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ABSTRACT
With the emergence of the Internet of Things (IoT), time series

streams have become ubiquitous in our daily life. Recording such

data is rarely a perfect process, as sensor failures frequently occur,

yielding occasional blocks of data that go missing in multiple time

series. These missing blocks do not only affect real-time monitoring

but also compromise the quality of online data analyses. Effective

streaming recovery (imputation) techniques either have a quadratic

runtime complexity, which is infeasible for any moderately sized

data, or cannot recover more than one time series at a time.

In this paper, we introduce a new online recovery technique to

recover multiple time series streams in linear time. Our recovery

technique implements a novel incremental version of the Centroid

Decomposition technique and reduces its complexity from qua-

dratic to linear. Using this incremental technique, missing blocks

are efficiently recovered in a continuous manner based on pre-

vious recoveries. We formally prove the correctness of our new

incremental computation, which yields an accurate recovery. Our

experimental results on real-world time series show that our recov-

ery technique is, on average, 30% more accurate than the state of

the art while being vastly more efficient.
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1 INTRODUCTION
Time series are ubiquitous in many domains, e.g., finance, hydrol-

ogy, network monitoring, or the Internet of Things (IoT). In such

applications, time series often contain a large number of missing

values that occur as blocks of consecutive values because of sensor

failure, power outages, transmission problems, etc. [4, 37]. Data

management systems assume no such gaps exist in the data. Even if

a system can work with incomplete data (e.g., NULLs in databases),

leaving missing values untreated can cause incorrect or ill-defined
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results [7, 9]. Missing values can alter time series statistical prop-

erties, such as the correlation. This in turn, might significantly

affect further analysis tasks, e.g., data sampling, or exploration, ren-

dering their results pointless [14]. Moreover, repairing dirty series

substantially improves downstream tasks such as classification [39].

The recovery of these missing blocks is challenging, as in many

modern applications data arrives in a streaming fashion. The stream

could be infinite, rendering batch recovery techniques that attempt

to process the entire stream for analysis impractical [22]. In many

mission-critical applications, the missing blocks need to be recov-

ered as they are encountered. We describe below two real-world

applications that require the continuous recovery of missing blocks

in time series streams. We empirically evaluate these two applica-

tions in Section 6.

Example 1.We consider the example of an IoT-based sports analyt-

ical use-case, where millions of sensors are unobtrusively integrated

into the clothing and equipment of players to monitor their activi-

ties in real-time [13]. The monitoring aims to examine the players’

performance and minimize the risk of injury during practice. Miss-

ing blocks occur here as the sensors often detach from the players.

Recovering these holes on-the-fly allows coaches to immediately

adjust their tactics by repositioning the players on the field, which

in turn might improve the overall performance of the team.

Example 2. Consider as a second example the case of the Swiss

Federal Office for the ENvironment (FOEN) [1], an organization

responsible for protecting against natural hazards and triggering

alerts in case of floods in Swiss lakes and rivers. FOEN operates

more than 260 water stations spread all over the country, each con-

tinuously collecting water discharge measurements. These water

stations frequently suffer sensor failures or errors in the transmis-

sion of the data leading to missing blocks. However, the continuous

monitoring of the current water level is crucial to swiftly warn

about imminent threats such as floods.

Online recovery of missing values is a well-studied problem

and a number of algorithms have been proposed in the past to

tackle it. There is, however, a lack of practical techniques able

to efficiently recover multiple incomplete streams by achieving

real-time complexity, which is an essential requirement for any

streaming algorithm. Existing online algorithms can be classified

into two classes, according to the underlying method they use. On

one hand, matrix completion techniques operate by constructing

a matrix of series and then applying a low-rank reduction of this

matrix to derive the principal dimensions that represent the streams.

Each time the stream is updated, an approximated reduced matrix

is computed out of the previous one, which limits the accuracy

of these techniques. On the other hand, pattern-based techniques
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apply similarity techniques to detect repeating trends and use them

to derive replacements for the missing blocks. These algorithms

operate in an online manner by evaluating dependencies across

streams. The calculation of the exact set of dependencies requires a

large number of iterations rendering the recovery inefficient.

In practice, time series streams often exhibit temporal and spatial

similarity that can be used to summarize the main properties of the

data. We leverage this observation in our work by incrementally

computing a handful of dimensions, which conceptually represent

the up-to-date streams, and use them to recover missing values

in a continuous fashion. The proposed online recovery efficiently

implements an exact incremental version of the Centroid Decom-

position (CD) technique. It achieves an accurate recovery thanks

to the ability of CD to embed the correlation across time series

as part of its decomposition process [19, 21]. Our incremental ap-

proach can be beneficial to various applications where CD has been

applied such as factor analysis [10], text classification [15], image

compression [17], or anomaly detection [23].

At a technical level, CD decomposes an input matrix X into the

product of two matrices, X = L·RT , where L and R are called the

loading and relevance matrix, respectively. The most expensive

operation in CD is the computation of maximizing sign vectors, Z ,
which consist of 1s and -1s and are used as part of an optimization

problem that must be solved to obtain the decomposition. The only

online CD approach, called UpdateCD [35], recomputes the sign

vectors from scratch each time new data arrives, thus achieving the

same quadratic time complexity as the batch algorithm [20].

In this paper, we propose to vastly improve the efficiency of

the Centroid Decomposition technique. Our algorithm extends the

traditional iterative way of calculating the sign vectors using two

techniques. First, it uses an anticipatory technique that speeds up

the CD computation by predicting the termination of the sign vector

search and thus reduces the number of iterations. Second, it utilizes

the matrix similarity before and after new data arrives to compute

the sign vectors incrementally.

In summary, the main contributions of this paper are as follows:

• We introduce a new algorithm called ORBITS for the Online

Recovery of missing Blocks In multiple Time Series streams.

ORBITS relies on an anticipatory computation of the CD

technique, which reduces its time complexity from quadratic

to linear (Section 4).

• We prove the dependence between sign vectors before and

after each stream update. We use this property to prove

the correctness of our decomposition, which guarantees an

accurate recovery of missing values (Section 5).

• We evaluate ORBITS on various time series datasets and

show that our technique substantially outperforms the state

of the art both in accuracy and efficiency (Section 6).

2 RELATED WORK
We describe, in turn, related work on (a) streaming recovery tech-

niques and (b) Centroid Decomposition.

2.1 Streaming Recovery Techniques
Online matrix completion algorithms have been used for the

continuous recovery of missing values. They assume that the

streams present a temporal continuity and apply matrix decompo-

sition/factorization techniques for the recovery.

Incremental SVD (ISVD) [8] is the first online matrix completion

technique that was proposed. It continuously recovers a matrix

with missing values using the Singular Value Decomposition (SVD)

method [34]. ISVD first constructs an orthogonal random matrix

S and uses it to approximate the observed values in X. Then, the
columns of S are appended with the data and decomposed using

SVD, recovering missing values in the process. To preserve the

orthogonality of the decomposition, ISVD requires column updates,

and cannot properly handle row updates, i.e., stream values (which

is the main focus of this paper).

