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Abstract

With the development of flash memory technology, flash-based solid state drives (SSDs) are gradually
used in more and more devices and applications. In addition to characteristics of flash memory itself,
a unique characteristic of SSDs, namely internal parallelism, should also be considered to improve
performance of SSDs-based DBMSs, especially query processing. In this paper, we first describe the
internal architecture of SSDs and the resulting internal parallelism of SSDs. In the second part, we
present a parallel table scan operator, ParaScan, that exploits the internal parallelism of SSDs. Based
on ParaScan, we then propose a parallel hash join operator, ParaHashJoin, and a parallel aggregation
model, ParaAggr. Experimental results show that ParaScan, ParaHashJoin and ParaAggr on SSDs
significantly outperform traditional table scan, hash join and aggregation. Furthermore, sort, as an
important basic operator for other complex operators, can also be redesigned based on ParaScan. We
design a parallel sort algorithm, ParaSort and then present a parallel ParaSort operator in the third
part. Looking forward, database query processing by exploiting internal parallelism of SSDs, can be
generalized to other kinds of SSDs with similar internal parallel characteristics.

1 Introduction

As flash memory-based solid state drives (SSDs) improve in price, capacity, reliability and performance, more
and more devices and applications gradually adopt SSDs as secondary storage media. Not only do SSDs pro-
vide faster access speed, lower power consumption, lighter weight, smaller size and better shock resistance than
HDDs, they also have rich internal parallelism that can be used to improve I/O bandwidth[1, 2]. Query pro-
cessing of HDDs-based DBMSs are mainly designed according to HDDs’ mechanical limitations, so they may
benefit less or even nothing when SSDs simply replace HDDs for OLAP and OLTP[3]. Beside the characteris-
tics of flash memory, the internal parallelism of SSDs need to be considered when designing query processing
algorithms for SSDs-based DBMSs including scan, join, aggregation, sort, etc[4].

This paper explores how to optimize scan, join, aggregation and sort operators by exploiting the internal
parallelism of SSDs. We review related work in section 2. In section 3, we outline how to detect the internal
parallel architecture of SSDs. And then in section 4, we present parallel table scan ParaScan, parallel hash join
ParaHashJoin and parallel aggregation ParaAgg and verify their efficiency by running them on HDD and SSDs.
And then we propose a parallel sort ParaSort in section 5. Finally, we offer conclusions in section 6.
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2 Related Work

To achieve higher capacity and better I/O performance, most SSDs adopt a multi-channel and multi-way archi-
tecture for connecting flash chips with a flash memory controller. The flash memory controller can access flash
chips in parallel[5]. Therefore, it is necessary to understand the impact of this parallelism inside SSDs on the
performance of SSDs-based DBMSs. Chen[2] studied how to uncover internal parallelism features of SSDs by
detailing an abstract parallel model of SSDs and methods of detecting SSDs. Roh[6] created a new I/O request
method in the OS that can be used to generate parallel I/Os to access SSDs by applications. Based on this, the
authors designed a new B+-tree variant called PIO B-tree. Hu[7] analyzed the performance impact and interplay
of advanced commands, physical-page allocation and data granularity for internal parallelism of SSDs. Accord-
ing to internal parallelism architecture of SSDs, Park[8] designed parallel-aware request processing including
request rescheduling and dynamic write request mapping.

Myers[9] and Lee[10] measured the performance of various traditional database algorithms on SSDs. For
flash-based DBMSs, a number of query processing algorithms have been designed for flash characteristics, es-
pecially excellent random read algorithms[11, 12, 13, 14, 15, 16, 17]. Myers[9] improved the sort-merge join al-
gorithm by optimizing the storage of intermediate results. Graefe[12, 13] focused on speeding up select, project
and join operators based on a new page layout, PAX, for SSDs-based DBMSs. Simultaneously, they proposed
FlashScan, FlashJoin and RARE-join algorithms and implemented them in PostgreSQL. Liang[14] optimized a
join algorithm for column-based DBMSs by reading only needed columns. Li[15, 16, 17] improved no-index
join algorithms by reducing intermediate results and optimizing the fetching strategy. Different from previous
studies, we try to optimize scan, aggregation, join and sort operators by exploiting the internal parallelism of
SSDs.

