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Abstract: Recently there has been a rising interest in training agents, embodied in
virtual environments, to perform language-directed tasks by deep reinforcement
learning. In this paper, we propose a simple but effective neural language grounding
module for embodied agents that can be trained end to end from scratch taking
raw pixels, unstructured linguistic commands, and sparse rewards as the inputs.
We model the language grounding process as a language-guided transformation of
visual features, where latent sentence embeddings are used as the transformation
matrices. In several language-directed navigation tasks that feature challenging
partial observability and require simple reasoning, our module significantly outper-
forms the state of the art. We also release XWORLD3D, an easy-to-customize 3D
environment that can be modified to evaluate a variety of embodied agents.
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1 Introduction

This paper examines the idea of building embodied [1, 2] agents that learn control from linguistic
commands and visual inputs. One recent line of work [3, 4, 5, 6, 7] trains such agents situated in
simulated environments in an end-to-end fashion, receiving unstructured linguistic commands and
raw image pixels as the inputs, and producing navigation actions as the outputs. For successful
navigation control, it is crucial for an agent to learn to associate linguistic concepts with visual
features, a process known as language grounding [8, 9]. To avoid a tremendous amount of labeled
data, this line of work trains language grounding oriented by navigation goals via reinforcement
learning (RL). Through trials and errors, an agent learns not only to navigate but also to reinforce (or
weaken) the connection between visual features and their matched (or unmatched) language tokens.

The problem of learning to control alone is quite challenging, especially in an environment with
long time horizons and sparse rewards [10]. However, in this paper we only concentrate on language
grounding as the core of the perception system of an agent, while using an existing RL system design,
synchronous advantage actor-critic (ParallelA2C, [11]). Because our model exploits no structural
biases of specific tasks, it is possible to plug our language grounding module in many other neural
architectures for tasks that combine language and vision.

We propose a simple but effective neural language grounding module that models a rich set of
language-vision interactions. The module performs a guided feature transformation (GFT), where
latent sentence embeddings computed from the language input are treated as the transformation
matrices of visual features. This guided transformation is much more expressive than the existing
three categories of language grounding methods for embodied agents: vector concatenation [4, 6, 12],
gated networks [5, 13], and convolutional interaction [3, 7]. In fact, it can be treated as a generalization
of the last two categories.

GFT is fully differentiable and is embedded in the perception system of our navigation agent that is
trained end to end from scratch by RL. In an apples-to-apples comparison, our model” significantly
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Example command: Example command:
“Navigate to the object in front of the monster.” “Can you please go to the bike?”

Figure 1: Illustration of the two environments for evaluating our agent. The scene is randomly
initialized, and only several key frames are shown in either case. The agent perceives images in the
first-person view. The commands require language understanding skills such as object recognition,
spatial reasoning, and semantic opposition. In the 2D case, the agent has a limited visible field
regardless of the map size. The black area behind wall blocks indicates invisible regions. The 3D
scenario with perspective distortion is closer to human experience.

outperforms the existing state of the art, over a rich set of navigation tasks that feature challenging
partial observability and cluttered background, and require simple reasoning (Figure 1). Our GFT-
powered agent is able to handle both the 2D and 3D environments without any architecture or
hyperparameter change between the two scenarios®. This demonstrates the generality and efficacy
of GFT as a language grounding module that can potentially benefit a variety of embodied agents
for other language-vision tasks. Finally, we will release the XWORLD3D* environment used in the
experiments. XWORLD3D highlights a teacher infrastructure that enables flexible customization of
linguistic commands, environment maps, and training curricula.

2  Guided Feature Transformation for Language Grounding

The major contribution of this paper is a simple yet effective language grounding module called GFT.
We will first describe GFT and then discuss our motivations and its advantages. In a general scenario,
given a pair of an image o and a sentence 1, a language grounding module fuses the two modalities
for downstream processings. This is a common process seen in visual question answering (VQA)
[14], and it also lies at the heart of our agent’s perception system.

2.1 Method

We use a convolutional neural network (CNN) to convert o into a feature cube C € RP*N  where D
is the number of channels and NN is the number of locations in the image spatial domain (collapsed
from 2D to 1D for notational simplicity). Suppose that we have an embedding function that converts
1to a series of J embedding vectors ty,...,t;,...,t;, where each t; € RP(D+1) can be reshaped
and treated as a matrix T; € RP*(P+1) " Then we compute a series of J transformations, one
followed by another, activated by a nonlinear function g:

. [—1] .
cmg(Tj[fT b, 1<j<J, (1)

where 1 € RY is an all-one vector and C[% = C. This guided transformation yields a feature
cube C* = Cl/l € RP*N which is the final grounding result for downstream processings. Overall,
it would be expected that the transformation matrices T'; correctly capture the critical aspects of
command semantics, in order for the agent to perform tasks. (Examples of the trained T; in a later
experiment are visualized in Appendix G.) Despite its simple form, GFT is able to model a rich set
of interactions between language and vision, resulting in strong representational power. Indeed, it
can be seen as a unifying formulation of two existing language grounding modules, namely, gated
networks [15, 5] and convolutional interaction [3, 7].