SAGE (aka online GROUSE) [5, 40] is an online recovery algo-

rithm that relies on PCA (Principal Component Analysis) [16]. PCA

takes an n ×m matrix and finds n principal components vectors,

which better represent the dimensions of the initial data. SAGE

updates the principal components with the appended matrix rows

and applies a Stochastic Gradient Descent (SGD) procedure to de-

rive a new matrix such that their product approximates the input

matrix. The resulting matrix is used to replace the missing values in

the case of column or row updates. SAGE outperforms ISVD both

in accuracy and efficiency on column updates [18]. The gradient

process makes SAGE inefficient in long time series, and inaccurate

in the presence of outliers or lowly correlated time series.

In [27], the authors introduce another online PCA-based recov-

ery technique, which we refer to as pcaMME. It first constructs

samples of a covariance matrix using a memory-efficient parti-

tioning technique [26]. The samples are obtained by partitioning

the components of the input matrix into separate blocks. Then,

pcaMME incrementally derives the largest principal components

from the matrix samples, recovering initialized missing values in

the process. pcaMME relies on a fast approximation of the principal

components, which limits its accuracy.

Online pattern matching techniques have been used in this con-

text as well. These algorithms assume that close sensors can present

trend similarity, which is used to derive replacement values.

TKCM [36] identifies and uses repeating patterns (seasonality)

in the history of time series to recover missing blocks. It creates

a query pattern composed of the most recent measurements and

searches for the missing value in the most similar (non-overlapping)

pattern to the query pattern. TKCM is able to recover missing values

as they appear in time series that exhibit seasonal patterns. The

pattern search assumes a single base time series rendering the

technique unable to recover more than one series at a time.

OGDImpute [3] uses an auto-regressive (AR) model to recover

missing values in data streams. It initializes the missing values with

zeros and applies stochastic gradient to compute the AR coeffi-

cients. These coefficients are incrementally used to compute two

predictions: the first one for the observed values and the second

one for the missing values. Such a two-fold prediction allows for

learning the trend from the base time series and its similarity to the

reference time series. OGDImpute assumes autoregressive input

data, which is not the case in most real-world time series.

Yoon et al. [38] introduce a Multi-directional Recurrent Neural

Network (MRNN) technique to recover missing blocks. The pro-

posed technique contains an interpolation block and an imputation

block, which are simultaneously trained using a fixed size sliding
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Figure 1: Graphical illustration of the recovery of the missing block (MB) in X3 using ORBITS. (a) A plot of three input time
series X1, X2 and X3 with a missing block represented by a dashed line at 13 ≤ t ≤ 21. (b) ORBITS’s recovery, where CD
decomposes the original data, exposing the matrix rank with dimensions L1, L2 and L3.

window. It learns the data dependencies by leveraging both the

correlation within time series and the correlation across time series.

MRNN resorts to a forward and backward propagation process,

which is expensive to compute and can only handle time series that

are linearly dependent on one another. Additionally, the perfor-

mance of the MRNNmodel deteriorates in short time series because

of the limited number of training samples.

Hybrid online techniques that use both matrix completion

and pattern matching have also been investigated. For instance,

SPIRIT [30, 31] combines PCA with an AR model to reduce a set of

co-evolving streams to a small number of hidden variables. These

variables summarize the most important features of the original

data. For each variable, SPIRIT fits an AR model on historical values

and incrementally updates it as new data arrives. Then, this model

is used to predict the value of each variable, and subsequently, an

estimate of the missing value is derived. The AR model yields an

efficient recovery but for a single incomplete time series only.

2.2 Centroid Decomposition (CD)
The Scalable Sign Vector (SSV) [20] is the most efficient algorithm to

date to compute CD in batch. The main idea of SSV is as follows: in-

stead of searching for the maximizing sign vector using all elements

of the input matrix X, SSV searches for it by rows of X. The search
is performed by iteratively computing a weight vector V , derived
from X, which is then used to select the element in Z that has to

be flipped. The computation of the weight vectors is described in

detail in Section 3. SSV achieves linear space complexity but has

quadratic runtime complexity.

UpdateCD [6] is the only online technique to compute CD. It

incrementally decomposes an updated matrix, X̃, based on the de-

composition before the update, CD(X), and the row to be appended.

UpdateCD exploits the property that as a result of the decomposi-

tion, the loading matrix L is a stationary point, i.e., CD(L) = L × IT

(where I is the identity matrix). CD(X̃) is obtained by orthogonal

rotation of the loading matrix L. More specifically, the orthogo-

nal rotations are used to construct an intermediate matrix S, from
which matrices L̃ and R̃ of the updated matrix X̃ are derived based

on CD(S). UpdateCD recomputes the sign vectors from scratch each

time new data arrives and thus has the same quadratic runtime

complexity as SSV.

3 BACKGROUND AND PROBLEM
DEFINITION

3.1 Notations
We use bold upper-case letters to refer to matrices, regular font

upper-case letters to refer to vectors (rows and columns of matrices)

and lower-case letters to refer to elements of vectors/matrices. For

example,X is matrix,Xi∗ is the i-th row ofX,X∗i is the i-th column

of X and xi j is the j-th element of Xi∗. The isolated vectors that do

not belong to a matrix will be denoted with a capital letter, e.g., V .

A time series X = {(t1,v1), . . . , (tn,vn )} is a set of n temporal

values vi that are ordered according to their timestamps ti . In the

rest of the paper we omit the timestamps, since the values are

ordered, and write the time series X1 = {(0, 2), (1, 0), (2, 4)} as the

sequence X1 = [2, 0, 4]. A time series stream S is an unbounded (i.e.,

never ending) time series. We write X = [X∗1 |. . . |X∗m] (or Xn×m )

to denote an n ×m matrix havingm time series X∗j as columns and

n values for each time series as rows.

A sign vector Z ∈ {1, 1}n is a sequence [z1, . . . , zn] of n unary

elements, i.e., |zi |= 1 for i = {1, . . . ,n}. We use × for scalar multi-

plications and · for matrix multiplications. The symbol ∥∥ refers

to the l-2 norm of a vector. Assuming X = [x1, . . . , xn], then

∥X ∥=
√∑n

i=1(xi )
2
.

3.2 Background
As we mentioned earlier, ORBITS implements an incremental ver-

sion of the Centroid Decomposition (CD) technique (cf. Figure 1). In

what follows, we first describe CD and its most challenging part, the

maximizing sign vector. Then, we introduce our problem definition.