3 Internal Parallelism of SSD

3.1 Internal Parallel Architecture
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Figure 1: Inside SSD

The internal architecture of SSDs includes the host interface,
SSD controller, RAM buffer and flash memory packages[8]. SSDs
connect to the host by a host interface that can be SATA, SAS or
PCIe. The SSD controller executes I/O requests and issues com-
mands to flash memory packages via a flash controller. The SSD
controller is also in charge of managing the RAM buffer which
holds the address mapping table of the flash translation layer
(FTL) and other metadata such as ECC etc. SSDs implement
internal parallelism by adopting multiple channels that can op-
erate independently and simultaneously. Each channel is shared
by a set of flash memory packages, on which operations can also
be interleaved, so the bus utilization can be optimized[5, 18]. As shown in[8], channel-level parallelism and
package-level parallelism are two typical levels of parallelism. Such rich internal parallelism provides us an
opportunity to improve the performance of applications on SSDs.

3.2 Detecting SSD Internals

Before detecting and utilizing the internal parallelism, we must ensure that SSDs have native command queuing
(NCQ) mechanisms and AHCI (Advanced Host Controller Interface) mode must be enabled for the host[19].
Multi-threaded processing can be used to produce multiple parallel I/Os. Furthermore, it is necessary to know
some key architectural features of SSDs such as the number of channels for setting a proper concurrency level
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and avoiding over-parallelization. However, it is hard to obtain such information because these details are often
regarded as critical intellectual property of SSD manufacturers. Therefore, we try to detect two representative
SSDs as shown in Table 1. Base on publicly available documents, Chen[2] characterized internal organization
of SSD as an abstract model including chunk size and the number of domains. A chunk is a unit of data that
is continuously allocated within one domain. A domain is a set of flash memories that share a specific set of
resources. Guided by the model and the detecting method[2], we obtain chunk size and the number of domains
of SSD-S and SSD-M as shown in Table 1 (detailed detecting results are in [21]).

Table 1: Detecting Results

Manufacturer Flash Capacity Page Size Interface NCQ Chunk Size Domains No.

SSD-S Intel SLC 32 GB 4 KB SATA 32 4 KB 20

SSD-M Intel MLC 160 GB 4 KB SATA 32 16 KB 20

4 ParaScan, ParaHashJoin and ParaAggr

4.1 ParaScan: Parallel Table Scan
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Figure 2: ParaScan

Most SSDs adopt RAID-0 data storage as shown in Fig. 2. In
SSDs-based database systems, records within a chunk are organized
according to traditional row-based page layout. One chunk is one
logical data page with an unique logical address. According to log-
ical addresses, all chunks of a relational table are uniformly placed
in all domains. All striped chunks of a relational table are mostly
placed in logical consecutive regions in a file. On the assumption of
20 domains, the chunk whose logical address is 20*n (n=0,1,2...),
will be in 1st domain, the chunk whose logical address is 20*n+1
(n=0,1,2...), will be in 2nd domain, and so on. Striped domains
provide interleaved accesses to reduce sharing of data-bus channels.
For example, chunk 0 and chunk 20 in domain 0 cannot be accessed
simultaneously, but chunk 0 in domain 0 and chunk 1 in domain 1
can be read in parallel. This provides an opportunity to distribute
different data accesses to different domains.

Based on this, we propose a parallel table scan called ParaScan to improve the efficiency of table scan. As
shown in Fig. 2, every domain scan reads data chunks one by one from corresponding domain and then puts them
into its own ScanBuffer. Multiple domain scan operations can be executed independently and simultaneously.
All domain scan and all ScanBuffers compose multi-domain parallel scan named ParaScan. Because chunks
are mostly placed in logical consecutive regions, we suggest that all data pages of a relational table should be
uniformly distributed into different domains as much as possible to make full use of the internal parallelism of
SSDs. Data size in one domain usually exceed ScanBuffer size, so it is necessary to replace processed data
pages in ScanBuffer with unprocessed data pages when executing domain scan.

