|
For Full-Text PDF, please login, if you are a member of IEICE,
or go to Pay Per View on menu list, if you are a nonmember of IEICE.
|
Parameterization of High-Dimensional Perfect Sequences over a Composition Algebra over R
Takao MAEDA Yodai WATANABE Takafumi HAYASHI
Publication
IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences
Vol.E98-A
No.12
pp.2439-2445 Publication Date: 2015/12/01 Online ISSN: 1745-1337
DOI: 10.1587/transfun.E98.A.2439 Type of Manuscript: Special Section PAPER (Special Section on Information Theory and Its Applications) Category: Sequence Keyword: correlation function, perfect sequence, high-dimensional sequence, parameterization, Fourier transform, convolution,
Full Text: PDF(537.1KB)>>
Summary:
To analyze the structure of a set of high-dimensional perfect sequences over a composition algebra over R, we developed the theory of Fourier transforms of the set of such sequences. We define the discrete cosine transform and the discrete sine transform, and we show that there exists a relationship between these transforms and a convolution of sequences. By applying this property to a set of perfect sequences, we obtain a parameterization theorem. Using this theorem, we show the equivalence between the left perfectness and right perfectness of sequences. For sequences of real numbers, we obtain the parameterization without restrictions on the parameters.
|
open access publishing via
|
|
|
|
|
|
|
|