3.2.1 Definition. CD is a matrix decomposition technique that

decomposes an input n ×m matrix X into an n ×m loading matrix

L and an m × m relevance matrix R, such that X = L·RT . CD
is computed iteratively where at each iteration i (i ∈ [1,m]), a

new maximizing sign vector Zi (described below) is computed

and used to compute the i-th relevance and loading vectors, i.e.,

R∗i =
XT ·Zi
∥XT ·Zi ∥

and L∗i = X·R∗i . Next, a matrix reduction step is

applied in order to obtain the new relevance and loading vectors,

i.e., X = X − L∗i ·R
T
∗i . The decomposition returns m loading and

relevance vectors, of sizen andm respectively. Themost challenging

part of the CD of a matrix X is the computation of the vector Z .
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3.2.2 Maximizing Sign Vector. Given an n ×m matrix X, the maxi-
mizing sign vector Z is the sign vector that maximizes the centroid
value ∥XT ·Z ∥, i.e., Z satisfies the following equation:

arд max
Z ∈{1, 1}n

∥XT ·Z ∥. (1)

The SSV algorithm [20] is the most efficient batch solution to

solve Eq. (1). SSV is based on the derivation of a new and equivalent

optimization problem:

arд max
Z ∈{1, 1}n

∥XT ·Z ∥ ≡ arд max
Z ∈{1, 1}n

ZT ·(diag 0
(X·XT ) · Z )

where diag 0
() is an auxiliary function that sets the diagonal values

of a square matrix to 0, and X·XT is the correlation matrix in case

X is z-score normalized.

To solve the new optimization problem, the SSV algorithm starts

by initializing a column vector Z = [1, . . . , 1]T of length n, and
iteratively computes a weight vector V = diag 0

(X·XT ) · Z . The
elements of V are defined as:

vi = zi (zi × Xi∗ · S − (Xi∗ · (Xi∗)
T
)) (2)

where vi is the i-th element of V and S =

∑n
i=1(zi × (Xi∗)

T
).

Next, the signs of Z andV are compared, for each of their values

i ∈ {0, . . . ,n}. SSV iteratively flips the sign of zpos (the element

at position pos in Z ) from plus to minus, such that |vpos×zpos |
is maximized. Once Z and V have the same pairwise sign in all

positions, SSV terminates and returns the correct maximizing sign

vector. Note that SSV flips the sign of only one element at a time.

3.3 Problem Definition
LetX be an n×mmatrix ofm time series each of length n and let ∆X
be an r ×m increment to X with r ≪ n. Let CD(X) be the Centroid
Decomposition of X. Our goal is to infer CD(X + ∆X) directly from

CD(X) without recomputing it from scratch. Unlike incremental

linear algebra frameworks such as Linview [29], which compute

the change introduced by ∆X, our goal in this paper is to efficiently

compute the whole decomposition of X + ∆X.

4 CD OPTIMIZATION
Before introducing our incremental decomposition algorithm, we

present a new Anticipatory Sign Vector (ASV) technique to speed

up the sign vector search and, subsequently, the CD computation.

Our approach for optimizing the sign vector search consists of re-

ducing the number of weight vectors and thus reducing the number

of iterations to compute the sign vectors. ASV is based on an incre-

mental computation of weight vectors (Section 4.1) and makes use

of an anticipatory termination (Section 4.2).

4.1 Incremental Weight Vector
The optimization of sign vectors computation resorts to efficiently

finding weights vectors (cf. Eq. (2)). We propose an incremental

technique to compute weight vectors. This technique makes it

possible to anticipate the termination of the maximizing sign vector

search, which considerably reduces the number of iterations.

Definition 1 (Weight vectors are incremental). Let Z (k )

be Z at iteration k , P the set of positions flipped in Z (k ) and let vi be

the i-th weight value in V . For any two consecutive iterations of sign
vectors, the weight vectors are linearly dependent, i.e.,

v
(k+1)
i = v

(k )
i − 2 ×

∑
p∈P\{i }

(Xi∗ · X
T
p∗) (3)

In the case where only one sign is flipped, ∀i ∈ [1,n] \ {p}, Eq.(3)
can be rewritten as follows:

v
(k+1)
i = v

(k )
i − 2 × (Xi∗ · X

T
p∗) (4)

with v
(k+1)
p = v

(k )
p .

The incremental computation of weight vectors allows us to in-

clude a sequence of termination checks. Consequently, manyweight

vector computations do not have to be fully processed but can be

interrupted once a termination condition is met. This incremental

definition makes it possible to compute the correct maximizing sign

vectors but in fewer iterations (compared to the SSV technique [20]).

Note that in order to incrementally compute the weight vectors,

the first weight vector is computed using Eq. (2).

Example 1. To illustrate the incremental computation of the
weight vectors, consider an input matrix X that contains two time
series of five elements each, i.e.,

X =


5 1

10 5

9 4

4 6

2 4


.

For the sake of simplicity, we illustrate the case where only one
sign flip is performed. First, Z is initialized with 1s, i.e., Z (1)

=

{1, 1, 1, 1, 1}T and the initial weight vector is computed using Eq.(2)
to get V (1)

= { 54, 15, 23, 12, 84}T . Three elements of Z (1) have a
different sign from the corresponding elements in V (1) and among
them the element in the 5th position has the highest absolute value.
Using p = 5, the next weight vector is incrementally computed (using
Eq. (4)) as follows

v1 = 54 − 2 × (
[
5 1

]
×

[
2

4

]
) = 66

...

v5 = 84

i.e.,

Z (2)
=


1

1

1

1

1


and V (2)

=


66

95

91

20

84


.

4.2 Anticipatory Sign Vector
Anticipatory sign vector is a new algorithm to efficiently compute

the maximizing sign vector by including a sequence of termination

checks. After every weight vector has been found, an anticipatory

sign vector is computed, using the signs of the weight vector, and

the flipping process is evaluated. This process can therefore be

seen as a series of sign multi-flips where the final step returns the

maximizing sign vector.
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Definition 2 (Anticipatory sign vector). Let V (k ) be the
weight vector obtained at iteration k . The vector Z (k )

A where each

zi ∈ Z
(k )
A gets the same sign as vi ∈ V (k ) is called anticipatory sign

vector.

Lemma 1 (Anticipatory termination). Let Z (k )
A be the anticipa-

tory sign vector at iteration k and letV (k )
A be its corresponding weight

vector. We can safely terminate the flipping process if the pairwise
elements in Z (k )

A and V (k )
A have the same sign.

Proof. We prove that the anticipatory termination

yields the correct maximizing sign vector. This proof

follows from the definition of the anticipatory sign

vector. Since Z
(k )
A contains all possible sign flips, then

(Z
(k )
A )

T ·V
(k )
A ≥ (Z (k+1)

)
T ·V (k+1)

. In case Z
(k )
A = Z

(k+1)
A

(termination condition), then ̸∃ p s.t. (Z
(k+p)
A )

T ·V
(k+p)
A >

(Z (k )
)
T ·V (k )

. Subsequently, ∀p ∈ N, (Z
(k )
A )

T ·V
(k )
A =

max((Z (1)
)
T ·V (1), . . . , (Z (k )

)
T ·V (k ), . . . , (Z (k+p)

)
T ·V (k+p)

). Thus,

Z
(k )
A is the maximizing sign vector. □

The anticipatory sign vector is computed as outlined in Algo-

rithm 1. Given a matrix ofm time series and an initial sign vector

Z , we start by computing the initial weight vector V . We assume

for now that Z contains only 1s and we show in Section 5.1 how

to optimally initialize it. Next, the anticipatory sign vector is com-

puted (line 3) and the weight vectorVA is initialized with the weight

vector V (line 4). Then, we search for the set of positions of 1s in

ZA, called P , that have not been flipped yet (line 5). P is used to

determine the positions that need to be flipped in the weight vector.