We implement ParaScan by a multi-thread processing technique. Each domain scan corresponds to one
thread. The performance of ParaScan depends not only on the number of domains but also on the number of
physical threads supported by CPU and NCQ supported by SSDs. We ran ParaScan on an HP PC with Ubuntu
12.10, 8G DDR3 memory, a 500G 7400rpm SATA3 Seagate HDD, Intel Core i5-2400 @ 3.10GHz processor
with four cores supporting four physical threads and two SSDs as shown in Table 1. The data set was the
ORDERS table(150 million rows, 2G) taken from TPC-H benchmark. Fig. 3 compares the performance of
scans while varying the number of threads. Traditional table scan is ParaScan implemented by a single thread.
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Figure 3: ParaScan
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Figure 4: ParaHashJoin
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Figure 5: ParaAggr

Experimental results show that ParaScan isn’t well suited for HDD but can exploit the internal parallelism of
SSDs (detailed experimental results are in [20, 21]).

4.2 ParaHashJoin: Parallel Hash Join
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Figure 6: ParaHashJoin

Based on ParaScan, we present a parallel hash join oper-
ator called ParaHashJoin. It consists of three phases, Para-
Hash, MiniJoin and Fetch, as shown in Fig. 6. ParaHash
hashes records of different domains in parallel to exploit
the internal parallelism of SSDs. The output of ParaHash
only contains the row-id (RID) and the join attribute of ev-
ery record to reduce the amount of data processed in Mini-
Join. A RID consists of page id and in-page offset of a
record. Finally, Fetch retrieves the needed attributes by RIDs. Because the output of ParaHash and MiniJoin
are incomplete results, ParaHashJoin uses less non-volatile storage to materialize intermediate results. However,
multi-threaded processing and random reads in ParaHashJoin will cost more CPU. But experimental results
show that this tradeoff is worthwhile.
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Figure 7: ParaHash

As shown in Fig. 7, each ParaHash instance calculates hash val-
ues of records in its ScanBuffer and then adds their join attribute
values and RIDs into specific hash buckets. Each hash bucket must
maintain a lightweight lock to solve conflicts between hash threads.
Hash function is hash value = join attr&(B − 1). If the re-
sults of ParaHash on table R can be maintained in memory, we only
need to do ParaScan on table S after ParaScan and ParaHash on ta-
ble R. And then according to join attribute value of each record of
table S in ScanBuffers, MiniJoin directly probe hash buckets of table R and produce join results in the form
{join attr,RIDR, RIDS}. Otherwise, MiniJoin gets one hash buckets of table R and corresponding hash
bucket of table S into memory to generate join results, and processes other hash buckets in this way.

Because results of MiniJoin are incomplete join results, according to RID in join results, Fetch randomly
reads necessary attribute values to generate final join results. Designing efficient fetching strategy is very im-
portant for minimizing I/Os of reading data pages, but we adopt a sort-based fetching strategy inspired by
DigestJoin[15, 16, 17] to avoid reloading pages as much as possible as shown in [20]. Before fetching data
pages, we sort results of MiniJoin, so needed data pages can be loaded in order. The sort will cost more CPU
but we show that this tradeoff is worthwhile in experimental results.

Implementation technique and running platform of ParaHashJoin are the same as ParaScan. In addition to
the ORDERS table, the input data set includes the CUSTOMER table(1.5 million rows, 256M) obtained from
TPC-H benchmark. In Fig. 4, TradHashJoin adopts traditional hash join and table scan. NewHashJoin adopts
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traditional hash join and ParaScan. We mainly consider equi-join of CUSTOMER and ORDERS on a single
attribute. Join selectivity is 1%. The number of threads in ParaScan and ParaHash is fixed at 20. In this paper, we
only present experimental results on SSD-S. Fig. 4 evaluate the impact of memory size on three join algorithms
as memory size varied from 2MB to 256MB. Both TradHashJoin and NewHashJoin require 256M to execute in
one pass while ParaHashJoin only need 16M. Fig. 4 shows that, in the best case, ParaHashJoin is 1-1.5 x faster
than NewHashJoin and TradHashJoin (detailed experimental results are in [20]). Our experimental results show
that it is worthwhile to pay the extra CPU cost for multi-threaded processing and random reads.

