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ABSTRACT 
Photo-response non-uniformity (PRNU) of digital sensors was recently proposed [1] as a unique identification 

fingerprint for digital cameras. The PRNU extracted from a specific image can be used to link it to the digital 

camera that took the image. Because digital camcorders use the same imaging sensors, in this paper, we extend 

this technique for identification of digital camcorders from video clips. We also investigate the problem of 

determining whether two video clips came from the same camcorder and the problem of whether two differently 

transcoded versions of one movie came from the same camcorder. The identification technique is a joint 

estimation and detection procedure consisting of two steps: (1) estimation of PRNUs from video clips using the 

Maximum Likelihood Estimator and (2) detecting the presence of PRNU using normalized cross-correlation. We 

anticipate this technology to be an essential tool for fighting piracy of motion pictures. Experimental results 

demonstrate the reliability and generality of our approach. 

Keywords: Video authentication, photo-response non-uniformity, camcorder identification, digital video 

forensics 

 

1. INTRODUCTION 

Digital video and digital TV continue to replace their analog counterparts in all aspects of human endeavor, 

including professional cinematography, home video, and surveillance cameras. With increasing bandwidth and 

decreasing price for storage and acquisition, sharing digital video over the Internet becomes increasingly more 

popular. Unfortunately, these advancements in technology also create problems with illegal copying and 

re-distribution. Digital camcorders are used by pirates in movie theaters to obtain copies of reasonable quality 

that are subsequently sold on a black market and transcoded to low bit-rates for illegal distribution over the 

Internet. This causes significant loss of revenues to the movie industry. Dan Glickman, Chairman and CEO of 

the Motion Picture Association, Inc. (MPAA) states in his Worldwide study of losses to the Film industry & 

international economies Due to piracy (available from http://www.slyck.com/misc/mpaa_loss. 
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doc): “The film industry is a thriving economic engine that generates jobs and exports in countries all over the 

world. We are calling on governments internationally to continue to work with us in limiting the impact of 

piracy on local economies and the film industry. Movies are a valuable product and intellectual property must be 

respected.” The soon-to-be-established consortium Movielabs is intended to provide funds to researchers 

working on camcorder detection and jamming. 

Forensic methods capable of determining that two clips came from the same camcorder or that two transcoded 

versions of one movie have a common source will obviously help investigators draw connections between 

different entities or subjects and may become a crucial piece of evidence in prosecuting the pirates. Reliable, 

inexpensive, and fast identification of the source of digital video can also help the law enforcement with 

prosecution of child pornographers. 

Previously, Kurosawa [2] proposed to use defective pixels and the dark current of CCD chips for camcorder 

identification. This approach is rather limited because dark current can only be extracted from dark frames. 

Another problem is that dark current is a relatively weak signal that does not survive video compression. Other 

recently proposed methods [3–5] might be used to identify camcorders from video clips by detecting traces of 

image processing unique to a specific camcorder model. Such methods, however, cannot distinguish between 

camcorders of the same model and thus have limited use in criminal cases.  

In this paper, we adopt the techniques developed in [1] that identify individual imaging sensors using the 

photo-response non-uniformity noise. The PRNU is caused primarily by varying sensitivity of individual pixels 

to light due to inhomogeneity and impurities in silicon wafers and imperfections introduced by the sensor 

manufacturing process. The properties of the PRNU appear to be constant in time [1] and unique for each 

imaging sensor. Moreover, the PRNUs from different sensors are orthogonal (uncorrelated). The PRNU is not 

affected by light refraction on dust particles, optical surfaces, and optical zoom setting. 

It is not possible to use the approach in [1] directly to identify a digital camcorder from a single video frame 

because the spatial resolution of the video is usually much smaller than for typical still images and each frame is 

highly compressed by complex compression systems (MPEG-x, H.26x, and their variants). In this paper, by 

taking advantage of the time resolution that is unique to video, we demonstrate that even at very low bit-rates 

and across various video formats, the PRNUs can be estimated and used to identify digital camcorders. 