3Video demo at https://www.youtube . com/watch?v=b0Bbluhulxg
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2.2 Why GFT?
GFT is a stack of generalized gated networks. In the following we will ignore the subscript j of
T for notational simplicity. Let us first write:

T = [T’ b,

where TV € RP*P and b € RP is a bias vector for the transformation in Eq. 1. We would like to

investigate what T/ C essentially does. Toward this end, we perform a singular value decomposition
(SVD) of T’:

T = UAVT,
where U € RP*P and V € RP*P are both orthogonal matrices. A € RP*P is a diagonal matrix
that contains D values Aq, ..., Ap (not necessarily non-negative) on the diagonal.

In an extreme case where both U and V are identity matrices, each transformation step of GFT
degrades to a gated network. Specifically, let ¢, be the d-th feature map, we have

= g(naef 7+ by) 2

This is exactly the same modulation provided by FiLM [15]. Intuitively, Eq. 2 performs scaling,
thresholding, or negating of the features on the dth map of CV—, according to the semantics of the
input command 1. A further specialized version was proposed by Chaplot et al. [5] in which they
remove g and by, while activating Ay by sigmoid. Thus when U and V are identities, GFT is a stack
of FiLMs.

In a general case, U and V are dense and represent general rotations in R”. Because U and V
are computed from the command 1, they are language-guided. This is a major difference between
a transformation step of GFT and that of a gated network. The latter always modulates features in
the same original feature space, regardless of the command 1. As a result, a gated network such as
FiLLM places more pressure on learning C because a single feature space has to reconcile with a huge
number of commands. When the vision is challenging or the language space is huge, modulating
only in the original feature space might become a performance bottleneck of the overall agent model.
In contrast, a transformation step of GFT can choose to rotate the axes of the feature space (VT),
scale the features in that rotated space (AVT), and rotate the scaled feature again (UAVT). These
choices are determined by the current command. On top of it, GFT performs this “rotate-scale-rotate”
operation multiple times in a sequence, when combined together, resulting in high-order nonlinear
feature modulation.

GFT performs concept detection over multiple convolutional steps. An alternative interpretation
is possible if we treat Eq. 1 as a 1 x 1 convolution with D filters and a stride of one, sharing similar
motivations in Oh et al. [3] and Yu et al. [7]. In such an interpretation, each row of T containsa 1 x 1
convolutional filter of length D and a scalar bias. The D filters (rows) represent at most D different
or complementary aspects of the semantics of the command 1, and a step of Eq. 1 essentially performs
concept detection. For example, a 3D asymmetric object such as a bike has different appearances
from different viewing angles. Thus having multiple filters of the sentence “go to bike” improves the
representational power and results in a higher chance of finding the corresponding concept when the
agent moves around. Overall, GFT performs multi-step concept detection with language-dependent
filters at each step.

In summary, the simple but general formulation of GFT unifies several existing ideas for grounding
language in vision. In the remainder of this paper, we will evaluate it in a challenging language-
directed navigation problem.

3 The Navigation Problem

We formally introduce our problem as a partially observable Markov decision process (POMDP) [16]
as follows. The problem is divided into many navigation sessions. At the beginning of each session,
a navigation task is sampled by a pre-programmed teacher as k ~ P(k). Given the task, an initial
environment state s!!] is sampled by the simulator as s!*) ~ P(s!"|k), i.e., the simulator arranges the
scene according to the sampled task. An environment state s contains both the map configuration and
the agent’s pose. We assume that the teacher has full access to the environment state, and samples a
linguistic command 1 ~ P(1|s!), k) which will be used throughout the session. At each time step
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Figure 2: An overview of our agent architecture. In general, it is a two-layer GRU network with GFT
embedded as the core for perception, and with value and policy networks for control. For notational
simplicity, we only keep the superscript t — 1 to indicate quantities from the previous time step, while

removing the superscript ¢ for quantities at the current time step. The two GRU states hgffl] and

h,[f -1 (defined in Eq. 8 Appendix A) together form the agent history hl*~1l. From the figure we can
see that GFT is a portable module that could potentially be plugged into other networks involving
language-vision interactions.

t, the agent only has a partial observation of the environment, computed by a rendering function
oll = o(s!"l). We assume that P(k), P(s"|k), P(1js"), k), and o(-) are all unknown to the agent.

