Agora: Living with XML and Relational

[oana Manolescu, Daniela Florescu, Donald Kossmann, Florian Xhumari, Dan Olteanu®

{loana.Manolescu, Daniela.Florescu, Florian.Xhumari, Dan.Olteanu}@inria.fr

kossmann@informatik.tu-muenchen.de

1 Introduction

There has been a significant body of research in the last
fifteen years dedicated to integration of data from vari-
ous repositories, exhibiting heterogeneous formats, and
sometimes access restrictions; for a survey of such sys-
tems see, for example, [12]. The main technical issues to
be addressed in a mediation system are: how to seman-
tically unify heterogeneous data formats and schemas,
and how to use query processing capabilities of partic-
ipant data sites and that of the mediator in order to
answer a particular query.

Systems like the Information Manifold, and Garlic
from IBM have chosen the relational and respectively
the object-oriented model as the integration model.
Given the popularity of XML as a data description for-
mat, more and more DBMS manufacturers have added
to their systems the capability to export relational or
object-oriented data to an XML format; other data for-
mats (flat data files, regular HTML, PowerPoint pre-
sentations, annotated text) are also easily converted to
XML. XML has become somehow a de facto standard
for information exchange.

While XML has clear advantages as a description for-
mat, state-of-the-art query optimization and query pro-
cessing algorithms for data integration still rely on the
relational model. This is the case, for example, of the
existing algorithms for answering queries using views [9].
Given the richness of the semistructured model (and the
peculiarities of XML as a data model), algorithms of
equivalent efficiency and ease-of-use, but designed for
XML, are more difficult to find. Recent projects like [1]
and [4] put XML in the center of query processing, de-
scribing data sources in XML and evaluating queries over

*The permanent address of this author is the CS De-
partment of the Polytechnic University of Bucharest, Roma-
nia. This work was done while the author was in INRIA
Rocquencourt

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the VLDB copyright notice
and the title of the publication and its date appear, and no-
tice 1s given that copying is by permission of the Very Large
Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 26th VLDB Conference,
Cairo, Egypt, 2000.

623

a tree-structured model; optimization is ignored or re-
duced to a few simple heuristics. As a consequence, per-
formance might degrade whenever an XML data source
joins a set of relational sources, that we were able to
integrate efficiently.

The Agora System. The particularity of our data
integration system is that it employs XML as the user
interface format, while all data flows inside the query
processor consist, of relational tuples. Queries are posed
using an XML query language and the results are for-
matted as XML documents, making the underlying re-
lational engine transparent to the user.

Agora is implementated on top of the Le Select data
integration system [8], developed in the Caravel project,
at INRIA Rocquencourt. Our goal in designing Agora
was to investigate the feasibility and the attainable per-
formance of a system that processes XML queries based
on relational technology. Besides being intelectually in-
teresting, we find this approach particularly tempting,
given the strength acquired in the research and indus-
trial communities in the field of query processing for re-
lational data. We demonstrate the particular techniques
that we have implemented in Agora to complement Le
Select’s functionalities, namely:

¢ how to define a generic, relational, virtual integra-
tion schema, that describes the content of XML
documents

e how to translate queries from a query language ded-
icated to XML to the relational integration schema,
and how to rewrite the resulting query using view
definitions that describe the XML documents

o how query optimization extends to cope with access
pattern limitations, when constructing query plans
over heterogeneous sources

e how a text index (implemented by a few relational
tables) improves performance and helps formulat-
ing user queries over the semistructured part of the
data.

2 Adding XML Value into a Rela-
tional Data Integration System

We will now briefly describe the architecture of the Le
Select relational integration system, that provides the
relational framework that Agora is based on; we will then

4| XML-based GUI Ii

QUILT]query

Query
Translato

relational query {(generic schema;

Query
Rewriter
- XML
ewritten| query Composer
Query

View definition
repository

Text index for
keyword search

Function Relational | [DOM wrapper] XML query wrapper |
wrapper wrapper = =
X y L. e (O b B
/A - i
y=fn(x) e

Figure 1: General architecture of the Agora system.

detail our technical contributions. Agora, as well as Le
Select, 1s meant to function on several servers running
identical code, each server owning and sharing data and
programs. The complete architecture of a single Agora
server is depicted in Figure 1. The components inherited
from Le Select are detailed in 2.1 and are shown in the
figure in thin lines; the novel components that we add
are described under 2.4 and are shown with bold lines
and fonts. Solid lines describe data flow during query
processing; dotted lines represent the flow of statistic
informations provided to the optimizer by the data and
program wrappers.