We start the description of the camcorder identification technique in Section 2 by introducing a simplified model 

of the imaging sensor output. Then, in Section 3 we describe the process for estimating the PRNU from a 

sequence of video frames. In Section 4, the source camcorder identification method based on normalized 

cross-correlation is described in detail and its performance tested in Section 5. Section 6 concludes the paper 

and outlines future research directions. 

We reserve boldface font, e.g., X and Y, for matrices with X[i, j] denoting the (i, j)-th element of X. Everywhere 

in this paper unless specified otherwise, all operations among matrices, such as product, ratio, raising to a power, 
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2. IMAGING SENSOR OUTPUT MODEL 

The processing chain for the video signal in digital camcorders is quite complex and may vary greatly for 

camcorders from different manufacturers. It includes the quantization of the analog signal, white balance, 

demosaicking (color interpolation), color correction, gamma correction, filtering, and compression, for example 

into the VOB (MPEG 2) format. In this paper, we use a simplified model [6] that captures the most essential 

elements of typical in-camera processing. This enables us to develop a low-complexity camcorder identification 

procedure applicable to a wider spectrum of camcorders. 

Let I[i, j] be the signal in one color channel at pixel (i, j), i, = 1, …, m, j = 1, …, n, for a specific frame 

generated by the sensor before demosaicking is applied and Y[i, j] the incident light intensity at pixel (i, j). 

Dropping the pixel indices for better readability, the model of the sensor output is 

[( ) ]s rg γγ= ⋅ + + + + +I 1 K Y Λ Θ Θ Θq ,                         (1) 

where g is the color channel gain, γ is the gamma correction factor (typically, γ ≈ 1/2.2), K is a zero-mean 
multiplicative factor responsible for PRNU, and Λ , sΘ , , and  stand for the following noise 

sources – dark current, shot noise, read-out noise, and quantization (lossy compression) noise, respectively. We 

remind that all operations in (1) are element-wise. Because the dominant term in the square bracket in (1) is the 

light intensity Y,

rΘ qΘ

 we can factor it out and use Taylor expansion. Keeping only the first order terms, (1 + x)γ ≅ 

1 + γ x, we obtain from (1) 

                      (0) (0)γ= + +I I I K Θ ,           (2) 

where (0) ( )g γ=I Y  is the sensor output in the absence of noise or lossy compression (noise-free frame);  is 

a complex of independent noise components. As previously shown [1], the PRNU factor K can be used as a 

fingerprint that characterizes each imaging sensor and for identification and integrity verification [7]. 

Θ

 

3. PRNU ESTIMATION AND DETECTION 

Camcorder identification can be formulated as a joint estimation and detection problem. It involves two major 

statistical signal processing procedures, which are (1) estimating the PRNUs from individual videos; (2) 

determining the common origin by establishing the presence of the same PRNUs. We first describe the details of 

estimating K. 

The first step is host signal rejection to improve the SNR between the signal of interest and observed data. We 



suppress the influence of the noise-free frame I(0) by subtracting from both sides of (2) an estimate (0)ˆ ( )F=I I  

of I(0) obtained using a denoising filter F 
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We use a wavelet based denoising filter [8] that extracts Gaussian noise  of a given variance (0)ˆ= −W I I 2σW . 

The term  is a combination of  with the additional distortion introduced by the denoising filter. Working 

with the noise residual significantly improves the SNR for our signal of interest  and thus improves the 

reliability of the camcorder identification process. 

