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We describe the design of a robust parser for identifying and extracting biomolec-
ular relations from the biomedical literature. Separate automata over distinct
syntactic domains were developed for extraction of nominal-based relational infor-
mation versus verbal-based relations. This allowed us to optimize the grammars
separately for each module, regardless of any specific relation resulting in signifi-
cantly better performance. A unique feature of this system is the use of text-based
anaphora resolution to enhance the results of argument binding in relational ex-
traction. We demonstrate the performance of our system on inhibition-relations,
and present our initial results measured against an annotated text used as a gold
standard for evaluation purposes. The results represent a significant improvement
over previously published results on extracting such relations from Medline: Pre-
cision was 90 %, Recall 57 %, and Partial Recall 22%. These results demonstrate
the effectiveness of a corpus-based linguistic approach to information extraction
over Medline.

1 Introduction

A vast amount of new biological information is made available in electronic
form on a regular basis. Medline contains over 10 million abstracts, and ap-
proximately 40,000 new abstracts are added each month. Although there are
growing numbers of sequence databases and other hand-constructed databases,
most new information is unstructured text in Medline and full-text journals.
This information, which is coming to be referred to as the “biobibliome”, is a
repository of biomedical knowledge that is larger and faster growing than the
human genome sequence itself (Stapley and Benoit??). In this age of genomics
and proteomics, the ability to process this natural language based information
computationally is becoming increasingly important. It is now not uncommon
for biologists to study protein complexes and pathways composed of dozens
of dynamically interacting proteins. With the recent advent of high sensitiv-
ity methods to rapidly identify components of multiprotein complexes (Link
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et all®), the extent of this complexity is likely to grow exponentially in the
next few years. For this reason, the automatic extraction of information from
Medline articles and abstracts will play an increasingly critical role in aiding
in research and speeding up the discovery process.

To begin addressing this problem computationally, we have begun develop-
ing advanced natural language tools for the automated extraction of structured
information from biomedical texts as part of a project we call MEDSTRACT
(www.medstract.org). Previously we have reported a strategy for the auto-
matic extraction and compilation of biomedical acronyms call Acromed. Here
we utilize this and other NLP techniques to extract reported relationships
between biological entities using the inhibit relation as an example.

The use of computational linguistic techniques for automatically extract-
ing information from biological texts (in particular from Medline) has received
increasing attention lately (e.g., Tagaki et al?®, Sekimizu et al?!, Hishiki et al,
Andrade et all, Blasche et al2, Craven et al?, Rindfleisch et al. 2, Pustejovsky
et al!”). Much of the work reported on thus far has focused on specific protein-
protein interactions, and in particular, on predicates implicated in binding ac-
tivities (cf. Sekimizu et al?!, Blasche et al2, and Rindfleisch et al. 2°). Craven
et al? use a relational learning algorithm to induce pattern-matching rules on
shallow parsed trees for protein-location relations. Although the precision is
quite high (92%), their recall is quite low: (21%). The data set they examine
is the YPD corpus (Yeast Protein Database). Rindfleisch et al? use shallow
parsing combined with UMLS semantic types to extract binding relations from
Medline. Their results gave precision of 73% and recall of 51%. Proux et all4
also use shallow parsing and domain knowledge (gene type identification) to
extract gene-gene interactions from the Flybase corpus. This work is the first
we know to pose the problem of retrieving partial x relation information (only
one argument of the relation.) Their results were: Precision 81%, Recall 44%
and Partial recall (they call it weak interaction) 26%. Finally, Sekimizu et
al2! apply shallow parsing using a general purpose parser (EngCC) to retrieve
assertions corresponding to the most frequent set of verbs from Medline ab-
stracts. Their average estimated precision was 73%, for identifying the right
subject and object in the relation. No recall is given because no gold standard
was created. Partial projected precision for some relations considered in other
works mentioned here are: (interact: 83.3%, bind: 72%, inhibit: 83.3%). The
results from these experiments are summarized in Table 1 below.

