3.15)

i.e. for low SNR the required energy per bit goes to infinity.

From the previous results we can conclude that the signals satisfying (3.12),
assuming that the channel H has zero expected value, are power inefficient in
low-SNR regime, since the required energy per bit goes to infinity.
Hereafter a point-to-point MIMO channel with partial CSI is characterized.
First of all, some definitions from [35] are recalled:

Definition 2 An input distribution parameterized by SNR , xSNR is first order
optimal if:

E
[
||xSNR ||2

]
= SNR N0L and it achieves Eb

N0 min
, i.e.:

lim
SNR→0

I(x;y|S)
L SNR

= Ċ(0) (3.16)

where S is an arbitrary statistic of the channel H available at the receiver.

Definition 3 An input distribution parameterized by SNR , xSNR is said a
Flash Signaling if, for all δ > 0,

lim
SNR ↓0

E
[
||xSNR ||21{||xSNR || > δ}

]
E [||xSNR ||2]

= 1 (3.17)

where 1{.} is the indicator function.

Essentially a Flash Signaling can be viewed as the mixture of two proba-
bility distribution one that asymptotically concentrates all its mass at 0 and the
other that migrates to infinity. We can, then, prove the following result:

Theorem 17 Assume that neither the receiver nor the transmitter know H, but
the receiver has at its disposal a statistic S of the channel H. If

λmin

(
ES

[
Z†Z

])
≥ α > 0 a.s.

then xSNR is first order optimal if and only if it is a Flash Signaling and

lim
SNR→0

E
[
||HxSNR ||2

]
E [||xSNR ||2]

= λmax

(
E
[
H†H

])
(3.18)
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Proof: See Appendix C Proof of Theorem 17

This generalizes the result given in [35] for incoherent reception.
The following result, characterize, up to the second order4 the capacity

behavior of a MIMO point-to-point channel with imperfect channel state in-
formation:

Theorem 18 Assume that neither the receiver nor the transmitter know H, but
the receiver has at its disposal a statistic S of the channel H. If

λmin

(
ES

[
Z†Z

])
≥ α > 0 a.s.,

then,
S0 = 0

Proof: See Appendix C Proof of Theorem 18
Moving now to the multi-access scenario with imperfect channel state in-

formation, the transmitted and received energy per information bit relative to
the noise spectral level, of user k = 1, 2, are defined by:

Ek

N0
=

SNR k

Rk
,

Ek

N0

r

=
SNR k

Rk
gk, (3.19)

with gk denoting the channel gain of the k-th user, defined as

E
[
||H(k)x(k)||2

]
E
[
||x(k)||2

] .

In general the maximum achievable channel gain is calculated over all pos-
sible choices for the input and it depends on the knowledge available at
the transmitter, (see [35]). If the transmitter does not know the channel
but it knows its distribution, then the maximum channel gain is given by
Gk = λmax(E[H(k)†H(k)]), [35].

As discussed in Section 3.1, the two fundamental limits of interest in this
section are the minimum energy per information bit, Ek

N0 min
, which is obtained

with asymptotically low power, and the multiaccess slope region. Let R1 and
R2 go to zero while maintaining a fixed ratio θ = R1

R2
. The next theorems

show how the performance measures of interest (i.e. the multiaccess minimum

4As shown in [35], S0 is related to second derivative of the capacity, in SNR = 0.
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energy per bit and optimum multiaccess slope region) do not depend on θ, for
a MAC channel with partial CSI.

Theorem 19 For all θ = R1/R2, the minimum energies per information bit
for a MIMO MAC, with a statistic S of the channel realization at receiver, are
equal to:

E1

N0 min
=

loge 2
λmax(E[H(1)†H(1)])

. (3.20)

and

E2

N0 min
=

loge 2
λmax(E[H(2)†H(2)])

. (3.21)

Furthermore, (3.20) is achieved by on-off signalling over orthogonal direc-
tions.

Proof: See Appendix C Proof of Theorem 19.