Ξ Θ
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Let us assume that we have a video clip consisting of N frames I1, …, IN from a given camcorder. From (3), we 

have for each frame index k = 1, …, N 
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Program streams, such as DVD and most videos transcoded for Internet, usually use variable bit rate coding 

(VBR) that compresses the video sequence as much as possible to a constant picture quality. Thus, the variance 

of  in (4) should be approximately constant across the frames independently of their type (I/P/B frame, 

smooth-area frame/active-area frame, etc.). On the other hand, transport streams, such as DTV and broadcasting 

streams, use constant bit rate coding (CBR) that generates bit streams with constant bit rate but variable quality 

causing the variance of  to be frame-dependent. In this case, adaptively adjusting the variance according to 

the quality of different type of frames or carefully selecting the frames might give us some gain in estimating the 

PRNU K. We do not expect this gain, however, to be significant. Moreover, treating all frames equally by 

assuming that the variance of  does not depend on the frame index k greatly simplifies the estimation. 

kΞ

kΞ

kΞ

Assuming that for each pixel (i, j) the sequence  (in k) is WGN (white Gaussian noise) with variance 

σ 

[ , ]k i jΞ
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Because the observed data depends linearly on the unknown parameter, the MLE estimator is MVU (Minimum 

Variance Unbiased) and we obtain its variance from the Cramer-Rao Lower Bound 
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Detailed derivation of (5) and (6) can be found in [9]. The estimator variance (6) provides us with some insight 

into how the estimation quality of K depends on the number and quality of video frames. We have the following 

two observations that we confirm experimentally in Section 5 through simulations. 



(1) Under the same level of quality (  is constant), the variance of the estimated PRNU is 

proportional to 1/N. Thus, the estimation is more accurate when more video frames are used. 

var( )Ξ

(2) On the other hand, if the total number of frames is fixed, videos of low quality will give us worse 

PRNU estimation than those of high quality because their quantization noise variance 2σ  is higher. 

 

4. VIDEO SOURCE IDENTIFICATION USING CROSS-CORRELATION 

In this section, we describe a method that can be used to decide whether two video-clips A and B were produced 

by the exact same camcorder. Let KA and KB be the PRNUs estimated from both clips. Because the PRNU is a 

unique signature of the camera, the task of origin identification is equivalent to discriminating  from . 

Due to estimation errors and varying quality and length of the video clips, the accuracy of the estimated PRNUs 

 and  might also vary. Moreover, there might be a translational shift (a, b) between  and , e.g., 

due to letterboxing. Hence, we capture the camcorder identification problem as simple binary hypothesis testing 

B
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where  is a WGN with unknown variance. It is known that for this type of problem [10], the optimal detector 

is the normalized cross-correlation (NCC). In summary, to decide whether two estimated PRNUs  and  

were obtained by the same camcorder, we first calculate the NCC between  and : 

ξ

AK̂ BK̂

AK̂ BK̂

A B
ˆ ˆ[ , ] [ , ], [ , ]u v corr i j i u j v= −C (K K .                   (8) 

Then, we examine the NCC surface C[u, v] and decide H1 (e.g., both clips were taken by the same camcorder) 

by detecting the presence of a pronounced peak in C[u, v], which can be done using several different measures 

[11]. In this paper, we use the Peak to Correlation Energy (PCE) (Npeak is a small neighborhood of the peak) 
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4.1 Removing blockiness artifacts 

Because PRNUs from two different sensors should be uncorrelated [1], if both clips are indeed from the same 

camcorder, we expect to see a sharp peak in C[u, v] (large PCE), otherwise C[u, v] will look like a low energy 

random noise. However, almost all camcorders use DPCM-Block DCT transform-type video coding, such as 