2.1 Le Select

This system offers a framework for publishing and query-
ing relational data and programs. A network of con-
nected servers share their data and programs and collab-
orate in answering users queries posed against any server.
Relational data and programs are published via specific
wrappers. For some frequent data formats, like native re-
lational and formatted files data, pre-defined wrappers
can be easily configured. Query optimization is done on
the site the query, while query execution is distributed
among the sites. Wrappers export statistics about their
data, like cardinalities, available access patterns, and,
for functions, cost of executing them. They also export
information about their query processing capabilities, in
terms of evaluation of arithmetic expressions, capacity
of performing a join, an equality test etc.

The query optimizer of the query site consults the
wrapper capabilities and constructs an execution plan
that distributes the work to be done among the wrappers
of the data and program sources, their corresponding
sites, and the site of the query. The optimizer is cost-
based; repartitioning of tasks on different locations is
made with the goal of minimizing the global cost (an im-
portant part of which is the cost of data transfers). The
optimizer has a built-in treatment of access patterns,
in order to deal with access restrictions and with func-
tions, as described in [7]; this makes Le Select a suitable

624

candidate for extension to XML. The execution engine
contains an efficient implementation of bind joins, that
minimizes data transfers, if the size of the attribute(s)
to be passed across the join is important. More details
on its functioning can be found under [8].

2.2 Motivating Example.

We consider integrating nutritional information (what
food ingredients are recommended/forbidden for people
with a certain ailment) with patient medical records and
a collection of cooking recipes, to help a nutritional ex-
pert advise his patients on how and what to eat. Inde-
pendent of the native storage, all information is available
via an XML interface.

The nutritional information is stored in a relational
database; the simplified relational schema consists of two
tables:

Recommendations(illness, recFood)
Interdictions(illness, intFood)

The relational data is available to the data integration
system as a virtual XML source. We use for this pur-
pose a mapping like the one described in the Xperanto
project [3]. Hence, this data will appear to the user as
the following (virtual) XML file:

<Recommendations>
<tuple>
<illness>some illness</illness>
<recFood>some food</recFood>
< /tuple>

< /Recommendations>
<Interdictions>
<tuple>
<illness>some illness</illness>
<intFood>some food</intFood>
< /tuple>

<Interdictions>

The structure of the patients medical records tends
to be irregular, and these records are stored in a propri-
etary format. The logical interface that they export to
the data integration system is also based on XML, as in
the example shown below, and the only access methods
it supports are based on the Document Object Model
(DOM) API:

<patient_rec patientID="1000" sex="M">
<pers_rec>
<dob>12/6/1965< /dob>
<illness>Calcium deficiency< /illness>
<ilness>Pneumonia in 1969< /illness>
< /pers_rec>
< /patient_rec>

Finally, the cooking recipes can be obtained from a
website that only allows searching its database by key-
word search over the ingredient field of the recipes. As
an example, a query searching for recipes using salmon
as an ingredient produces as a result the following XML
document:

<recipe reclD="epicurious124” >
<plate>" Potato and salmon casserole” < /plate>
<ingredient qty="140z" >pink salmon, drained</>
<ingredient qty="2 1/2 pounds” >russet potatoes</>
<ingredient qty="1/2cup” >chopped green onions</ >

<ingredient qty="2 pc” >large eggs</>
<directions>Preheat oven to 400F. Separate salmon>
into chunks...</>
</recipe>
A data integration query can extract and combine
data from all three sources. As stated before, the query
interface visible to the users, and, subsequently, the
query language are completely based on XML. In the
absence of a standard XML query language, we will use
in the demonstration (a subset of) the Quilt query lan-
guage [10]. To get a first glimpse at the language, con-
sider the following query, asking for the medical records
of all patients whose personal records contain ”illness”
and ”calcium defficiency”:
for $p in document(” medicalRecords.xml")//patient_rec
where contains($p,” calcium deficiency”) and
contains($p,"illness")
return $p

In a Quilt query, the for clause binds variable by iter-
ating over collections of XML nodes, the where clause
specifies selection conditions (much like in traditional
query languages like OQL and SQL), and the return
clause constructs the result (this can involve construc-
tion of element hierarchies etc).