Theorem 20 Let the rates vanish while keeping θ = R1/R2. If the statistic S
is such that:

λmin

(
ES

[
Z(k)†Z(k)

])
≥ αk > 0 a.s., k = 1, 2 (3.22)

then the multiaccess slope region of MIMO MAC, with a statistic S of the
channel realization at receiver, is:

S(θ) = (0, 0) (3.23)

and is achieved by on-off signalling and TDMA.

Proof: See Appendix C Proof of Theorem 20.
From the previous Theorems, we can observe that, under the assumption
(3.22), using on-off signalling and TDMA for the two users, we achieve the
optimal performance in low SNR regime, independently from the available
statistic S. Since the availability of a statistic S to the receiver requires that
the users spend some of their resources in terms of power and available dimen-
sions, the optimal strategy, under the Hypothesis of Theorem 20, is to consider
absence of S, i.e. an incoherent reception. Moreover, from Theorem 17, all
signals that are not flash signaling are power inefficient since they achieve an
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higher Eb
N0

with respect to the minimum one.
To conclude the low-SNR analysis, let us consider a global description of the
system. Specifically, assuming that all the users transmit at the same power, it
is possible to define a system energy per bit:

Eb

N0
=

SNR

Csum(SNR )
(3.24)

where Csum(SNR ), is the sum-rate of the system. It is easy to show, from the
above Theorems, that

Eb

N0 min
=

1∑2
K=1

(
Ek
N0 min

)−1 (3.25)

i.e. it is equal to the harmonic mean of the individual minimum energy per
bit. Moreover, under the Hypotheses of Theorem 20, the wideband slope of
the sum rate, defined as in (3.3), is equal to zero.
The case of statistic S obtained through a training phase, as described in
Section2.2, is now considered.

Corollary 4 Let the rates vanish while keeping θ = R1/R2. Assuming that
Ch(k) , k = 1, 2 are full rank, then the multiaccess slope region of MIMO
MAC with a channel-realization statistic obtained through a training phase,
with arbitrary but finite SNR T , is:

S(θ) = (0, 0) (3.26)

Proof: See Appendix C Proof of Corollary 4.
Then we can conclude that in low SNR regime, for a training based system,
the optimal signaling strategy is a TDMA access to the channel, with on-off
signaling sent from the users in the data phase. Moreover, it is evident that
to improve the data rate at to low-SNR regime, we have not to consider the
training phase, that only consume the available resources. Precisely, let 1− α
be the fraction of the total available power, used for the training phase, we can
define the transmitted energy per information bit relative to the noise spectral
level, with respect to the whole power available at the transmitter, i.e. including
also the power spent for the training, obtaining:

Ek

N0
=

1
α

Ek

N0

∣∣∣d (3.27)
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and consequently,
Ek

N0 min
=

1
α

Ek

N0

∣∣∣d
min

(3.28)

where Ek
N0

∣∣∣d
min

, is the minimum energy for information bit, characterized in the
previous Theorem, with respect to the only power available in the transmission
phase. Then the global minimum Ek

N0 min
is achieved for α = 1, i.e. no training

phase. Moreover, the multiaccess slope region, as proved in Corollary 4, does
not depend on α and is always zero.
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3.2 High SNR Characterization

As described in [40], the key performance measures in the high-SNR regime,
for MIMO point-to-point channel, are S∞, which quantifies the the high-SNR
slope in bits/s/Hz/(3 dB) of the capacity as function of log SNR , and L∞,
which represents the zero-order term, or power offset, in 3-dB units, with re-
spect to a reference channel having the same high-SNR slope but with unfaded
and orthogonal dimensions whose expansion in (3.31) intersects the origin at
SNR |dB = 0. These two quantity are defined as:

S∞ = lim
SNR→∞

C(SNR )
log2 SNR

(3.29)

and

L∞ = lim
SNR→∞

(
log2 SNR − C(SNR )

S∞

)
(3.30)