MPEG-x and H.26x. This creates (i) ringing artifacts at the frame boundaries caused by the padding required for 

frame dimensions not divisible by the block size and by operations such as motion estimation/compensation for 

out of frame movement; (ii) 16×16 blockiness artifacts inside the frame because most standard codecs are based 

on 16×16 macroblocks. These periodic pulse-like signals (see Fig. 1 (a)) propagate through the denoising filter 

into the estimated PRNUs and cause false correlations between otherwise uncorrelated PRNUs. Thus, they must 

be removed before calculating the NCC1. The boundary artifacts can be easily removed by cropping ~8 pixel 
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wide boundaries in the spatial domain. We remove the periodic pulse-like blockiness artifacts in the Fourier 

domain (see Fig. 1 (b)) by attenuating the Fourier coefficients at frequencies where most of the artifacts’ energy 

is located. To illustrate how to locate the frequencies of these periodic pulse-like signals, let us consider the 

following one-dimensional periodic signal ( ) ( 16 ), 0 1x n n m n Nδ= − ≤ ≤ −  whose DFT transform is X(r) 

                  

2sin
/16 2| ( ) |
2sin
/16 2

k r
NX r

r
N

π

π

⎛ ⎞
⎜ ⎟
⎝=
⎛ ⎞
⎜ ⎟
⎝ ⎠

⎠ ,                       (10) 

where k = ⎣(N–1)/16⎦ and r is the DFT index. Equation (10) shows that the energy of |X(r)| concentrates around 

frequencies of integer multiples of N/16. Therefore, setting X(r) = 0 for those frequencies and their 

neighborhood (3–6 times frequency resolution) effectively reduces the strength of the periodic signal. In our 

work, we used a similar idea to design an FFT domain filter to mitigate the deteriorating effect of blockiness on 

the NCC. Fig. 1(b) and (c) show the Fourier magnitude of the PRNU and the filtered PRNU. Since in practice 

the NCC is calculated in the Fourier domain, we can conveniently perform blockiness removal at the same time. 

Furthermore, we might remove other artifacts that manifest themselves as peaks in the Fourier domain, such as 

artifacts due to color filter array interpolation and other hardware or software operations [Section 7 in 9]. 

 (a) (b) 
  

(c) 
Figure 1. (a) Blockiness artifacts in a small magnified portion of the estimated PRNU; (b) Fourier magnitude of (a);      

(c) Fourier magnitude after removing the artifacts in the DFT domain. 

 
5. EXPERIMENTAL RESULTS 

In this section, we present selected experiments to illustrate the effectiveness of the proposed approach in 

identifying the origin of video clips. Twenty-five consumer digital camcorders are used (20 SONY, 4 Hitachi, 1 

Canon). The recording media was Mini-DV or DVD-RW and the sensor resolution varied from 0.68MP–4.1 MP. 

We selected three camcorders (one Canon DC40 and two camcorders of the same model SONY DCR-DVD105) 

and tested them against the remaining clips. We will address the two SONY camcorders as SONY DCR-1 and 

SONY DCR-2. With each camcorder, we prepared several high quality video clips (roughly 6 Mb/sec, DVD 

quality, resolution 536×720, frame rate 30 Hz, MPEG-2 VOB format) of various indoor and outdoor scenes. 

The clips contained brief periods of optical zooming in/out and panning. Some of the videos contained quickly 
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moving objects (e.g., cars) while others had panned static scenes. All the camcorders had their Electronic Image 

Stabilization (EIS) and digital zooming turned off. All scenes were taped with the fully automatic settings.  

The videos were also transcoded to low-bit rate formats, such as the MPEG-4 XviD format (~1Mbit/sec), the 

RealPlay format (~750 Kbit/sec), and the MPEG-4 DivX format (~450 Kbit/sec). These formats represent the 

most popular choices for distribution of video over the Internet today. 

