
 
 

 

  
Abstract—This paper presents a neural network global 

PID-sliding mode control method for the tracking control of robot 
manipulators with bounded uncertainties. A certain sliding mode 
controller with PID sliding function is developed. In this 
controller, the switching gain is tuned by a single-input 
radial-basis-function neural network on the reachable condition 
of sliding mode. Thus, the effect of chattering can be alleviated. 
Moreover, global sliding mode is realized by designing an 
exponential dynamic sliding function. Mathematical proof of the 
stability and convergence of the control system is given. 
Simulation results demonstrate that the chattering and the steady 
state errors are eliminated and satisfactory trajectory tracking is 
achieved. 
 

Index Terms—Neural network, Robot, Robustness, Sliding 
mode control.  
 

I. INTRODUCTION 
A well known approach to the control of uncertain systems 

by nonlinear feedback laws is the sliding mode control [1]-[3]. 
Sliding mode controller design provides a systematic approach 
to the problem of maintaining stability in the face of modeling 
imprecision and uncertainty. However, chattering problem is a 
major drawback of sliding mode control. The boundary layer is 
used to avoid chattering phenomena [4]. The cost of this 
technology is a reduction in the accuracy of the tracking 
performance [5, 6].  

In general, sliding mode control has two phases in the control 
process. One is the reaching mode, and the other is the sliding 
mode. The former is the phase of initial states toward the 
sliding surface. When the system trajectory stays on the sliding 
surface, the control system can reject uncertainties and 
disturbances. However, robust tracking is guaranteed only after 
the system states reach the sliding surface, and therefore 
robustness is not guaranteed during the reaching phase. In order 
to overcome this problem, some researches have been proposed, 
such as global sliding mode control [7-9]. Here, global sliding 
mode is realized by designing an exponential dynamic sliding 
function. In [10]-[12], the sliding mode control with PID 
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sliding surface for robot manipulators were presented. 
Simulation results demonstrated that PID sliding surface 
provided faster response than that of traditional PD-manifold 
controller.  

In this paper, a robust neural network global sliding mode 
PID-controller is proposed to control a robot manipulator with 
parameter variations and external disturbances. The chattering 
phenomenon is eliminated by substituting a single-input 
radial-basis-function (RBF) neural network. Moreover, a 
theoretical proof of the stability and the convergence of the 
proposed scheme are provided. 

 

II. ROBOT MANIPULATOR MODEL 

A. Dynamics of the Robot Manipulator 
Consider an n-link robot manipulator, which takes into 

account the friction forces and disturbances, with the equation 
of motion given by [13],  

 τ=+++ dTqGqqqCqqM )(),()( &&&& , (1) 

where nRq ∈  is the joint angular position vector of the robot 

manipulator; nR∈τ  is the applied joint torques; nnRqM ×∈)(  

is the inertia matrix; nnRqqC ×∈),( &  is the effect of Coriolis and 

centrifugal forces; nRqG ∈)(  is the gravitational torques; and 
n

d RT ∈  is the vector of generalized input due to disturbances. 
 

B. Properties of the Robot Manipulator 

Property 1. The inertia matrix M(q) is symmetric and 
positive definite and satisfies 

 nn ImqMIm 21 )( ≤≤ , nRq ∈∀ , (2) 

where m1 and m2 are positive constant, and nn
n RI ×∈  is the 

identity matrix. 

Property 2. The Coriolis and centrifugal matrix ),( qqC &  
satisfies 
 qqqC cζ≤),( & , nRqq ∈∀ &, , (3) 

where cζ  is a positive constant, and )(⋅  is the Euclidean 
norm. 
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Property 3. The gravity term is bounded as 
 bgqG ≤)( , nRq ∈∀ , (4) 

where bg  is a known positive function of q. 
Property 4. Using a proper definition of the matrix ),( qqC & , 

the ),(2)( qqCqM && −  is skew-symmetric and satisfies 

 [ ] 0),(2)( =− xqqCqMxT && , nRx ∈∀ . (5) 
 

III. NEURAL NETWORK GLOBAL SLIDING MODE CONTROLLER 

A. Definition of Sliding Function 
Let the tracking error vector be 

 dqqe −= , nRe ∈ , (6) 

where dq  is the desired trajectory. The sliding function is 
defined as 

 )()(
0

21 tdteeet
t

βσ −Λ+Λ+= ∫& , (7) 

where 1Λ and 2Λ  are constant positive definite diagonal 
matrices. Now we define )(tβ  as )exp()0()( tt ασβ −= , where 