2.3 Modeling XML data sources

Generic Relational Schema. The particularity of our
system resides in the fact that even if the external data
model (i.e. as seen by the user formulating the queries)
is XML, the internal data model (i.e. used for the data
flowing inside the execution engine) is still relational.
Hence, the first step to acomplish is to map the XML
view of the data into the relational model. XML data
sources are modeled in our system by a generic rela-
tional schema [5], which is independent of any particu-
lar XML data instance. The tables that we propose to
add are shown in figure 2.3. The tables Element, Elem-
Content, Attribute, ElemAttribute, Tag and Value fully
describe the contents of the XML elements. The Value
table stores all the string values found in the document,
either attribute values or contents of text nodes.
Describing Access and Storage by Views. The
generic relational schema is used to logically describe
the content of data sources; in order to specify the actual
storage and the access patterns supported by the sources,
Agora allows for defining views with binding patterns
(in a manner similar to that described in [11]. The view
definitions can be arbitrarily complex, and by consulting
them, the query processor is informed of the alternative
ways to access the data, as well as the costs involved.
As an example, let us consider the DOM method call
retrieving all elements with a specific tag within a given
document:

{y} = x.getElementByName(z)

This API call can be modeled as a view over the
generic relational schema. Note that since the document
and the tag must be known in order to make this call,
there are inherent constraints on consulting this view,
that we model by the view’s binding pattern (note that
the document and the tag are bound variables in the
view definition):

625

V(xb,yf ,zb) -Elem Doc(y,xb) ,Element(y,t) ,Tag(t,zb)

The advantage of the logical modelisation of XML by
a collection of generic relational tables is twofold. First,
these tables can be added to any relational mediation
system, regardless of its mechanism for defining a global
schema (or even if there is no such schema). Second,
arbitrarily complex structures and physical access meth-
ods can be easily described as views with binding pat-
terns over this generic schema, as in the example we
have shown; thus, the system can take full advantage of
optimized access paths, materialized views etc.

2.4 Query Processing Methodology.

We sketch here the main steps of a query scenario with
our system.

Formulating the Quilt query. There are two ways
of posing a query to the system. Fxpert users that
are familiar with the data structure can write full Quilt
queries, while novice users can use the GUI that al-
lows for browsing the data, and progressively refine their
query, exclusively via the GUI. In the case of our sam-
ple application, a novice user would have to discover,
for example, the structure of recipe and Recomandation
elements and pose the join condition between the two.

Translating the Quilt query into SQL. The Quilt
query will be then translated into a set of correlated,
parameterized SQL queries over the relational generic
schema. "These queries are equivalent with the origi-
nal Quilt query; instead of producing as result an XML
document they produce the equivalent instance of the
generic relational schema. For example, the sample Quilt
query shown in section 2.2 can be rewritten into the fol-

lowing equivalent one’:

calciumDefPatient(patRec):-Document(doclD,)
ElemDoc(docID, patRec),ElemDoc(doclD,e2),
Element(el,t1), Tag(tl,” patient_rec”),
ElemContent(el,e2,null,_ ,Element(e2,t2),
Tag(t2,” pers_rec”),contains(e2,” calcium” depth,tag),
contains(e2,” deficiency” ,depth,tag),
contains(el,”illness” depth2,tag?).
The support for this translation phase is an underlying
algebraic model close to the one described in [2].
Query rewriting using views. The relational
query obtained in the previous step is then rewritten into
an equivalent relational query which uses only the views
modeling the real access patterns to the native XML
data, as well as to the actual access path to relational
data (that was referred to under its XML interface in
the query). We use a simple rewriting query using views
algorithm which produces equivalent rewritings of the
relational query, with respect to bag semantics[9].
Rewriting the previous query using the view V thus

defined would yield:

Result(patRec):-Document(doclD,),
V(doclID,patRec,” patient_rec”),
ElemContent(el,e2,null,_),V(doclID,e2,” persrec”),
contains(e2,” calcium” ,depth,tag),
contains(e2,” deficiency” ,depth,tag).

IWe use Datalog instead of SQL for simplicity.

Document (doeID, docURL) Element (elID, taglD)

Value (valID, value) FElemContent (parentID, childID, vallD, index)
Tag (tagID, vallD) ElemAttribute (elID, attID, vallD)

Attribute (attID, vallD, type, isRequired) | ElemDoc (elemID, docID)

Word (wordID, Word) Contains (ellD, wordID, depth, tag)

Figure 2: Generic relational schema

Support for Keyword Search. We now explain
the purpose of the last two generic tables, Word and
Contains. The user might not know the particular struc-
ture of the documents or might have only some partial
knowledge about it. For example, when querying the
medical records for calcium-deficient patients, she might
ignore if names of the maladies are to be found under
illness tag, nested within the consultation tag, or directly
under the pers_rec tag.