5.1 VOB, XviD, RealPlay, DivX vs. VOB 

In this test, we investigated whether it is possible to correctly identify the source camera from videos that were 

transcoded to 4 different formats and bit-rates. We first estimated the PRNUs from a 40-second randomly 

selected video segment from SONY DCR-1 clips in the VOB format and from its three transcoded formats, 

Xvid, RealPlay, and DivX, obtaining thus four SONY DCR-1 PRNUs of varying quality. Then, we calculated 

the NCC with the PRNUs from a different 40-second SONY DCR-1 video clip in the VOB format and 24 

PRNUs from 24 40-second video clips from all the other camcorders, also in the VOB format. For the SONY 

DCR-1, SONY DCR-2, and Canon DC40 camcorders, we show the NCC surface and the PCE in a pictorial 

form in Fig. 2. The results for the remaining 22 camcorders are summarized in the table below the figure. In the 

same manner, two 40-second randomly selected SONY DCR-2 clips and Canon DC40 clips were randomly 

chosen and tested against all the PRNUs from the 25 camcorders (obtained from VOBs). The results are shown 

in the same format in Fig. 2 (b) and Fig. 2(c). The figures reveal the reliability of the proposed identification 

approach for all four bit rates and also support observation (1) from Section 3 that with the same number of 

frames, the quality of the estimated PRNUs decreases as the video quality decreases (measured by the bit rate). 

The degradation of the estimated PRNUs is the reason for deterioration of the NCC surface (and the decrease in 

PCE and correlation coefficient). Regardless of the video format, the PCE and the correlation coefficients 

obtained for the matched case are by several orders of magnitude larger than for the unmatched case. 

5.2 Xvid vs. Xvid for clips of different length 

In the second experiment, we estimated two PRNUs from two 40-second SONY DCR-2 video clips of different 

scenes in the XviD-format and calculated the NCC between them. Then, we repeated the same process but 

increased the length of the clips to 80 seconds and 120 seconds. The resulting NCCs are shown in Fig. 3, which 

verifies observation (2) made in Section 3: with a constant video quality, the PRNU estimation improves with 

the increased number of frames. 

5.3 Low bit-rate experiment 

The third experiment we carried out targeted identification of “Internet-quality” clips with low resolution and 

very low bit-rate. We took two clips, one using SONY DCR-1 and one with Canon DC40 at LP resolution of 

264×352 pixels and then transcoded both clips to 150kb/sec. in the RMVB format. Then we tested both clips for 

the presence of a PRNU estimated from four 2.5min VOB clips from SONY DCR-1. The NCC surfaces and 

PCEs are shown in Figure 4. The identification is again possible and improves with the length of the clip. 



 
SONY DCR-1           

40 Secs, 6Mb/s, VOB 

SONY DCR-2           

40 Secs, 6Mb/s, VOB 

Canon DV40            

40 Secs, 6Mb/s, VOB 

SONY 

DCR-1 

40 Secs 

6Mb/s 

VOB  

(a) PCE = 9.0e+04,  CorrCoef = 0.6318 

 

(b) PCE = 41.1,  CorrCoef = 0.0016 

 

(c) PCE = 34.1,  CorrCoef = 0.0028 

SONY 

DCR-1  

40 Secs 

1Mb/s 

XviD  

(d) PCE = 6.2e+03,  CorrCoef = 0.1512 

 

(e) PCE = 37.5,  CorrCoef = –0.0023 (f) PCE = 41.2,  CorrCoef = 0.0024 

     

SONY 

DCR-1  

40 Secs 

750 Kb/s 

RealPlay 
 

(g) PCE = 936.8,  CorrCoef = 0.0573 

 
(h) PCE = 35.3,  CorrCoef = –0.0022 

 

(i) PCE = 27.6,  CorrCoef = 0.0025 

SONY 

DCR-1  

40 Secs 

450 Kb/s 

DivX  

(j) PCE = 1.2e+03,  CorrCoef = 0.0657 

 

(k) PCE = 56.7.1,  CorrCoef = 0.0024 

 