And finally, VA is updated according to Eq (3) (lines 7-8). If no po-

sition is left to be flipped in ZA, i.e., pos = 0, then the anticipatory

sign vector is returned as the maximizing one. Otherwise, the next

weight vector is incrementally computed (lines 14-16). By using the

anticipatory technique, we are able to find the required sign flips

without going through the full sign flipping process.

Let us illustrate the anticipatory termination in the example

depicted in Figure 2. The upper part of the figure shows the standard

flipping process, SSV, while the lower part shows the anticipatory

termination, ASV. We consider the same input matrix X of our

running example. As illustrated in the upper part of the figure, we

start computing the weight values for each weight vector using

Eq. (2). The last element in the first weight vector V (1)
has the

smallest negative (and sign opposite) value and thus, the sign of the

element in position 5 in Z is flipped. The standard approach applies

the same procedure until no more elements need to be flipped (i.e.,

Z (4)
). Using ASV on the other hand, as illustrated in the lower part

of the figure, Z
(1)

A gets the same sign as the elements in V (1)
and

subsequently V
(1)

A is computed. The termination condition is met,

i.e., Z
(1)

A andV
(1)

A have the same pairwise element sign. Hence, ASV

may immediately stop the flipping process, whereas the standard

flipping process takes three additional iterations to terminate. As

illustrated in this example, ASV returns the same maximizing sign

vector while requiring less than half of the number of iterations.

Algorithm 1: ASV(X,Z )
Input :n ×m matrix X, sign vector Z
Output :maximizing sign vector Z ∈ [1, −1]n

1 V B Compute initial weight vector ; ▷ using Eq.(2)

2 repeat
3 ZA B {z∗i ∈ ZA | z

∗
i =

vi
|vi |
};

4 VA B V ;
5 P B {i | zi × z∗i = 1& zi ∈ Z & z∗i ∈ ZA };
6 foreach k ∈ P do
7 VA B VA − 2 × X · Xk∗ ; ▷ using Eq.(3)

8 v∗k B v∗k + 2 × Xk∗ · Xk∗
// v∗k is the k-th element of VA

9 pos B {i | v∗i = max |(v∗j ∈ VA) |& z∗j × v
∗
j < 0} ;

▷ Anticipatory termination

10 if pos = 0 then
11 p B pos ;
12 Z B ZA ;
13 else
14 p B {i | vi = max |(vj ∈ V ) |& zj × vj < 0};
15 zp B ( 1) × zp ;
16 V B Compute incremental weight vector;

17 until p = 0;
18 return Z ∈ [1, −1]n ;

X

2

4

-9

-10

5

-4

6

4

5

1

Z (1)

1

1

1

1

1

V (1)

-84

-12

23

15

-54

Z (2)

-1

1

1

1

1

V (2)

-84

20

91

95

-66
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Figure 2: Anticipatory Termination Example.

5 INCREMENTAL CENTROID
DECOMPOSITION

Our incremental Centroid Decomposition is a two-fold procedure.

First, it applies an incremental initialization of sign vectors, which

leverages the matrix similarity before and after each time series

update. Second, it uses the ASV algorithm to efficiently find the

corresponding sign vectors. We begin by introducing the initializa-

tion technique, before introducing our incremental algorithm and

proving its correctness. Finally, we present ORBITS, which uses the

incremental CD technique to recover blocks of missing values.

5.1 Sign Vector Initialization
The intuition behind our incremental initialization revolves around

the idea that matrices before and after each row update share similar

properties. This similarity reflects the temporal continuity in time

series. Our proposed approach leverages this matrix similarity to
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compute the maximizing sign vectors of the updated matrix using

the sign vectors cached from the previous CD computation.

Lemma 2 (Matrix Similarity). Let X̃ be the matrix resulting
from incrementing an n ×m matrix X with an r ×m matrix ∆X and
letAi∗ be the i-th row of ∆X. Let alsoZ ∈ { 1, 1}n and Z̃ ∈ { 1, 1}n+r

be two sign vectors. Then, the following holds:

max∥X̃T ·Z̃ ∥= max∥XT ·Z ∥+
r∑
i=1
∥Ai∗∥

Proof. The proof is given in Appendix A. □

Lemma 2 shows the relationship between the maximizing sign

vector before any row update of X and the one after the update. It

states that each update of the input matrix augments the centroid

values with the norm of the added data. We use the sign vector

computed before the update as input to find the maximizing sign

vector of the incremented matrix X̃. This initialization takes into

consideration the fact that the length of the initial sign vector

might not match the dimensions of X̃; the input matrix might have

grown since the last computation of the algorithm and might thus

require larger sign vectors than those already computed.We append

additional 1s (since the sign vectors consist of 1s and -1s only) at

the end of the sign vector until reaching the correct length. Note

that appending -1s yields the opposite sign vector.

We now use the matrix similarity property to prove that our

technique computes the correct sign vector, which guarantees an

accurate recovery.

Theorem 1 (Correctness). Let X̃ be the resulting matrix of
incrementing X with ∆X. Then, our technique returns the sign vector,
Z̃ , that maximizes ∥X̃T ·Z̃ ∥.

Proof. Using Z (1)
as Z at the first iteration of the algorithm,

we introduce the two following vectors. Let Z̃ be the resulting

sign vector obtained by batch CD (i.e., Z̃ (1)
= [1, . . . , 1]) and let

Z̃c be the resulting sign vector obtained by our technique with

(i.e., Z̃
(1)

c = [Zc , 1, . . . , 1]; Zc is the cached sign vector). Proving the

correctness of our technique boils down to proving that:

arд max
Z̃c ∈{ 1,1}(n+r )

∥X̃T ·Z̃c ∥ ≡ arд max
Z̃ ∈{ 1,1}(n+r )

∥X̃T ·Z̃ ∥

Let I be an identity matrix, D be a diagonal matrix containing

Z̃
(1)

c , i.e., D = diaд(Z̃
(1)

c ), and let X̃D be an (n + r ) ×m matrix s.t.