Let us observe, that through S∞ and L∞, we can give the asymptotic behavior
of the capacity, [40], as:

C (SNR ) = S∞
(

SNR |dB

3dB
− L∞

)
+ o (1) . (3.31)

Obviously, the previous quantity can also be defined for fixed signaling strat-
egy, replacing C(SNR ) with the corresponding mutual information I(SNR ).
Moving to the multiple access channel, the key performance measures in the
high-SNR regime are defined with respect to asymptotic behavior of the sum-
capacity, [23] [41]. Specifically, we can consider the same parameters intro-
duced for a MIMO point-to-point channel, replacing the function C(SNR ) with
the function Csum(SNR ), for which we assume that all the users have the same
power constraint. Specifically, the asymptotic behavior becomes:

Csum (SNR ) = Ssum
∞

(
SNR |dB

3dB
− Lsum

∞

)
+ o (1) . (3.32)

3.2.1 High SNR Analysis of MIMO MAC with Partial CSI

In this section, the analysis for high SNR of the MIMO MAC where only a
statistic S of the channel realization H is available at the receiver, is consid-
ered. Precisely, the high-SNR slope is studied. Before analyzing the multi-user
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setting with only partial CSI, one of the results for MIMO MAC channel with
coherent reception, obtained in [23] [40] [41], is recalled.

Theorem 21 Let us assume that H has full rank with probability one. Then
the high-SNR slope of the sum-capacity is given by:

Ssum
∞ = D (3.33)

where D = min (L, MK), i.e. the rank of H.

Concerning the partial CSI, we focus on the asymptotic behavior of the lower
bound to the sum-rate given in Corollary 1, which we know to be an achievable
sum-rate with Gaussian signaling. In the following we assume that (S,H) is
jointly Gaussian. Moreover, since the lower bound to the sum-rate depends on
the probability characterization of static S, that can be function of SNR , we
proceed giving an asymptotic behavior, with respect to SNR , of the quantity
related to S.

Specifically, we assume that the matrix SNR ΩSNR
U is described through

the following Eigenvalue Decomposition (EVD)

SNR ΩSNR
U = USNR ΛSNR U†

SNR ,

and describe the j-th entry of the diagonal matrix ΛSNR with one of the follo-
wing asymptotic behavior with respect to SNR :

λj,SNR =


aj

SNR
1+bjSNR if α = 1

aj
1

|1−α|SNR 1−α if α ≥ 0 and α 6= 1

aj log(SNR ) otherwise

(3.34)

where aj > 0, for all j ∈ 1, . . . , L. These behaviors essentially take in account
the improving rate of the quality of the side information S, with respect to the
operating SNR . Furthermore, we assume that Ĥ is almost surely full rank for
high SNR , that essentially means that Ch is a full rank matrix.
Under such Hypothesis, we can prove that:

Theorem 22 The high-SNR slope Ssum
∞ , of the lower bound to sum-rate, for
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every positive definite power allocation matrix P is given by:

Ssum
∞ =


D if α ≥ 1
Dα if 0 ≤ α < 1
D otherwise

(3.35)

where D = min (L, KM) is the degree of freedom of the system and repre-
sents the rank of the matrix Ĥ.

Proof: See Appendix C Proof of Theorem 22.
Let us observe that in the case α ≥ 1, or for the logarithmic behavior, we
obtain the same performance, in terms of the high-SNR slope, that we have
for the coherent case, i.e. we achieve the maximum degree of freedom of the
system, D. Moreover, we can observe that in terms of the high-SNR slope,
too high improving rates, such as the case α > 1, are not needed, while slow
rates, i.e. α < 1, produce a proportional penalty factor on the achievable
high-SNR slope.