(l) PCE = 35.8,  CorrCoef = –0.0008 

 
SONY DCR-1 

40 Secs, 6Mb/s VOB 

SONY DCR-1 

40 Secs, 1Mb/s XviD 

SONY DCR-1 

40 Secs, 750 Kb/s RP

SONY DCR-1 

40 Secs, 450 Kb/s DivX
Other 22 

camcorders 
CorrCoef PCE CorrCoef PCE CorrCoef PCE CorrCoef PCE 

 Min –0.0041 28.0 –0.0044 28.2 –0.0053 26.8 –0.0035 25.5 

 Max  0.0084 89.0  0.0045 90.3  0.0046 73.9  0.0050 156.9 

 

 Statistics 

 Median –0.0004 43.2 –0.0005 37.3  0.0012 32.5  0.0007 38.7 

Figure 2 (a). NCC of PRNUs of 4 differently transcoded versions of a SONY DCR-1 clip with PRNUs estimated from 25 

camcorders in the VOB format.  

  



 
SONY DCR-1           

40 Secs, 6Mb/s, VOB 

SONY DCR-2           

40 Secs, 6Mb/s, VOB 

Canon DV40            

40 Secs, 6Mb/s, VOB 

SONY 

DCR-2 

40 Secs 

6Mb/s 

VOB  

(a) PCE = 38.0,  CorrCoef = 0.0028 

 

(b) PCE = 8.2e+04,  CorrCoef = 0.6464 

 

(c) PCE = 38.8,  CorrCoef = 0.0058 

SONY 

DCR-2  

40 Secs 

1Mb/s 

XviD  

(d) PCE = 32.8,  CorrCoef = 0.0006 

 

(e) PCE = 1.0e+04,  CorrCoef = 0.2038 

 

(f) PCE = 34.8,  CorrCoef = 0.0006 

     

SONY 

DCR-2  

40 Secs 

750 Kb/s 

RealPlay 
 

(g) PCE = 28.1,  CorrCoef = 0.0005 (h) PCE = 2.1e+03, CorrCoef = 0.0867 

 

(i) PCE = 28.0,  CorrCoef = 0.0013 

SONY 

DCR-2  

40 Secs 

450 Kb/s 

DivX  

(j) PCE = 37.2,  CorrCoef = –0.0016 

 

(k) PCE = 1.9e+03,  CorrCoef = 0.0871 

 

(l) PCE = 33.6,  CorrCoef = –0.0018 

 

SONY DCR-2 

40 Secs, 6Mb/s VOB 

SONY DCR-2 

40 Secs, 1Mb/s XviD 

SONY DCR-2 

40 Secs, 750 Kb/s RP 

SONY DCR-2 

40 Secs, 450 Kb/s, DivX 
Other 22 

camcorders 
CorrCoef PCE CorrCoef PCE CorrCoef PCE CorrCoef PCE 

 Min –0.0070 22.6 –0.0058 29.5 –0.0060 28.4 –0.0044 27.6 

 Max  0.0059 73.7  0.0051 100.8  0.0059 116.5  0.0065 61.6 

  

 Statistics 

 Median –0.0022 43.1 –0.0015 38.5 –0.0005 39.3  0.0005 35.8 

Figure 2 (b). NCC of PRNUs of 4 differently transcoded versions of a SONY DCR-2 clip with PRNUs estimated from 25 

camcorders in the VOB format. 

 



 
SONY DCR-1           

40 Secs, 6Mb/s, VOB 

SONY DCR-2          

40 Secs, 6Mb/s, VOB 
Canon DV40            

40 Secs, 6Mb/s, VOB 

Canon 

DV40  

40 Secs 

6Mb/s 

VOB  

(a) PCE = 38.2,  CorrCoef = 0.0032 

 

(b) PCE = 38.7, CorrCoef = 0.0072 

 

(c) PCE = 3.7e+04,  CorrCoef = 0.4644 

Canon 

DV40  

40 Secs 

1Mb/s 

XviD  

(d) PCE = 35.1,  CorrCoef = –0.0002 (e) PCE = 55.0,  CorrCoef = 0.0002 

 