X̃TD = X̃T ·D. Let also Z̃D be an (n + r ) sign vector s.t Z̃D = D·Z̃c .
First, we prove the following:

arд max
Z̃c ∈{ 1,1}(n+r )

∥X̃T ·Z̃c ∥ ≡ arд max
Z̃D ∈{ 1,1}(n+r )

∥X̃TD ·Z̃D ∥

Since D is a signature matrix where the diagonal elements are

+1 or 1, then D·D = I. It follows:

arд max
Z̃c ∈{ 1,1}(n+r )

∥X̃T ·Z̃c ∥ ≡ arд max
Z̃c ∈{ 1,1}(n+r )

∥X̃T ·D·D·Z̃c ∥ (5)

By definition of D, we have dii × z
(1)

i = 1, ∀i ∈ {1, · · · , (n + r )}

where z
(1)

i ∈ Z̃
(1)

c , which yields D·Z̃ (1)

c = [1, . . . , 1]. Since Z̃
(1)

D =

D·Z̃ (1)

c , we replace the argument Z̃c by Z̃D and get

arд max
Z̃c ∈{ 1,1}(n+r )

∥X̃T ·D·D·Z̃c ∥ ≡ arд max
Z̃D ∈{ 1,1}(n+r )

∥(X̃T ·D)·Z̃D ∥

≡ arд max
Z̃D ∈{ 1,1}(n+r )

∥X̃TD ·Z̃D ∥ (6)

Putting (5) into (6), we get

arд max
Z̃c ∈{ 1,1}(n+r )

∥X̃T ·Z̃c ∥ ≡ arд max
Z̃D ∈{ 1,1}(n+r )

∥X̃TD ·Z̃D ∥ (7)

Next, we prove the following

arд max
Z̃ ∈{ 1,1}(n+r )

∥X̃T ·Z̃ ∥ ≡ arд max
Z̃D ∈{ 1,1}(n+r )

∥X̃TD ·Z̃D ∥

By definition of X̃D we have

X̃TD = X̃T ·D

=

[
X
∆X

]T
·

[
diaд(Zc ) 0n×r
0r×n Ir×r

]
=

[
(XT ·diaд(Zc )) ∆XT

]
(8)

From (8), we can see that X̃D is diaд(Zc )
T ·X incremented with

∆X. By applying Lemma 2 on X̃D we get

max∥X̃TD ·Z̃D ∥ = max∥XT ·diaд(Zc )·Z ∥+
r∑
i=1
∥Ai∗∥

= max∥XT ·Z ∥+
r∑
i=1
∥Ai∗∥ (9)

Using (9) and Lemma 2, we get

max∥X̃T ·Z̃ ∥ = max∥X̃TD ·Z̃D ∥ (10)

Since the two equations in (10) use the same initial maximizing

sign vector that contains only 1s. Thus, (10) can be rewritten as

follows:

arд max
Z̃ ∈{ 1,1}n

∥X̃T ·Z̃ ∥= arд max
Z̃D ∈{ 1,1}n

∥X̃TD ·Z̃D ∥ (11)

By transitivity of (7) and (11), we get

arд max
Z̃c ∈{ 1,1}n

∥X̃T ·Z̃c ∥≡ arд max
Z̃ ∈{ 1,1}n

∥X̃T ·Z̃ ∥

Therefore, our technique computes the same maximizing sign

vector as the batch CD, which concludes the proof. □

Example 2. To illustrate the incremental initialization after ap-
pending multiple rows, consider the input matrix of our running
example. The two time series have been sequentially appended with (0,
8) and (2,7), respectively. Figure 3 illustrates the initialization and the
computation of the maximizing sign vector. For the sake of simplicity,
we illustrate the flipping at the same time of one element only. To
compute the first maximizing sign vector of X̃, we use the sign vectors
computed before the update. The incremental initialization first takes
the (cached) sign vector Z1 as the initial sign vector. Then, it appends
two 1s at the end of each cached sign vector and starts flipping the
signs to find the maximizing sign vectors for X̃. At each iteration k
and for each sign vector, a pair of vectors Z̃ (k ) and Ṽ (k ) is computed.
The weight vectors V are incrementally computed according to Eq (3)

(similarly to Example 1).
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Figure 3: Incremental Sign Vectors.

Among all elements in Ṽ (1) which have a different sign from their
corresponding ones in Z̃ (1), the element in position 7 in Ṽ (1) has the
highest absolute value. Thus, in the first iteration, we flip the sign of
the element at position 7 in Z̃ (1) and we use the new sign vector Z̃ (2)

to compute Ṽ (2). Next, we find that the element at position 6 of Z̃ (2)

is the only element that has a different sign from its corresponding
element in Ṽ (2). Thus, in the second iteration, we flip the sign of the
element at position 6 in Z̃ (3) and we use the new sign vector Z̃ (3) to
compute Ṽ (3). Since all corresponding elements in Z̃ (3) and Ṽ (3) have
the same pairwise sign, the algorithm terminates and returns Z̃ (3)

as the first maximizing sign vector. We apply the same procedure to
compute the second maximizing sign vector.

5.2 Putting It All Together
We now present the InCD algorithm that implements our incremen-

tal solution. First, the sign vector used to initialize the search for

the maximizing sign vector is read from cache (line 2) and its size

is adjusted. Then, matrix X (which is already loaded in memory) is

appended with the stream of rows ∆X to form X̃. The latter is used
to initialize the weight vector (line 6). Next, we use our anticipatory

algorithm to compute the maximizing sign vector of X̃, which is

then written back to the cache (line 7).

Algorithm 2: InCD(∆X, r ,m)

Input :r ×m matrix of appended rows ∆X
Output :n ×m matrix L,m ×m matrix R

1 for i = 1 tom do
// incremental initialization

2 Zi B read sign vector of X from cache position i ;
3 while lenдth(Zi ) < n do
4 append 1 as row value to Zi ;

5 X̃ B increment X with ∆X;
// Anticipatory search

6 Z̃i B ASV (X̃, Zi );
7 cache(Z̃i , i );

// calculation of the decomposition

8 R∗i B X̃T ·Z̃
∥X̃T ·Z̃ ∥

; L∗i B X̃ · R∗i ;

9 X̃← X̃ − L∗i ·RT∗i ;

10 return L, R;

InCD reads and writes in-place to the same cache position yield-

ing a minimal cache footprint. Assuming that the input matrix X
consists of float-precision (4 byte) values, the cache size required

to store the maximizing sign vectors is only
1/16 of the memory

size required to store X, preventing any cache overflow. Finally, the
found maximizing sign vector is used to sequentially compute the

decomposition of X̃.
The runtime complexity of InCD is dominated by the call of

ASV(), which is performedm times. ASV uses the same definition

of weight vectors as the SSV algorithm and thus, an element that

has been flipped can not be flipped again (see Lemma 5 in [20]).