4.3 ParaAggr: Parallel Aggregation
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Figure 8: ParaAggr

Based on ParaScan, we propose a parallel aggregation algorithm
called ParaAggr for implementing some simple aggregation such as
sum, max, min, count, average etc. ParaAggr consists of two phase,
SubAggr and TolAggr, as shown in Fig. 8. Each SubAggr instance
only processes records in its ScanBuffer and all SubAggr run in par-
allel. Either every computing result can be forwardly put to To-
lAggr, or TolAggr forwardly get all computing reseults produced in
SubAggr. And then TolAggr calculates all results of SubAggr. The
calculations in SubAggr phase and TolAggr phase may be same or different. For example, count operator can
be divided into count in SubAggr and summation in TolAggr(others are shown in [21]).

By exploiting multi-threaded processing we implemented ParaAggr including sum, max, min, count, aver-
age. We ran ParaAggr on a Lenovo K46A with Fedora 14, 2G DDR3 memory, a 500G 5400rpm SATA3 Seagate
HDD, Intel Core i5 @450MHZ processor with double cores supporting four physical threads, two SSDs as
shown in Table 1 and another SSD as shown in [21]. The data set is the CUSTOMER table(870 thousand rows,
1GB) taken from the TPC-C benchmark. Fig. 5 compares the performance of aggregations while varying the
number of SubAggr threads. Traditional aggregation is ParaAggr with 1 SubAggr thread. As shown in Fig. 5,
in the best case, ParaAggr is 3-4 x faster than traditional aggregation. Other experimental results are detailed in
[21].

5 ParaSort: Parallel Sort for Up-level Operators

Sort is an important operator for up-level operators such as join, group by, having, limit, sub-query etc. In this
section, we proposed Parallel Sort Model called ParaSort and present Parallel ParaSort.

5.1 Parallel Sort Model
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Figure 9: ParaSort

We now sketch a parallel sort algorithm called ParaSort based on
ParaScan. As show in Fig. 9, ParaSort consists of two phases, Sub-
Sort and Fetch. SubSort is in charge of getting sorted attribute values
and RIDs of all records and then sorting them according to the sort
key. SubSort outputs ordered results the sort key and RID and then
Fetch randomly reads required attribute values required by up-level
operators. The fetching strategy can utilize the strategy mentioned
in 4.2. As the critical component of ParaSort, SubSort can be imple-
mented according to traditional sort method to sort any size data, but
SubSort can’t run until the end of ParaScan if ScanBuffers can store all records; otherwise, SubSort will carry
out as long as ScanBuffers is full. What’s more, SubSort can be implemented in parallel when sorted attribute
values and RIDs of all records fit in memory.

16



5.2 Parallel ParaSort
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Figure 10: Parallel ParaSort

When memory is enough, we discuss a parallel Para-
Sort by implementing SubSort in parallel. As shown in Fig.
10. Every SubSort gets sorted keys and RIDs of data records
from corresponding ScanBuffer and then sorts them accord-
ing to sort key. All SubSorts run in parallel. Results of
one SubSort is ordered but results of all SubSorts is semi-
ordered. TolSort merges semi-ordered results of all Sub-
Sorts to obtain ordered results. Fetch retrieves the necessary
attribute values for up-level operators by ordered results of
TolSort. The fetching strategy can also use the strategy mentioned in 4.2.

6 Conclusions

In addition to excellent performance characteristics of flash memory, there is rich parallelism inside SSDs.
Previous researchers mainly focus on optimizing algorithms by exploiting properties of flash memory, but the
internal parallelism of SSDs also needs to be considered when optimizing SSDs-based DBMSs, especially query
processing.

By exploiting the rich internal parallelism of SSDs, we presented ParaScan and then proposed ParaHashJoin
and ParaAggr based on ParaScan. Experimental results showed that we were able to speed up performance of
ParaScan, ParaHashJoin and ParaAggr by > 1x. And for complex operators, we designed ParaSort. In other
words, many database operators can be sped up by exploiting the internal parallelism of SSD. Future research
will show whether this is feasible, effective and efficient and how it affect industrial OLAP and OLTP systems.
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