(f) PCE = 2.0e+03,  CorrCoef = 0.0982 

Canon 

DV40  

40 Secs 

750 Kb/s 

RealPlay  

(g) PCE = 25.8,  CorrCoef = –0.0034 

 

(h) PCE = 31.3,  CorrCoef = –0.0016 (i) PCE = 370.9,  CorrCoef = 0.0404 

Canon 

DV40  

40 Secs 

450 Kb/s 

DivX 
(j) PCE = 32.6,  CorrCoef = 0.0022 

 

(k) PCE = 40.5,  CorrCoef = –0.0008 (l) PCE = 390.0,  CorrCoef = 0.0429 

 

Canon DV40     

40 Secs, 6Mb/s VOB 

Canon DV40     

40 Secs, 1Mb/s XviD 

Canon DV40 

40 Secs, 750 Kb/s RP 

Canon DV40  

40 Secs, 450 Kb/s DivX
Other 22 

camcorders 
CorrCoef PCE CorrCoef PCE CorrCoef PCE CorrCoef PCE 

 Min –0.0058 26.8 –0.0033 28.7 –0.0045 32.5 –0.0041 26.0 

 Max  0.0111 121.1  0.0080 122.3  0.0050 94.5  0.0039 82.2 

  

 Statistics  

 Median  0.0021 56 –0.0012 38.4 –0.0013 32.4 –0.0005 39.9 

Figure 2 (c). NCC of PRNUs of 4 differently transcoded versions of a Canon clip with PRNUs estimated from 25 

camcorders in the VOB format. 



SONY DCR-2, 40 Secs, 1Mb/s, XviD NCC 

SONY DCR-2, 40 Secs, 1Mb/s, XviD 

SONY DCR-2, 80 Secs, 1Mb/s, XviD NCC 

SONY DCR-2, 80 Secs, 1Mb/s, XviD 

SONY DCR-2, 120 Secs, 1Mb/s, XviD NCC 

SONY DCR-2, 120 Secs, 1Mb/s, XviD 

 

(a) PCE = 9.0e+03,  CorrCoef = 0.1893 

 

(b) PCE = 1.8e+04,  CorrCoef = 0.2830 

 

(c) PCE = 2.8e+04,  CorrCoef = 0.3630 

Figure 3. NCCs of PRNUs from different SONY DCR-2 XviD-format video clips with the length 40, 80, and 120 seconds. 

 

 

 

SONY DCR-1            

10 Mins, 150 Kb/s RMVB 

Canon DC40            

10 Mins, 150 Kb/s RMVB 

SONY DCR-1            

40 Mins, 150 Kb/s RMVB 
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Figure 4. NCC surface and PCE coefficient for two low-resolution, low bit-rate clips from SONY DCR-1 and Canon DC40 

with PRNU estimated from a 10 minute VOB clip from SONY DCR-1. 4a) is for a 10 minute clip from SONY DCR-1 and 

4b) for 40 minute clip.  

6. CONCLUSIONS 

We present a new approach to the problem of digital camcorder identification from digital videos. The 

identification is based on the imaging sensor photo-response non-uniformity (PRNU), which is a unique 

fingerprint of imaging sensors. The proposed method can verify whether two video clips came from the same 

camcorder. First, the PRNU is estimated from both clips using the Maximum Likelihood Estimator. Then the 

PRNUs are filtered to remove the blockiness artifacts due to lossy compression. Finally, they are processed 

using the normalized cross-correlation. The Peak to Correlation Energy coefficient is used to establish the 

common origin of both PRNUs. Experiments with 25 camcorders show that only 40 seconds of video is 

sufficient for a very reliable decision from clips encoded as low as 450kb/sec. With decreasing video quality 

(larger compression) and decreasing spatial resolution, the length of the video clip necessary for reliable 

decision must be increased. For “Internet quality” videos in LP resolution (264×352) and 150 kb/sec. bit-rate, 

we obtained good results with clips of length 10 minutes. 
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