High-SNR Analysis for Training-Based System

In this paragraph, applying the previous results, we analyze the high-SNR be-
havior for a Training Based System. Specifically, we are interested in analyz-
ing the influence on the performance of the system, from Tc, K, M and L.
We assume that SNR T = SNR

M for all the users and full rank training condi-
tion, i.e. Tc > NT ≥ KM , with training sequences given by Theorem 11. We
also suppose that Ch is full rank and consider for simplicity isotropic inputs.
Under such hypothesis, easily follows that the high SNR behavior of the lower
bound to the effective throughput is given by:

ST∞ = lim
SNR→∞

Tc −NT

Tc

ILower

log (SNR )
=

Tc −NT

Tc
min (L, KM) . (3.36)

Let us study ST∞ as function of NT, K and M , for every fixed L and Tc
5.

Precisely, we assume that only a subset EF , with cardinality M ′ ≤ MK, of
total transmitting antennas of all the users is used, and we consider a training

5We assume that the coherent time Tc is an even number.
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phase duration N ′
T ≥ M ′. The correspondent high-SNR slope is given by:

ST∞
(
N ′

T , EF

)
=

Tc −N ′
T

Tc
min

(
M ′, L

)
(3.37)

that depends on the chosen subset EF , only through M ′. We are interested in
optimizing ST∞, with respect to N ′

T and M ′, i.e. the number of the effective
transmitting antennas in the system. Precisely we can prove that:

Theorem 23 The optimal high-SNR slope ST opt

∞ of the lower bound to
throughput is given by:

ST opt

∞ =
(

1− KT

Tc

)
KT (3.38)

where KT = min
(
KM, L, Tc

2

)
, with the optimal number of total transmitting

antennas given by:

M ′ = KT = min
(

KM, L,
Tc

2

)
(3.39)

and training duration N ′
T = M ′.

Proof: See Appendix C Proof of Theorem 23.
The Proof of Theorem 23 follows the steps done in [10], in which the analysis
is conducted for a point-to-point MIMO channel, where the channel matrix is
characterized by i.i.d. zero mean Gaussian random variables. The final result
is of the same type, i.e. N ′

T = M ′ = KT = min
(
KM, L, Tc

2

)
, but now

this situation implies that we have to schedule the users and their transmitting
antennas, in order to achieve the optimal high SNR slope associated with a total
number of transmitting antennas given by KT . Let us also observe that in the
case of point-to-point MIMO channel with i.i.d. Gaussian channel coefficients
and incoherent reception, it has been proved in [42] that(

1−
min

(
KM, L, Tc

2

)
Tc

)
min

(
KM, L,

Tc

2

)
,

is the capacity high SNR slope, and then we can conclude that in the case of
a MIMO MAC channel with symmetric users, each with i.i.d. channel matrix,
the Training Based System achieves the optimal performance of the system in
terms of high-SNR slope.
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3.3 Appendix C

Proof of Theorem 17 First of all let us observe that all the flash signaling
satisfying (3.18) are fist order optimal, [35]. We have to show the converse. To
this end, let us observe that an upper bound to the interested quantity is given
by:

I(x;y|S)
LSNR

≤
E
[
||HxSNR ||2

]
E [||xSNR ||2]

−
NoE

[
log |I + 1

Nocov(HxSNR |xSNR ,S)|
]

E [||xSNR ||2]

The objective is to prove that

NoE
[
log |I + 1

Nocov(HxSNR |xSNR ,S)|
]

E [||xSNR ||2]
> 0 (3.40)

if the signaling is not a flash signaling, and then the only optimal signaling are
the flash signaling.
To this end let us lower bound (3.40) observing that in general:

|I + A| ≥ 1 + λmax (A) ≥ 1 +
1
m

tr{A} (3.41)

then

|I+ 1
No

cov(HxSNR |xSNR ,S)|

≥ 1 +
1

mNo
x†SNR ES

[
Z†Z

]
xSNR

≥ 1 +
1

mNo
||xSNR ||2λmin

(
ES

[
Z†Z

])
≥ 1 +

1
mNo

||xSNR ||2α a.s. (3.42)
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Using (3.42), we have that:

E
[
log |I +

1
No

cov(HxSNR |xSNR ,S)|
]

≥ E
[
log

(
1 +

1
LNo

||xSNR ||2α
)]