Subsequently, ASV requires 2n iterations to compute the weight

vectors (Lines 7-8 and Line 16 in ASV) and p iterations to switch

the sign values (Lines 14-16 in ASV), yielding O(pn) time. Since we

know from Lemma 2 that the change in the centroid values (and

consequently the sign vectors) is bounded by the norm of the added

rows (r), then the time complexity to compute p is O(r ). Also, as
we are dealing with long (streams) of time series, then n ≫m and

n ≫ r . Hence, to decompose X̃, InCD yields a time complexity of

O(n). At any time, there are exactlym sign vectors from the last

computation of InCD stored in cache. Thus, our algorithm keeps

in memorym sign vectors as binary arrays, as well as the updated

matrix X̃, each with an O(n) space complexity. Therefore, the total

space complexity is also O(n).
The following section introduces ORBITS, that relies on InCD

to recover missing values in an online fashion.

5.3 Recovery of Missing Values (ORBITS)

Algorithm 3: ORBITS (X, ∆X, T )

Input :n ×m input matrix X; r ×m matrix of appended rows
∆X; List of missing time points T

Output :Matrix with recovered values X̃′

1 X̃ B increment X with ∆X;
2 Linearly interpolate/extrapolate all missing values in X̃;
3 repeat
4 X̃′ B X̃;
5 compute reduction factor k of X̃;
6 Lk , Rk B InCD(∆X, r ,m − k );
7 X̃k B Lk · (Rk )T ;

// Update missing values

8 foreach (i , j ) ∈ T do
9 x̃i j := yi j ;

// yi j element of X̃k at timestamp i

10 until ∥X̃ − X̃′ ∥F̂ < ϵ ;
11 return X̃′;

Algorithm 3 describes the pseudocode of ORBITS. It takes as

input amatrixX incremented with∆X (bothmatrices might contain

a set of missing blocks, B) and a list T of pairs indicating the rows

and columns of the missing values in X. The recovery starts by

initializing the missing values in X̃ using either linear interpolation

or zero, depending on the position of the missing values in X̃. Then,
we apply a reduction to the decomposition of X̃ to return Lk and

Rk , which contain the firstm − k columns of L and R respectively.

We utilize the commonly used entropy method to dynamically set,

at each iteration, the reduction factor k . We use the same procedure

that applies to SVD [2], but we consider the centroid values instead

of the eigenvalues [21]. Next, the values in X̃ with positions in
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T are updated with their corresponding ones in X̃k = Lk · RTk .
The recovery process terminates if the difference in the relative

Frobenius norm ∥X̃ − X̃′∥F̂ =
√∑ |B |

i=1
∑m
j=1(x̃i j − x̃

′
i j )

2/|B | between

X̃′ and X̃ (where x̃i j ∈ X̃, x̃ ′i j ∈ X̃′ and |B| is the length of the

missing block) falls below a small threshold value ϵ . We empirically

set the value of ϵ to 10
6
, which yields the best accuracy/precision

trade-off. Since the entropy, used to find the reduction value k ,
minimizes the Frobenius norm as does the iterative process, then

our recovery algorithm quickly converges (see Figure 4 in [21]).

6 EXPERIMENTAL EVALUATION
In this section, we report our experimental results. We aim to eval-

uate: (1) the performance of ORBITS against the state-of-the-art

online recovery techniques and (2) the impact of our sign vector

computation on ORBITS’s performance.

6.1 Setup and Datasets
We rewrote all algorithms in C++, except for MRNN (inextrica-

ble from Python), using an advanced linear algebra library called

Armadillo [33]. We re-engineered the original implementations,

which led to gains in performance across all the algorithms – in one

case making an algorithm (SPIRIT) 110x faster. We implemented

all recovery algorithms in a non-distributed fashion as they rely on

incremental computations, which are not easy to parallelize.

All the experiments were ran on a Linux machine with a 3.4 GHz

Intel Core i7 and 128GB of RAM. All code and data (and additional

experiments omitted for brevity) are publicly available
1
. Our evalu-

ation was performed on real-world time series from a broad range

of applications and which cover a wide range of characteristics and

sizes (cf. Table 1). We used the following datasets:

• Soccer. This dataset was introduced in the DEBS challenge

2013 [28] and contains the position of players during a foot-

ball match. The data originates from sensors located near

the players’ shoes and the goal keeper hands. This dataset

provides values recorded at very a high rate, i.e., the tracking

frequency is equal to 200Hz yielding 15’000 position events

per second. Soccer time series are bursty with lots of outliers.

• MotionSense. This dataset includes time series data gen-

erated by accelerometer and gyroscope sensors (attitude,

gravity, userAcceleration, and rotationRate) [24]. The sen-

sors measure different human activities at a high sampling

rate of 50Hz using an iPhone 6s kept in the users’ front pock-

ets. The motion time series are non-periodic, but exhibit

partial trend similarities.

• BAFU. This dataset consists of water discharge time series

provided by the BundesAmt Für Umwelt (BAFU) [1], the

Swiss Federal Office for the Environment, collected from

different Swiss rivers. The frequency of measurements is

high to track the fast-changing water pressure during wet

seasons. This dataset contains periodic time series where

some of them are shifted in time.

• Gas. Gas concentration collected from a smart gas delivery

platform facility situated at the ChemoSignals Laboratory at

the University of California in San Diego [32]. This dataset

1
https://github.com/eXascaleInfolab/orbits

is used to measure the impact of sustainable green infras-

tructures and contains different gases that present mixed

correlation (positive/negative and high/low).

The BAFU and Gas datasets were used in a recent benchmark

that evaluates missing values recovery techniques [22]. The values

of the observations are stored as 4-byte floating numbers while the

sign vectors are binary arrays. All the time series have been z-score
normalized.

Table 1: Description of time series.

Name TS length # of TS Main features

Gas 1000 100 mixed correlations

Motion 10’000 20 non-periodic, local similarity

BAFU 50’000 10 periodic, time-shifts

Soccer 500’000 10 sudden change, anomalies

(a) Gas dataset

(b) Motion dataset

(c) BAFU dataset

(d) Soccer dataset

Figure 4: Three sample time series from each dataset.

6.2 Recovery of Missing Values
In this section, we evaluate ORBITS under a variety of recovery

scenarios. We compare its accuracy and efficiency against the state

of the art in streaming recovery techniques, i.e., OGDImpute [3],

SAGE [5], pcaMME [27], SPIRIT [31], TKCM [36] and MRNN [38].

For the parametric techniques, we use the parameters recommended

by the authors. We report the results over three runs. To measure

the accuracy, we adopt the most commonly used measure in this
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field [25]: the root mean square error (RMSE) between the original

blocks and the recovered ones, i.e.,

RMSE =

√
1

T

∑
t ∈T

(xt − x̃t )
2

where T is the set of missing values, xt is the original value and x̃t
is the recovered value.

6.2.1 Accuracy. We first consider the simplest case where a single

time series contains only one missing block. To simulate an online

recovery, we set the missing block to appear at the tip of a randomly

chosen series and we vary the size of the missing block from 10%

to 80% starting from the end of the series. We keep the length and

number of the time series to their maximum per dataset. Figure 5

shows the RMSE results when varying the missing rate. We exclude

MRNN and TKCM from the soccer experiment as both algorithms

take more than 15 hours to complete one tick.
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(a) Gas dataset.
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(b) Motion dataset. ORBITS
and SPIRIT are overlapping.
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(c) BAFU dataset.
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(d) Soccer dataset. MRNN and
TKCM are excluded.