Within information extraction (IE) tasks, entity extraction is typically
viewed as a procedure distinct from relation extraction. For example, in enter-
prise IE systems, products, dates, and company names are easily distinguished
from ventures, buy-outs, and product release relations. For most ordinary us-
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Lab Relation | Type Constraints | Data Set | Precision | Recall | P. Recall
Crav? | Location Protein YPD 92% 21% -
Rind?° | binding UMLS MEDLINE 73% 51% -
Proux!* | interact gene Flybase 81% 44% 26%
Seik?! | several - MEDLINE 73% ? -

Table 1: Previous Relation Extraction Results

age of language, however, and for Medline in particular, the syntax of the sub-
language maps imperfectly to basic semantic distinctions, such as entities and
relations. That is, not all entity-looking phrases are entity types; specifically,
relations may be expressed as nominalizations (phosphorylation of GAP by the
PDGF receptor) as well as verbal predications (X inhibits/phosphorylates Y).
Things become even more complicated for IE when true entities embed rela-
tional information by virtue of their semantics, such as the relational entities
the Ron receptor and Tissue inhibitors of metalloproteinases. The difficulty in
this example is that such entities are proteins and also incorporate relational
semantic information; “x inhibits metalloproteinase”. Such considerations de-
mand more sophisticated linguistic processing than is typically employed for TE
tasks in enterprise deployments, and certainly richer than the statistical tech-
niques that have received attention in the bicinformatics community recently
(cf. Jenssen et al®, Marcotte et all?).

2 Design and Methodology

In this paper, we address the problems mentioned above by exploiting a com-
bination of lexical semantic techniques and corpus analytics (Pustejovsky et
al’® 16). In the section below, we briefly describe this methodology as employed
in the Medline domain for targeted information extraction tasks.

Semantic Automata: We begin by constructing simple semantic automata
from the UMLS database for the relations we are interested in targeting (cf.
Humphreys et al”). For example, for inhibit-relations and regulate-relations,
there are four basic selectional patterns (or frames), corresponding to the two
options available for each of the two arguments to the relation. These frames
are summarized in the table below.

The family of syntactic forms for a lexical item and the mappings to se-
mantic values are part of the typing information encoded within a word, as
seeded by UMLS and stored in the lexicon. It should be noted that because
the syntactic typing of inhibit and regulate is transitive, additional seman-
tic automata corresponding to the syntactic passive forms are automatically




Pacific Symposium on Biocomputing 7:362-373 (2002)

| ARG-TYPES | Obj = Bio-entity | Obj = Process |
Subj = Bio-entity (entity, entity) (entity,process)
Subj = Process (process,entity) (process,process)

Table 2: Selection Patterns

generated. Furthermore, nominal and verbal predicative forms have distinct
syntactic distributions and different semantic bindings; hence, they map to
different semantic automata, as we see in Section 3.3 below.

Corpus Analytics: We then apply corpus analytics over a subset of Medline
corresponding to the target relations, e.g., inhibit. Corpus analytics involves
several steps (cf. Pustejovsky and Hanks'®):

i. Create concordances over the predicates (verbal or nominal) associated
with the semantic automata;

ii. Automatically cluster complementation patterns of the relation over the
concordances, to propose grammar patterns;

iii. Semi-automatically verify and amend grammar rules to ensure correct-
ness and completeness of the patterns for the automata;

For this experiment, we focused on only expressions corresponding to the
inhibit-relation. The methodology used and the subsequent grammar devel-
oped, however, applies to any binary relation with similar semantic typing
restrictions. By limiting our case study to this relation set, we were able to
create a gold standard corpus with which to evaluate our algorithm. Examples
of the concordances used to derive grammar patterns are shown below.
1. A peptide representing the carboxyl-terminal tail of the met
receptor inhibits kinase activity.

2. Whereas phosphorylation of the IRK by ATP is inhibited by
the nonhydrolyzable competitor adenylyl-imidodiphosphate.

3. The Met tail peptide inhibits the closely related Ron receptor but does not af-
fect ...

A set of 2,000 abstracts was first selected from the Medline database,
identified from the concordance constructed around verbal forms and nominal
forms of the stem inhibit. This set of abstracts was used as a development
corpus to optimize each of the components of our system. ;From this develop-
ment corpus, a subset of 500 abstracts was used as a core for manual mark-up
by domain-expert biologists. In the development-test cycle, a complete month
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of Medline abstracts was used for robustness test? We then preprocessed and
tagged 500 abstracts of the development corpus , with the following results:
There were 497 verbal instances of inhibit (inhibited, inhibit and inhibits); There
were 342 instances of nominal forms (187 correspond to inhibition, and 155 in-
stances to inhibitor/s. All the other forms were either gerundives instances (13
of inhibiting) or instances of compound forms, e.g., bisphosphonate-inhibited (7
instances). Given this distribution and some independent linguistic consider-
ations to be mentioned later, we focused primarily on the development of the
grammar of verbal predication.