(3.43)

≥ E
[
log

(
1 +

1
LNo

||xSNR ||2α
)

1{||xSNR || < ν}
]

(3.44)

≥ 1
ν2

log

(
1+

1
LNo

ν2α

)
E
[
||xSNR ||21{||xSNR || < ν}

]
(3.45)

where in (3.43), we have used (3.42), in (3.44) we have used the property
f(x) ≤ g(x) ∀x implies that E [f(x)] ≤ E [g(x)], and finally in (3.45) the
fact that 1

x log(1+x) is a decreasing function in x. Now, if the signaling is not
a flash signaling, then exists a νo > 0 such that

E
[
||xSNR ||21{||xSNR || < νo}

]
E [||xSNR ||2]

≥ β > 0, (3.46)

then

NoE
[
log |I + 1

Nocov(HxSNR |xSNR S)|
]

E [||xSNR ||2]
> 0 (3.47)

since 1
ν2

o
log
(
1 + 1

mNoν2
oα
)

> 0.

�

Proof of Theorem 18 From Theorem 17 we know that the only optimal
first order signallings are the Flash signallings. Then, we have to show that
S0 = 0 for flash signaling. To this end we make use of the following Lemma:

Lemma 3 Assume that neither the receiver nor the transmitter knows H, but
the receiver has at its disposal a statistic S of the channel H. Then for all flash
signaling,

S0 = 0

Proof: Let us observe that S0 is a no-negative number, not greater than the
slope in the case of coherent reception. Since in the case of coherent reception,
is proved in [35] that the slope is zero, in our case the slope is again zero.

Then, using Lemma 3, follows the assert.
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�

Proof of Theorem 19 Since the presence of interferers cannot lower the
minimum energy per bit and (3.20) is the minimum transmitted energy per
bit for the single-user case with imperfect channel estimation, the result will
follow by showing that on-off signalling TDMA achieves the single-user trans-
mitted energies per bit. This follows immediately from [26, Theorem 6], which
claims that if both alphabets A1 and A2 of the two-user MIMO MAC contain
free input symbols, i.e. 0 ∈ Ak with k = 1, 2 such that ‖0‖2 = 0, then the
following rectangle is achievable per unit cost:

{
0 ≤ R1 ≤ sup

x∈A1

D(PY |X1=x,X2=0 ‖ Py|X1=0,X2=0)
‖x‖2

}
×
{

0 ≤ R2 ≤ sup
x∈A2

D(PY |X1=0,X2=x ‖ Py|X1=0,X2=0)
‖x‖2

}
Thus, for k = 1

Eb

N0 min
= lim

SNR→0

SNR

R1
(3.48)

=
loge 2

λmax(E[H(1)†H(1)])
, (3.49)

where (3.49) follows from Theorem 16. Analogously for k = 2. Finally to
keep the constraint R1

R2
= θ it is enough to consider SNR 2 = G1SNR 1

G2θ

�

Proof of Theorem 20 First of all, let us observe that Sk(θ) for k = 1, 2
are non-negative quantity. Moreover, let us observe that both S1(θ) and S2(θ)
are minus or equal to the related quantity Sk

0 in the single user case, since the
presence of the other user only increases the noise, and the minimum energy
per bit is the same. Since in the single user case, under assumption (3.22),
Sk

0 = 0 for k = 1, 2, from Theorem 18, we can conclude that Sk(θ) = 0 for
k = 1, 2. Finally let us observe that using on-off signalling and TDMA for the
two users, we achieve the optimal in low SNR regime.