Figure 5: Accuracy comparison with increasing missing
block size.

First, we observe that ORBITS outperforms in general all recov-

ery baselines and yields 25% and 30% RMSE improvement compared

to SPIRIT and SAGE, respectively. The only exception is on the

Motion dataset, where our technique achieves a similar recovery

as SPIRIT. This is explained by the fact that this dataset presents

local similar trends to which both techniques respond in a similar

fashion. The hybrid principal components computed by SPIRIT in

this case carry similar information to the loading vectors computed

by ORBITS. Second, in the datasets with a small number of series,

i.e, Motion, BAFU and Soccer, as expected, the RMSE of ORBITS

increases with the missing rate. Surprisingly, in the Gas dataset,

the RMSE shows a bell shape as the missing rate grows. This is

explained by the fact that in the presence of a high number of series,

larger missing blocks require a higher number of iterations which,

in turn, yield better recovered values.

Next, we evaluate the recovery accuracy on different datasets

when increasing the dataset size. We assume one incomplete series

with a missing block of size 10% of the maximum series’ length.

When the sequence length varies, the number of series is set to

10, while the sequence length is set to 1k values when the number

of series varies. We use the average RMSE values across differ-

ent datasets, with standard deviation as the confidence intervals.

Figure 6 depicts the results.
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(b) Avg. RMSE with varying #
of TS.

Figure 6: Accuracy comparison with increasing time series
length and number.

We observe that most techniques take advantage of using longer

series to achieve a lower error (cf. Figure 6a). The improvement

is more noticeable when we vary the length either from 1k to 5k

or from 5k to 10k, depending on the technique. This is expected,

because using more data helps these techniques to better capture

the main features of the data. We observe also that ORBITS achieves

the lowest standard deviation as its RMSE is steady across datasets.

In the experiments of Figure 6b, we observe that all techniques

take advantage of using more time series per dataset. The results

show also that ORBITS outperforms all techniques in all datasets.

The only exception is when the number of time series is equal to

five where MRNN achieves a slightly lower RMSE than ORBITS

(0.59 vs 0.63). This is explained by the fact that, for such a low

number of time series, MRNN produces a recovery that mimics the

average, which turns out to yield a low error. However, compared

to ORBITS, the recovery of MRNN does not preserve the shape of

the missing block (as we will show later in this section).

In the previous set of experiments, we assumed that a missing

block occurs in a single series in a dataset. In real-world applications,

however, more than one sensor might break during multiple time

periods. This yields multiple incomplete time series with one or

more missing blocks each.

In the experiments in Figure 7, we evaluate the case of mul-

tiple incomplete time series where each has one missing block

at the end (of size of 10% of the series). We keep the length and

number of series to their maximum per dataset and we vary the

number of incomplete series. TKCM and SPIRIT cannot handle

more than one incomplete series and are hence discarded (cf. Sec-

tion 2). SAGE requires every row of the input matrix to contain at

least k non-missing values, where k is the reduction factor. Thus,

this technique can process only a certain number of incomplete
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(d) Soccer dataset.

Figure 7: Accuracy with increasing number of incomplete series (single missing block case).
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Figure 8: Accuracy with increasing number of incomplete series (MCAR case).

series in the dataset. We exclude MRNN from the soccer experiment

for the same reason explained before, completion time.

The results show that our technique achieves the lowest RMSE

when varying the number of incomplete series. As expected, the

RMSE of ORBITS increases with the number of incomplete series.

This is explained by the fact that more incomplete series means

more values to recover, which in turn yields a higher error. We

note that the last point in the plot corresponds to a blackout, i.e,

when all time series lose data at the same time. In this case, ORBITS

terminates in few iterations, incurring a high RMSE. The recovery

of ORBITS in the case of blackout is the same as pcaMMe because

both techniques use similar initialization of the missing blocks.

Next, we consider the most frequent scenario where each incom-

plete time series has multiple missing blocks (of the total size of

10% per series). We set the missing blocks to appear completely at

random (MCAR), i.e., missing blocks can be overlapping, disjoint

or both at the same time. We keep the length and number of series

to their maximum per dataset and vary the number of incomplete

series. The results are depicted in Figure 8.

We observe that ORBITS achieves the lowest RMSE in all datasets

and is on average between 30% (cf. Figure 8d) and 60% (cf. Figure 8a)

more accurate than its closest competitor. Surprisingly, increasing

the number of series did not always increase the RMSE of ORBITS.

The reason is that the MCAR scenario yields relatively small blocks,

which poses no challenge to our technique.

In addition to the RMSE analysis, we also compare the accuracy

of the evaluated techniques to reconstruct the shape of the missing

blocks. We compute the correlation between the original blocks and

the recovered ones using Pearson and Spearman coefficients [11].

The twometrics capture different trends. The former captures linear

relationships (e.g, aligned trends) while the latter captures non-

linear relationships (e.g, shifted trends). The two metrics range

between 1 and -1, where 1 stands for perfect positive correlation,

-1 for perfect opposite correlation, and 0 for no correlation.
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Figure 9: Shape reconstruction.

Figure 9 depicts the results of the correlation experiment where

each time series has missing MCAR multiblocks of a total size of

10% per series. The results show that ORBITS achieves the highest

Pearson and Spearman correlation values, preserving the shape of

the original block. This is attributed to theweight vectors, computed
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during the decomposition, which embed the correlation across the

input series. We can also observe that only ORBITS and SAGE

have on par Pearson and Spearman results: time shifts do not affect

the accuracy of the recovery of both techniques. The remaining

techniques are sensitive to non-linear relationships (e.g., OGD and

MRNN have a close to zero Spearman correlation on the BAFU

dataset). All techniques achieve their lowest correlation on the

motion dataset, because motion time series contain a high number

of irregular fluctuations.

6.2.2 Efficiency. We now evaluate the efficiency of the recovery

techniques by measuring the runtime while varying the sequence

length and number. We report the time on a log scale, since the

results widely vary among algorithms.

In Figure 10 we incrementally increase the stream length, using

all the series from the dataset. We consider the MCAR scenario on

the BAFU and the Soccer datasets, which have the longest time

series, 50k and 500k respectively.

The results show that ORBITS and pcaMME are the two most

efficient techniques and are orders of magnitude faster than the

remaining techniques. pcaMME relies on an approximation of the

principal components yielding a low runtime. However, this ap-

proximation incurs a high recovery error (as shown earlier). Unlike

pcaMME, our technique relies on a fast incremental computation of

the centroid values rendering our recovery very efficient. The incre-

mental computation computes the correct decomposition, which

explains the low recovery error. ORBITS achieves a linear time

complexity and takes 1.4 sec to recover 10 time series each with

500k (cf. Figure 10b).
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(b) Soccer dataset(n =500K).