3 A Description of the system

3.1 General Architecture

As mentioned above, the task of recognizing and extracting inhibit-relations
between biological entities and processes is part of a much larger research effort
underway at Brandeis and Tufts, called MEDSTRACT. The goal of MEDSTRACT
is to provide tools and resources to biomedical researchers for better search,
retrieval, and navigation of new facts and products within the biological lit-
eratures. An illustration of the relevant portion of the architecture is shown
below in Figure 1.

3.2 Preprocessing

After identifying the corresponding fields of the Medline documents, titles and
abstracts are tokenized. Tokens are then tagged, using a Brill-like rule-based
decision procedure. A lexicon with single or multiple tags for each word is used.
If the word in question has multiple tags in the lexicon, then it is tested to
match a set of disambiguation rules. If it matches any, the corresponding tag
is assigned. Otherwise the most probable tag is assigned. The source lexicons
used were the lexicon produced by Brill’s tagger and the corresponding lexicon
for the UMLS Thesaurus (Humphreys et al’), with its corresponding syntactic
information. The tagged elements were then stemmed with a version of the
Porter stemmer. The information corresponding to the string, its syntactic
tag, and the corresponding stem is stored in a preterminal object.

bWe are currently developing gold standards for other inhibit-relations, and testing the
robustness of the algorithm on these sets; e.g., block, regulate, stimulate, etc.
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Figure 1: System Architecture

3.8  Type Identification

Our system uses one of two resources for dynamic semantic typing of the input:
(a) the UMLS Thesaurus can be exploited to assign types to nouns or noun
phrases according to the UMLS type ontology; (b) the GO ontology is also
available as a type resource for specific genomic data. For the present experi-
ment, however, neither resource was used, since we were focused primarily on
evaluating the construction and deployment of syntactic patterns from seman-
tic automata. Integration of semantic tags into the parsing procedure is under
development. Furthermore, we wanted to test the robustness of syntactic tech-
niques independently of typing information. The UMLS types were however
used in the anaphora resolution task, as one of the parameters in ranking the
possible antecedents list.

3.4 Shallow Parsing Module

The construction of shallow parse trees involves a cascade of five separate
automata, each focusing on a distinct family of grammatical constructions.
This is very much in the spirit of Hindlé, McDonald! and Pustejovsky et
al!®. These can be distinguished as follows:

Level I: Noun chunking, groups Proper Nouns and common nouns. It
also groups some double prepositions, and compound relational terms.
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Level II: Creates noun phrase chunks without prepositional phrases
(including adjectives and determiners). It also creates relational terms
chunks (verbal chunks, including some adjectival and adverbial terms).

Level III: Creates chunks for coordinated nouns or noun chunks and
coordinated verbal chunks or verbs.

Level IV: Creates chunks of noun phrases with of-prepositional phrase.

Level V: Identification of subordinate clauses chunks.

3.5 Relation Identification Module

As mentioned briefly above, the concordances derived for inhibit-relations dis-
tinguished the verbal forms from the nominal forms. Because of their distinct
argument binding and complementation behaviors, we decided to develop sep-
arate automata for each form, and then merge the results in a subsequent
database population phase. In fact, however, there is reason to believe that
keeping the results extracted from the two modules separate is actually de-
sirable for database purposes as well; this is due in large part to the degree
of relevance associated with ‘given’ versus ‘new’ information as presented in
documents (cf. Pustejovsky et all?).
The relation identification module was built independent of the specifics of
how the verb inhibit and associated nominals behave in Medline. Rather, this
module was defined and designed to work on the output of the shallow pars-
ing module to identify argument and relational chunks, independently of any
specific lexical item. The extraction of a particular relation (e.g. inhibit or reg-
ulate), is accomplished by specifying stems that denote the required relation.
Sentence-level parsing identifies the following constructions:
SENTENCE-LEVEL RELATION IDENTIFICATION
Main predicate relational chunk in the sentence.
Subject nominal chunk (Nominal chunks at 4th level above)

Object nominal chunks.