�
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Proof of Corollary 4 From Theorem 20, we have to prove that:

λmin

(
ES

[
Z(k)†Z(k)

])
≥ αk > 0 a.s. k = 1, 2. (3.50)

First of all, let us observe that ES

[
Z(k)†Z(k)

]
doesn’t depend from S, and that

vec{Z}=e is the estimation error vector defined in Section2.2. Moreover, from
the hypotheses that Ch(k) , k = 1, 2 are full rank matrix, follows that

Ce(T, SNR T ) = (C−1
h + SNR T T̃†T̃)−1 (3.51)

is full rank, since

λmin (Ce(T, SNR T )) ≥ 1

λmin (Ch) + SNR T λmax

(
T̃†T̃

) ≥ 0. (3.52)

Then, indicating with SNR ∗
T the maximum power available for the training

phase, we obtain that

λmin (Ce(T, SNR T )) ≥ α∗ =
1

λmin (Ch) + SNR ∗
T λmax

(
T̃†T̃

)
Let us now observe that all sub-vectors extracted from e = vec{Z} have full
rank covariance matrix with minimum eigenvalue greater or equal to α∗. Let
us now characterize

λmin

(
E
[
Z(k)†Z(k)

])
, (3.53)

in particular, let us fix a unitary vector u ∈ CL and consider the quadratic
form:

u†E
[
Z(k)†Z(k)

]
u† = E

[
||Z(k)u||2

]
=

L∑
i=1

u†E
[
Z(k)

i

†
Z(k)

i

]
u

≥ Lα∗ (3.54)

Then for k = 1, 2, the minimum eigenvalue is greater or equal to Lα∗, for all
SNR T ≤ SNR T ∗ and we conclude the proof.
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Proof of Theorem 22
Let us analyze

ILower=E
[
log
∣∣∣IL + SNR (IL + SNR ΩU )−1 ΓU

∣∣∣]
(3.55)

for high SNR , where ΓU = ĤPĤ†. In particular let us expand (3.55) in the
following way:

E
[
log
∣∣∣IL + UΛSNR U† + SNR ΓU

∣∣∣]−log
∣∣∣IL + UΛSNR U†

∣∣∣.
Since (S,H) are jointly Gaussian, we can apply the Lebesgue Convergence
Theorem, and study the asymptotic behavior of

log
∣∣∣IL + SNR (IL + SNR ΩU )−1 ΓU

∣∣∣,
for each ΓU . For the Hypotheses done Ĥ is full rank, and for the moment
we assume that the matrix ΓU is full rank L with probability one. Let us now
observe that using the Schur concave property of the function log |A| with
respect to the eigenvalues of A, we have:

L∑
j=1

log(1+λj,SNR +SNR λΓU i
) ≤ log

∣∣∣IL +ΛSNR +SNR U†ΓUU
∣∣∣ (3.56)

where λj,SNR and λΓU i
are, respectively, the eigenvalues in increasing order

of ΛSNR and ΓU . Moreover from the Hadamard inequality we have:

L∑
j=1

log(1+λj,SNR +SNR ΓU i,i) ≥ log
∣∣∣IL +ΛSNR +SNR U†ΓUU

∣∣∣ (3.57)



3.3 Appendix C 95

where ΓU i,i are the diagonal elements of U†ΓUU.
Furthermore we have:

log
∣∣∣IL + UΛSNR U†

∣∣∣ = log
∣∣∣IL + ΛSNR

∣∣∣
=

L∑
j=1

(log 1 + λj,SNR ).

(3.58)

Then using (3.56), (3.57) and (3.58) we obtain that:

L∑
j=1

log

(
1 +

SNR

1 + λj,SNR
λΓU i

)

≤ log
∣∣∣IL + SNR (IL + SNR ΩU )−1 ΓU

∣∣∣
≤

L∑
j=1

log

(
1 +

SNR

1 + λj,SNR
ΓU i,i

)
(3.59)

and then the asymptotic analysis of the lower bound to the sum-rate, can be
carried on analyzing the behavior of the following function:

g(SNR ) = log
(

1 +
SNR

1 + λSNR
β

)
(3.60)

where β is a positive number, for the hypothesis that ΓU is full rank with prob-
ability one.
Let us now describe the behavior of the function (3.60) for high SNR , as func-
tion of aj and α.
If α ≥ 1:

g(SNR )
log (SNR )

SNR→∞→ 1.