A text index at the granularity of XML elements can
be used to retrieve all the XML elements that contain the
words "calcium deficiency”, at a specific nesting depth,
in the content (as opposed to in the data tags). This
index can be used as a help for novice users to ”browse”
the information content available, or as a filter for more
structured queries. For the purpose of query optimiza-
tion and execution, this type of index will be modeled as
a relational table (see 2.3) with binding patterns limita-
tions. More details on the usage and possible implemen-
tations of such an XML index can be found in [6].

Query Optimization and Execution. The rewrit-
ten query is optimized in a cost-based manner, follow-
ing the optimization principles of LeSelect, that we de-
scribed in 2.1; see also [7]. The result of the execution is
a set of tuples.

Assembling the Result in XML. The tuples thus
obtained are then grouped and organized into XML doc-
uments, that are presented to the user. We complete the
illusion of an ”all-XML” system.

3 Implementation and Scenarios

All the implementation (Le Select as well as the top layer
for query rewriting, full-text indexing etc.) is done in
Java; we use Oracle 8i as the DBMS that stores the text
index and the index on metadata. The demonstration
will be shown on a PC under Windows N'T'. Our sce-
nario is close to the motivating example. We will use
real life data collections, namely several collections of
cooking recipes available on the Web (that we will repli-
cate on the demonstration machine for the purpose of
the demo), a relational source of nutritional information,
and a set of XML medical files (corrupted for the sake
of confidentiality). We plan to show:

e how to register the relational and XML data sources
on several distict servers, and how to create in-
stances of pre-defined wrappers for these sources;

e how to pose queries on one server, with the help of
the GUI interface; how the full-text index is used
to help the user discover the structure of available
data and reformulate queries;

e how query rewriting operates using the available
view definitions that describe XML and relational

626

sources, by tracing the rewriting, optimization and
execution of the same query;

e what is the influence of wrapper configuration and
data localization on the final distributed execution
of the query.

e what are the performances that can be achieved by
the system.

The demonstration will build a case for what we con-
sider to be an interesting, solid, and efficient alternative
to pure-XMIL mediation.

References

[1] C. K. Baru, A. Gupta, B. Ludascher, R. Marciano,
Y. Papakonstantinou, P. Velikhov, and V. Chu. XMIL-
based information mediation with MIX. In Proc. of ACM
SIGMOD Conf. on Management of Data, pages 597—
599, 1999.

[2] C.Beeriand Y. Tzaban. SAL: An algebra for semistruc-
tured data and XML. In Proceedings of the Interna-
tional Workshop on the Web and Databases, Philadel-
phia, Pennsylvania, 1999.

[3] M. Carey, D. Florescu, Z. Ives, Y. Lu, J. Shanmugasun-
daram, E. Shekita, and S. Subramanian. XPERANTO:
Publishing object-relational data as XML. In WebDB
Workshop, in conj. with ACM Sigmod, 2000.

[4] V. Cristophides, S. Cluet, and J. Simeon. On wrapping
query languages and efficient XML integration. In Proc.
of ACM SIGMOD Conf. on Management of Data, 2000.

[5] D. Florescu and D. Kossmann. Storing and querying
XML data using an RDMBS. In IEEE Data Engineering
Bulletin, volume 22(3), pages 27-34, 1999.

[6] D.Florescu, D. Kossmann, and I. Manolescu. Integrating
keyword search into XML query processing. In Proc. of
the Int. WWW Conf., 2000.

[7] D. Florescu, A. Levy, I. Manolescu, and D. Suciu. Query
optimization in the presence of limited access patterns.
In Proc. of ACM SIGMOD Conf. on Management of
Data, pages 311-322, 1999.

[8] http://www-caravel.inria.fr/Eaction_Le_Select.html.

[9] A. Y. Levy. Answering queries using views: a
survey. submitted to publication, available at
http://www.cs.washington.edu/homes/alon/.

[10] J. Robie, D. Chamberlin, and D. Florescu. The Quilt
query language for semistructured data and XML. In
Proceedings of the International Workshop on the Web
and Databases, Dallas, Texas, 2000.

[11] O. G. Tsatalos, M. H. Solomon, and Y. E. Ioannidis. The
GMAP: A versatile tool for physical data independence.
In Proc. of the Int. Conf. on Very Large Data Bases
(VLDB), pages 367-378, Santiago, Chile, 1994.

[12] J. D. Ullman. Information integration using logical
views. In Proc. of the Int. Conf. on Database Theory
(ICDT), Delphi, Greece, 1997.