0>α  and )0(σ  is the initial value of sliding function. The 
choice of )(tβ  should satisfy: (1) )0()0()0( 1ee Λ+= &β , (2) 

0)( →tβ  as ∞→t , and (3) )(tβ&  exits and is bounded. 
Notably, the function )(tβ  drives system states in any state 

space directly to the sliding mode without a reaching phase. In 
other words, the system states are initially located in the sliding 
mode. If system states are maintained on the surface for 0>t , 

then e approaches zero and dqq → . 
The follow sliding condition will be used to develop the 

control law, 
 [ ] 0)(

2
1

<σσ qM
dt
d T . (8) 

Equation (8) means that the distance to the sliding surface 
decreases to zero eventually along with all system trajectories. 
Thus, the system states are driven to the sliding surface on 
which sliding mode takes place. 
 

B. Definition of Control Input 

Let the subscript “o” stand for the nominal value, and symbol 
“ Δ ” stand for the uncertain value, i.e., MMM o Δ+= , 

CCC o Δ+= , GGG o Δ+= . 
Assumption 1. The uncertainties of the n-link robot 

manipulator (1) can be lumped as fΔ , 

 )()(
0

2121 dteeqCqeeMf
t

dd ∫Λ−Λ−Δ−−Λ+ΛΔ=Δ &&&&  

dTG −Δ−+ β& .  (9) 

The control input of conventional sliding mode control 
consists of a continuous nominal control part, and a 
discontinuous switching control part. The switching control 
part causes the chattering problem. Here we propose a 
single-input RBF neural network to find a suitable gain matrix 
to replace the switching control input. 

Define the sliding mode control law as follows, based on 
equivalent control, 

 )()(
0

2121 ∫Λ−Λ−++−Λ+Λ−=
t

dodo edteqCqeeM &&&&& βτ  

KAGo −−+ σ .  (10) 

where 
 [ ]naaadiagA L21= , ia  is positive constant, (11) 

 [ ]nkkkK L21= , )( ik
T
ki ii

Wk σΦ= . (12) 

The gain matrix K is obtained by single-input RBF neural 
network. The symbol 

ikW  is the 1×m  vector of output layer 

weights, m is the number of nodes in hidden layer, and 

[ ]Tm
kkkik iiii

φφφσ L21)( =Φ is the 1×m  vector of outputs 

of hidden layer nodes. They can be chosen as Gaussian-type 
function, 

 )2/exp()(
22 j

i
j

iiii
j

ki
υμσγσφ −−= , (13) 

where j
iμ and j

iυ  are the center and variance of the jth basis 
function of the ith RBF neural network. The gain iγ  is a 
positive constant. 

Define 
idkW  is the ideal value of 

ikW , so that 

)( ik
T

ki iid
Wk σΦ=  is the optimal compensation for ifΔ , where 

ifΔ  is the ith row of fΔ . According to the property of 
universal approximation of RBF neural network, there exists 

0>iδ  and the following condition satisfied, 

 iik
T

ki iid
Wf δσ ≤Φ−Δ )( , (14) 

where iδ  is positive and can be chosen small. 
 

C.  Stability Proof 

Theorem 1. Consider an n-link robot manipulator, as 
described in (1), which contains unknown but bounded 
uncertainties. If (1) is controlled applying the control input (10) 
to (13), then the control system (1) is globally stable. 

Proof. Choose the Lyapunov function candidate as 

 )()()(
2
1)( tqMttV T σσ= . (15) 

Then, 
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 σσσσ )(
2
1)()( qMqMtV TT &&& += . (16) 

Using Property 4 and Assumption 1 and substituting control 
law (10) to (12) and Gaussian-type function (13), then Eq. (16) 
becomes 

)(tV& [ ]∑∑
==

Φ−Δ+−=
n

i
ik

T
kii

n

i
ii iid

Wfa
11

2 )(σσσ  

 ∑∑
==

Φ−Δ+−≤
n

i
ik

T
kii

n

i
ii iid

Wfa
11

2 )(σσσ . (17) 

Form the property of universal approximation of RBF neural 
network, assume 

 iiiik
T
ki iid

Wf σρδσ ≤≤Φ−Δ )( , (18) 

where 10 << iρ . Then, the second term on the right side of 
(17) satisfies 

 2)( iiik
T

kii iid
Wf σρσσ ≤Φ−Δ . (19) 