Figure 10: Efficiency with increasing series length.

In the experiments of Figure 11, we gradually increase the num-

ber of time series in a dataset while keeping their length fixed at

their maximum. We choose the Gas and the Motion datasets for the

same reason as above (their size). We observe the same trends as in

Figure 10. ORBITS stands out among the faster peers when using

a few series per dataset. Our technique achieves a sub-linear com-

plexity with the number of series. The efficiency of our technique is

explained by the careful computation of the appropriate reduction

factor. At each iteration, ORBITS finds the reduction factor that

yields the best accuracy/precision trade-off. For larger number of

series (e.g., 100), the runtime difference between our technique and

the PCA-based ones becomes indistinguishable. For a large number

of series, the centroid vectors (ORBITS) and the principal compo-

nents (pcaMMe and SAGE) require a similar number of iterations

to be computed and, subsequently, the same runtime.
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Figure 11: Efficiency with increasing series number.

Next, we evaluate the impact of series’ number on the recovery

runtime using large-scale datasets. We exclude MRNN from this

experiment for the same reason mentioned earlier. We augment

both the BAFU and Soccer datasets with more time series. To do so,

we first generate synthetic time series that have similar properties

as the existing ones using the Weighted_DBA technique [12]. Next,

we alter the time series with noise following a Gaussian distribu-

tion N (0, 0.2) and with exponential smoothing. This allows us to

obtain time series that exhibit similar shape but with some local

dissimilarities. Finally, we apply a full permutation of blocks of ten

series. The results are depicted in Figure 12.

We observe a similar trend as in Figure 11, ORBITS stands apart

among the rest of the techniques when using a few series (cf. Fig-

ures 12a and 12b). The runtime difference between ORBITS and

pcaMME becomes, however, indistinguishable as the number of

series increases. SAGE becomes slower because SGD is more ex-

pensive to compute on larger matrices. It is worth to notice that

the efficiency of pcaMME comes with the cost of a low accuracy.
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Figure 12: Efficiencywith increasing the number of series on
augmented datasets.

Finally, we evaluate the impact of the anticipatory termination

and the incremental initialization on ORBITS’s performance. We

measure the efficiency of different sign vector strategies and report

the average runtime by varying the sequence length and number.

We consider the following algorithms: SSV (classical sign vector),

SSVi (SSV with incremental initialization), ASV (anticipatory sign

vector with 1s as initialization), and ASVi (ASV with incremental

initialization). Figure 13 depicts the results.

We observe that ASV has a substantial impact on ORBITS’s per-

formance and improves its runtime on average by 120x compared

to using SSV (cf. Figures 13a and 13b). The incremental initializa-

tion further improves SSV and ASV by 1.7x and 1.3x, respectively.
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We observe similar results when varying the missing rate. The

good performance of ASV is attributed to its ability to leverage two

inherent properties of time series data: the spatial continuity (simi-

larity between time series) and the temporal continuity (similarity

between the existing data and the appended one). In the unlikely

case where the two conditions do not hold at the same time, ASV

would not early terminate and would require the same number of

iterations as SSV. The incremental initialization would, however,

still improve the runtime of ORBITS by up to 2x.
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Figure 13: AVG runtime of different sign vector strategies.

7 CONCLUSIONS
In this paper, we introduced an incremental matrix decomposition

technique to recover missing blocks in time series streams. Our

algorithm leverages the matrix similarity before and after streams

update to reduce the runtime complexity from quadratic to linear.

The complexity reduction does not affect the recovery accuracy, as

our technique computes an exact decomposition.

We reimplemented all the well-known online recovery algo-

rithms using the same framework and subjected them to a broad

mix of real-world time series datasets and recovery scenarios. The

empirical evaluation demonstrates that our incremental algorithm

significantly outperforms the state of the art both in accuracy and

efficiency. Also, we provided proofs that show the scalability and

the correctness of our algorithm.

In future work, we plan to investigate a holistic approach to re-

pair time series. Another promising direction is to investigate novel

parallelizable recovery techniques that use distributed frameworks.
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APPENDIX
A. Matrix Similarity

Proof. Let 0 be a matrix of zeros, Y be an (n + r ) ×m matrix

consisting of X appended with 0r×m and let M be an (n + r ) ×m
matrix consisting of 0n×m incremented with ∆X. Then, we have :

X̃ =

[
X
∆X

]
=

[
X

0r×m

]
+

[
0n×m
∆X

]

=


X
01∗

.

.

.

0r∗


+


0n×m
A1∗

.

.

.

Ar∗


= Y +M (12)

By transposing both sides of (12), multiplying each side by Z̃
and applying the l-2 norm, we get

∥X̃T ·Z̃ ∥ = ∥(Y +M)
T ·Z̃ ∥

= ∥YT ·Z̃ +MT ·Z̃ ∥ (13)

The computation of the right hand side of (13) gives

YT ·Z̃ =

[
XT 0T

1∗
· · · 0Tr∗

]
·


Z

z̃n+1
.
.
.

z̃n+r


= XT ·Z + z̃n+1×0

T
1∗ + · · · + z̃n+r×0

T
r∗

= XT ·Z (14)

and

MT ·Z̃ =


0n×m
A1∗

.

.

.

Ar∗


T

·


z̃1
.
.
.

z̃n+r


=

n∑
i=1

z̃i × 0i∗ + z̃n+1×A
T
1∗ + · · · + z̃n+r×A

T
r∗

= z̃n+1×A
T
1∗ + · · · + z̃n+r×A

T
r∗ . (15)

Putting (14) and (15) into (13) gives

∥X̃T ·Z̃ ∥= ∥XT ·Z + z̃n+1×A
T
i∗ + · · · + z̃n+r×A

T
r∗∥ (16)

Equation (16) is valid for all Z̃ and Z including the maximizing

one, i.e., Zmax . It follows:

∥X̃T ·Z̃max ∥ = ∥XT ·Zmax + z̃n+1×A
T
i∗ + · · · + z̃n+r×A

T
r∗∥ (17)

The application of time series temporal continuity to (17) gives

∥X̃T ·Z̃max ∥= ∥XT ·Zmax ∥+
r∑
i=1
∥z̃n+i×A

T
i∗∥ (18)

Since Z̃max is the maximizing vector of ∥X̃T ·Z̃ ∥, and Zmax is

the maximizing sign vector of ∥XT ·Z ∥, then we get

max∥X̃T ·Z̃ ∥ = max∥XT ·Z ∥+
r∑
i=1
∥z̃n+i×A

T
i∗∥

We have zn+i = ±1, hence ∀i ∈ {1, · · · , r }, ∥z̃n+i×A
T
i∗∥= ∥A

T
i∗∥

and ∥ATi∗∥= ∥Ai∗∥. Therefore, we have

max∥X̃T ·Z̃ ∥= max∥XT ·Z ∥+
r∑
i=1
∥Ai∗∥

which concludes the proof. □
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