If 0 ≤ α < 1:

g(SNR )
log (SNR )

SNR→∞→ α. (3.61)
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Finally, if λj,SNR = aj log(SNR )

g(SNR )
log (SNR )

SNR→∞→ 1.

From the above analysis, we can conclude that:

ILower

log (SNR )
SNR→∞→


L if α ≥ 1
Lα if 0 ≤ α < 1
L otherwise

(3.62)

Let us now analyze the case in which ΓU is full rank KM with probability one.
Concerning the lower bound, we obtain the same expression (3.56), where now
the sum is done on the first KM eigenvalues, in decreasing order:

KM∑
j=1

log

(
1 +

SNR

1 + λj,SNR
λΓU i

)
≤ log

∣∣∣IL + SNR (IL + SNR ΩU )−1 ΓU

∣∣∣
(3.63)

For the upper bound, let us indicate with VDV†, the eigenvalue decomposi-
tion of ΓU with D a diagonal matrix of dimension KM ×KM , we have:

log
∣∣∣IL + SNR (IL + SNR ΩU )−1 ΓU

∣∣∣
= log

∣∣∣IL + SNR (IL + SNR ΩU )−1 VDV†
∣∣∣

= log
∣∣∣IKM + SNR V† (IL + SNR ΩU )−1 VD

∣∣∣
= log

∣∣∣IKM + SNR ṼDΩU
Ṽ†D

∣∣∣ (3.64)

≤
KM∑
i=1

log
(
1 + SNR DΩU i

Ki,i

)
(3.65)

≤
KM∑
i=1

log

(
1 +

SNR

1 + λi,SNR
Ki,i

)
(3.66)

where in (3.64) ṼDΩU
Ṽ† = V† (IL + SNR ΩU )−1 V (is its eigenvalue de-

composition), in (3.65) we define the matrix K = ṼDṼ† and apply the
Hadamard inequality, and finally in (3.66) we apply The Eigenvalue Interlace-
ment Theorem [30], and λi,SNR are taken in increasing order. From (3.63) and
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(3.66), we have ,again, to study the behavior of the function:

g(SNR ) = log
(

1 +
SNR

1 + λSNR
β

)
(3.67)

where β is a positive number. The analysis of the function (3.67), has been
previously conducted for the case L ≤ KM , and we can conclude that:

ILower

log (SNR )
SNR→∞→


KM if α ≥ 1
KMα if 0 ≤ α < 1
KM otherwise

(3.68)

�

Proof of Theorem 23
We are interested to maximize

ST∞
(
N ′

T, EF

)
=

Tc −N ′
T

Tc
min

(
M ′, L

)
(3.69)

with respect to N ′
T and M ′. First of all, it is evident that N ′

T = M ′, since an
higher N ′

T only decreases the high-SNR slope. Then we have:

ST∞
(
M ′) =


(
1− M ′

Tc

)
M ′ if M ′ ≤ L(

1− M ′

Tc

)
L if M ′ ≥ L

(3.70)

We maximize the term
(
1− M ′

Tc

)
M ′, choosing M ′=Tc

2 when

min (KM, L) ≥ Tc
2 , and choosing M ′=min (KM, L) if min (KM, L) < Tc

2 .
Therefore, the optimal choice is M ′=min

(
KM, L, Tc

2

)
. As concerned the

second term
(
1− M ′

Tc

)
L, this is maximized when M ′=L=min (KM, L).