Ll

Subordinate clauses (identifying also antecedents of relative clauses, and main
predicates of object clauses).

5. Sentential coordination.
It has also the capability of identifying:
1. Preverbal adjuncts.

2. Post Object target adjuncts (ambiguous between adjuncts and nominal modi-
fiers, PP attatchment ambiguity)
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In the nominal domain, head nouns may typically carry relational semanctis;
for example the noun inhibitor can refer to both the relation as well as the
biological entity itself, the parsing decisions involved for these forms are dis-
tinct from the verbal form. The constructions and relations identified by the
nominal-level module are given below:

NOMINAL-LEVEL RELATION IDENTIFICATION
1. Nominal chunks of Level IV.
2. prepositional relational chunks.

Note that relations inside Level IV are decomposed first, i.e., of-prepositional
relations. Our next step will be to add reduced relative clauses and gerundive
relations to this parser module.

3.6 Anaphora Resolution Module

Identifying the arguments of the relations may not be enough for identifying
the actual entities involved in the relation. Quite often anaphors (e.g., i,
they) and sortal anaphoric noun phrases (e.g. the protein, both enzymes) are
the actual arguments to a relation, but unfortunately are not specific enough
to establish a unique reference to an entity or process. Although the use of
anaphoric terms seems to be relatively infrequent in Medline abstracts, the use
of sortal anaphors is quite prevalent. This module focuses on the resolution
of biologically relevant sortal terms (i.e., proteins, genes, and bio-processes),
as well as pronominal anaphors, including third person pronouns and reflexive
pronouns. The initial data source for this resolution algorithm is the pre-
processed Medline text (shallow parsed), where each noun phrase (NP) has
been identified and annotated with a syntactic tag and semantic tag(s). The
anaphora resolution algorithm examines the text sequentially and represents
each sentence as a “frame environment”. Every NP within a sentence is a
potential referent and is made into an entity with a unique ID and syntac-
tic/semantic tags, and added to the sentence environment in which it occurs.
If an NP is identified as an anaphor, then the resolution algorithm will attempt
to resolve it by traversing through the sentence environments from the most
recent (which contains the anaphor), back to the first sentence of the abstract,
and selecting the NP among the sentences that has the highest compatibility
with the anaphor as the antecedent (cf. Kennedy and Boguraev’). The choice
of antecedent is determined by matching syntactic and semantic features of the
candidate NP with that of the anaphor, which includes person/number agree-
ment, semantic type, as well as physical string comparisons. In the case that
more than one NP is found to be equally compatible, preference is given to the
one that is most adjacent to the anaphor in the text. If an anaphor requires
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multiple antecedents (e.g., the anaphor both enzymes) then the resolution al-
gorithm will continue in the sentence environment where the first antecedent
is found, and then select the subsequent antecedent which is most compatible
with both the anaphor and the first antecedent.

Each resolved anaphor retains its assigned antecedent(s) in memory so as
to enable cascading anaphoric links of coreference between an anaphor and a
previous discourse referent which could be another anaphor. In addition, spe-
cial filters are used to exclude the resolution of expletives as well as restricting
antecedents of reflexive pronouns to occur in the same sentence as the anaphor.

4 The Evaluation Test

4.1 The mark-up

A new data set of abstracts was collected using a different search, using
the strings protein and inhibit. We ensured that there was no overlap be-
tween the training set and the evaluation set. This data set consisted of 56
abstracts, which was manually annotated in XML format, as described at
www.medstract.org. Those instances which had an argument which referred
to an antecedent were annotated as were those corresponding strings for the
relations. If the instance in question was particularly difficult to annotate, the
comments of the annotator were included. The corresponding entities were
annotated with the appropriate semantic type; however, the type information
was not used or processed in this experiment. Below is an example of parsed
output showing types and bindings of entities in a relation, together with an
anaphoric binding

