Abstract
We study the problem of existence of maximal chains in the Turing degrees. We show that:
1. $ZF+DC+$“There exists no maximal chain in the Turing degrees” is equiconsistent with $ZFC+$“There exists an inaccessible cardinal”;
2. For all $a \in 2^{\omega}, (\omega_1)^{L[a]} = \omega_1$ if and only if there exists a $\Pi^1_1[a]$ maximal chain in the Turing degrees.
As a corollary, $ZFC$ + “There exists an inaccessible cardinal” is equiconsistent with $ZFC$ + “There is no (bold face) $\underset{\tilde{}}{\Sigma}^1_1$ maximal chain of Turing degrees”.
C. T. Chong. Liang Yu. "Maximal chains in the Turing degrees." J. Symbolic Logic 72 (4) 1219 - 1227, December 2007. https://doi.org/10.2178/jsl/1203350783
Information