Hence, defining KT =min
(
KM, L, Tc

2

)
, we obtain that:

ST opt

∞ =
(

1− KT

Tc

)
KT (3.71)

with the optimal number of total transmitting antennas given by:

M ′ = KT = min
(

KM, L,
Tc

2

)
. (3.72)





Conclusion

In this thesis, the impact of a partial CSI at the receiver on the achievable rate
region of MIMO MAC with Gaussian Input, has been analyzed. The imperfect
CSI is modeled as an arbitrary statistic conditioned on which the channel has a
Gaussian distribution. Specifically, lower and upper bounds of the various mu-
tual information terms, which define the achievable rate region for Gaussian
inputs, have been derived. Furthermore, the tightness of these bounds have
been numerically illustrated and it has also been shown that the gap goes to
zero when the number of the users or the number of receiving antennas grows.
Moreover, the low-SNR regime and high-SNR regime for a MIMO MAC with
partial CSI, have been analyzed.
The developed tool has been applied to study the performance limits of two
relevant scenarios: the Cooperative MIMO Networks and the Training Based
System. Precisely, for a Cooperative MIMO Network, the partial CSI has been
modeled in terms of knowledge of only some channel matrices; moreover the
case in which the channel matrices are not perfectly known but only a quan-
tized version is available has been treated. For a Training Based System, the
CSI at the receiver is obtained through the transmission of training sequences
in each coherence block of the channel. It has been shown that the training sig-
nals sent by the users, optimized according to two metrics, viz., the trace and
determinant of the estimation error covariance, should be orthogonal in time if
no constraints on the rank of the training sequence matrix are imposed. When
there is a rank constraint, i.e., when the training sequences can not longer be
orthogonal, the optimal structure for the training signals, has been derived un-
der the assumption of symmetric network.
Owing to the above analysis, it can be concluded that the rates achievable over
a MIMO MAC channel with partial CSI at the receiver side can be interpreted
in terms of a coherent MIMO MAC channel with an increased noise level and
that the successive interference cancelation strategy at the receiver is a good
decoding strategy to achieve the derived lower bound on the sum-rate.
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Concerning the Cooperative MIMO Network, the impact of incomplete CSI, in
terms of the degree of cooperation, becomes more and more evident when the
power used for the transmission of the information grows. Similarly, increas-
ing the operating SNR , a finer quantization is needed to achieve good perfor-
mance compared to the ideal case of no-quantization. For the Training Based
System, the correlation at the receiver side has a great impact on the perfor-
mance of the system in rank deficient case. In fact, when there are independent
receiving antennas, the performance of the system rapidly saturates, since none
channel matrix can be well estimated. Furthermore, when the coherent time is
large enough, it is preferable to consider full rank training sequences to obtain
higher achievable rates.
For a MIMO MAC with partial CSI, the minimum required energy per infor-
mation bit for each user at the receiver equals ln 2, which is the same of the
one needed for coherent MIMO MAC. Moreover, assuming that none channel
coefficient is perfectly known, TDMA access with on-off signalling sent by
the users, achieves the optimal performance up to the second order of the sy-
stem; this means that we have to decouple the users of the network in low SNR
regime. Finally, it is enough that the mean square error of the channel esti-
mation goes to zero like log(SNR )/SNR to obtain the same high-SNR slope of
the coherent case.
Possible future research guide lines could be different. One of these concerns
the analysis of a Cooperative MIMO networks in which also the received data
signals have to be quantized at the BSs, to take in account that the capacity of
the backhaul links are finite. An additional research topic could concern, in
order to optimize the achievable rates over the parameters of the training and
data transmission phases, the use of the developed framework for a Training
Based System. Finally it could be very interesting to extend the developed
analysis to study the performance of relay channels, in which all the relays and
the receiver have only partial CSI.
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antenna Communication,” IEEE Trans. on Information Theory, vol 51, no
12, pp. 4134-4151, Dec. 2005.

[41]A. Sanderovich, O. Somekh, H.V. Poor and S. Shamai ”Uplink Macro
Diversity of Limited Backhaul Cellular Network,” IEEE Trans. on Infor-
mation Theory, Vol. 55, No. 8, pp. 3457-3478, Aug. 2009.

[42]L. Zheng and D.N.C. Tse, ”Communication on the Grassmann Manifold:
A Geometric Approach to the Noncoherent Multiple-Antenna Channel,”
IEEE Trans. on Information Theory, vol 48, no 2, pp. 359-383, Feb. 2002.