<Entity id="83" Type="small molecule"> Cyanide</Entity>,

<Entity id="84" Type="small molecule">azide</Entity>,

<Entity id="85" Type="small molecule">p-hydroxymercuribenzoate</Entity>,
<Entity id="86" Type="small molecule">iodoacetamide</Entity>, and
<Entity id="87" Type="small molecule'">oxygen </Entity>

<InhibitRelation id="88" Inhibitor="83, 84, 85, 86, 87"
Inhibitee="82">inhibit </InhibitRelation>

<Entity id="82" Antecedent="81">the enzyme</Entity>

The antecedent of the string “the enzyme” corresponds to a previous occur-
rence of:

<Entity id="81" Type="Protein">Formate dehydrogenase</Entity>

If a particular instance of a relation did not have an argument which could

be interpreted from the document, then the argument value was annotated as
unspecified.



Pacific Symposium on Biocomputing 7:362-373 (2002)

4.2  Results

There were 95 instances of the inhibit-relation annotated in the 56 articles.
Our system identified 84 of these instances: 56 were correct instances: (57%
Recall) There were 21 instances in which one argument was identified correctly,
but the second was not identified, and there was no False Positive argument:
(22% Partial Recall). There were 8 False Positive (incorrect) answers: (Preci-
sion 90%). We understand it is important to consider the partial information
retrieved. If the two arguments are absolutely necessary for any retrieval pur-
pose, those instances which have only one argument specified can be easily
filtered out.

Relation | Type Constraints | Data Set | Precision | Recall

Partial Recall

inhibit No MEDLINE 90.4% 58.9% 22%

Table 3: Summary of our Results

These results show a marked improvement over previously reported tech-
niques from the literature. It is interesting to analyze the results correspond-
ing to each submodule. In the Sentence-level (main predicate) module, 45
instances were returned of which 36 were correct instances. Only 4 were Par-
tial correct answers and 5 were False Positives: (Precision 88.8%). In the
Nominal-level module, 39 instances were returned: 20 of which were correct;
17 were partial correct answers and 2 were False Positives: (Precision 94.8%).

Module Precision | Recall | Partial Recall | False Negatives
Sentence level | 88.8% | 37.8% % 4.2% 9.5%
Nominal level 94.8% 21% 17.8% 9.5%

Table 4: Results Per Module

We observed that there was a marked difference in precision between the
sentence-level module and the nominal-level module. There was also a dif-
ference between the answers with one argument (partial correct answers), a
difference which is also reflected in the corpus. Six instances of the markup
had unspecified arguments, all of which were nominal instances (e.g., 4 lupus
inhibitor); five instances of the markup had arguments which had no string rep-
resentation, and the argument was deduced by the annotator from a preceding
instance of the same relation in the context (these instances were marked as
anaphoric). 17 instances were reiterations of a previously specified relation,
of which 11 were nominal and 6 were verbal. This is summarized in table 5
below.
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Relation Type | Anaphoric Instances | Reiterations | Redundancy
Main Pred 0% 6.3% 6.3
Nominal Rel 5.2% 11.5% 17.8%

Table 5: Corpus Redundancy Information

This supports the view that nominal instances of the relation tend to be more
redundant, as a total of 23 instances were redundant (24.2%). We also counted
how many arguments were anaphoric in nature (e.g. Entity 82 above). Eleven
such instances were anaphoric. We applied our Anaphora Resolution module,
resulting in the recognition of 10 anaphors from the 11 in the mark-up, with 8
correct and 2 incorrect results®

5 Discussion and Conclusion

In this paper, we presented the results of our initial experiments on identify-
ing and extracting biomolecular relations from the biomedical literature. Our
performance represents a significant improvement over previously published
results on comparable relation extraction from Medline. We attribute this
performance to the integration of lexical semantic techniques, intensive corpus
analytics over the corpus and the design of general automata over syntac-
tic chunks. The results of this integration indicated that two separate mod-
ules would be most appropriate for relational parsing, allowing us to optimize
verbal-based relations separately from the nominal-based cases. We are cur-
rently testing it over gold standards for new relational classes and extending
the coverage of the grammar to improve the recall.
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