Therefore, one can get 

 ∑∑
==

+−≤
n

i
ii

n

i
iiatV

1

2

1

2)( σρσ& . (20) 

Since ia  is a positive constant and iia ρ>  is chosen, it is 
clear that 
 0)( ≤tV& . (21) 

Equation (21) guarantees the decay of the energy of σ  as long 
as 0≠σ . Thus, the overall system is stable. 
  █ 
 

IV. EXAMPLE AND SIMULATION RESULTS 

Consider a two-link robot manipulator [14] as shown in Fig. 
1. The parameter matrices are as follows: 

 ⎥
⎦

⎤
⎢
⎣

⎡
+

+++
=

2232

2322321

)cos(2
)cos(2)cos(2

)(
θθθ

θθθθθ
q

qq
qM , (22) 

 

 
Fig. 1. Two-link robot manipulator 

 ⎥
⎦

⎤
⎢
⎣

⎡ +−−
=

0)sin(
))(sin()sin(

),(
123

2123223

qq
qqqqq

qqC
&

&&&
&

θ
θθ

, (23) 

 ⎥
⎦

⎤
⎢
⎣

⎡
+

+++
=

)cos(
)cos()cos()(

)(
216

216154

qqg
qqgqg

qG
θ

θθθ
, (24) 

where g is the gravitational acceleration and 

 1
2
12

2
111 Ilmlm c ++=θ , (25) 

 2
2
222 Ilm c +=θ , (26) 

 2123 cllm=θ , (27) 

 114 clm=θ , (28) 

 125 lm=θ , (29) 

 226 clm=θ . (30) 

Assume that the parameters of the unloaded robot are given by 
Table 1. The desired trajectories are  

 ⎥
⎦

⎤
⎢
⎣

⎡
−−−−
−−−−

=⎥
⎦

⎤
⎢
⎣

⎡
=

)8exp(8.12)8exp(6.16.1
)8exp(8.12)8exp(6.16.1

2

1

ttt
ttt

q
q

q
d

d
d .  (31) 

Regarding an unknown load carried by the robot as part of the 
second link, the parameters 2m , 2cl  and 2I  change to 

22 mm O Δ+ , 22 cOc ll Δ+ , and 22 II O Δ+ , respectively. 
Suppose that the variation of parameters lies in the intervals: 

30 2 ≤Δ≤ m , 25.00 2 ≤Δ≤ cl , and 5.00 2 ≤Δ≤ I . The 
external disturbance is assumed to be  

 ⎥
⎦

⎤
⎢
⎣

⎡
+
+

=
)02.0sin(7.15.3
)02.0cos(22.3
t
t

Td . (32) 

In order to achieve that the desired response of each joint of 
the manipulator being a second-order critically damped 
response, we choose damping ratio to be 1 and natural 
frequency to be 13 rad/sec. Therefore, the sliding function 

constants are ⎥
⎦

⎤
⎢
⎣

⎡
=Λ

260
026

1  and ⎥
⎦

⎤
⎢
⎣

⎡
=Λ

1690
0169

2 . The 

control input is chosen as in (10) to (13). The matrix A is 

⎥
⎦

⎤
⎢
⎣

⎡
=

500
050

A . The gains of Gaussian-type function are 

181 =γ  and 122 =γ . 
The simulation results are shown in Figs. 2 to 5. Figs. 2 and 

3 show that both 1q  and 2q  converge to the desired 
trajectories. From Figs. 4 and 5, it is obvious that chattering of 
the control input is eliminated by applying the proposed 
method. 

Table 1. Parameters of the robot manipulator 

m1 m2o l1 l2o lc1 lc2o I1 I2o 
10 5 1 0.5 0.5 0.5 10/12 5/12
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Fig. 2. The response of q1 and desired path q1d 
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Fig. 3. The response of q2 and desired path q2d 

 

V. CONCLUSION 
In this paper, a robust neural network global sliding mode 

PID-controller is proposed to control a robot manipulator with 
parameter variations and external disturbances. In classical 
sliding mode control, the control input gain is chosen to be 
lager than the bound of the uncertainties, which means the 
controller has to have a prior knowledge of the uncertainties. 
The proposed method can compensate the uncertainties. The 
common problem of input chattering is also eliminated and 
hence the control input is smooth. The other advantage of the 
proposed method is that it possesses sliding mode 
characteristics all the time without a reaching phase.  
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Fig.4. The control input τ1 
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Fig.5. The control input τ2 
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