Below we use 6 to denote the complete set of the model parameters, and let any function that uses a
subset of parameters directly depend on 6 for notational simplicity. The agent takes an action al]
according to its policy 7, given the current observation o!*), the history h*~1], and the command 1:

ol ~ mp(a|olt], hlt=1. 1), 3)

where a latent vector h(*=1 = hy(ol'*=1] gl1*=1] 1) summarizes all the previous history of the
agent at time ¢ in the current session. The teacher observes the action and gives the agent a scalar
reward rlt) = r(a[t] sl 1). Note that the reward depends not only on the state and the action, but
also on the command. The environment then transitions to a new state s+ ~ P(slt+1slt g1,
This act-and-transition iteration goes on until a terminal state or the maximum time 7" is reached. Our
problem is to maximize the expected reward:

t—1,.[¢)
max Ks, 41 lZW r

t

) “4)

where S = (sl!,... sl .. )and A = (alV,...,al!],...) denote the state and action sequences,
respectively. v € [0, 1] is a discount factor. Note that 7(-) and P(sl*+!]|sl*! a[) are also unknown to
the agent, namely, the RL agent is model-free.

The objective Eq. 4 fits in the standard RL framework and is readily solvable by the actor-critic (AC)
algorithm [17]. Specifically, we compute the following policy gradient for any time step ¢:

—Eqie1 1111 [(Ve log g (al¥]ol, Rl 1) + nVevg(o[t],h[t_l],l)) Al 4 K/vg(‘:(ﬂ'g)} , (9

where vy is the estimated value function, £(-) denotes entropy for encouraging exploration [18], and
x> 0 and ) > 0 are constant weights. The advantage A!Y) is computed as

Al = 1] 1 g (0l i, 1) — vy (o), Bl 1), (©)

Our implementation adopts the ParallelA2C design [11] to aggregate a minibatch of gradients (Eq. 5)
over multiple identical agents running in parallel (each agent in a separate copy of the environment)
over multiple time steps, with § synchronized and shared among their models.

Note in Eq. 5 that the inputs of the policy network 7y and the value network vy are identical. Thus
we share a sub-network between 7y and vy for parameter efficiency [18]. The sub-network outputs a



latent state representation fI*) and has two stages:

£ = fy (ma(o!”,1),mI"1). )

The first stage my is a multimodal function that grounds language in vision, and the second stage fy
combines the grounding result with the agent history h*~1]. We instantiate mg by using GFT for
language grounding, and instantiate fy as a gated recurrent unit (GRU) [19]. An overview of the
agent architecture is illustrated in Figure 2. We refer the reader to more details in Appendix A.

4 Related Work

Virtual navigation. Prior to this work, there have been several studies demonstrating virtual agents
learning to navigate in virtual environments, based on reinforcement signals [20, 21]. Despite the
impressive results achieved, these studies usually have fixed goals for agents. For example, an agent
always learns to pick up apples or avoid enemies with specific appearances. In other words, the
agent’s goals are fixed and cannot be changed, unless the rewards are modified followed by retraining.
There is no language understanding involved: the perceptual inputs are images only.

Multi-goal virtual navigation. A recent line of work augments the above virtual navigation with
multiple non-linguistic goals. These goals are specified in different forms: target images [22, 23],
one-hot or continuous embeddings [24, 25, 3, 26, 27], target poses [28], etc. In contrast, our focus is
on understanding linguistic commands.

Language-directed virtual navigation. Another recent line of work [4, 3, 5, 6, 7, 29, 30] augments
the virtual navigation problem with linguistic inputs, where an agent’s goal always depends on an
instructed command. Accordingly, it is crucial for these methods to ground language in vision. Our
GFT generalizes and improves some existing language grounding modules (details in Section 2),
while incurring negligible additional costs in implementation and training time.

Visual question answering. Unlike VQA [14, 31, 32, 15, 6, 30], our problem does not require the
agent to answer questions. Instead, the agent takes movement actions to respond to the teacher.
However, both problems require language grounding, the study of which might be transferred from
one problem to another. Indeed, in Section 5, the FiLM comparison module is adapted from Perez
et al. [15], the CGated and Concat modules were adopted in some early work on VQA [14], and the
Concept comparison module resembles the stacked attention network (SAN) [32] when there is only
one single attention layer. Although GFT is proposed for embodied agents, we hope that it will also
benefit research on VQA.

Grounding language in vision and robotics. Our work is also related to language grounding in
realistic images [33, 34, 35] and robotics navigation under language [36, 37, 38], where static labeled
datasets are required. In addition, these methods for language understanding usually employ structural
assumptions specifically for their problems. In contrast, our GFT module is general-purpose and
could potentially be easily applied to a wide range of problems that require language grounding.

5 Experiments

We evaluate our agent in two challenging environments: XWORLD2D and XWORLD3D (Figure 1).
Both environments host the same set of five types of language-directed navigation tasks described in
Table 1. A common syntax is shared by the two environments for generating task commands. Except
object words, the remaining lexicon including grammatical and spatial-relation words, is also shared.
Thus the only differences between XWORLD2D and XWORLD3D in our experiments are graphics and
objects. Both environments generate random navigation sessions following the problem definition in
Section 3.

Despite the huge difference between the visual structures of the two worlds, we apply a struc-
turally identical agent to both of them. This identity includes the same network architecture, the
same set of actions (move_forward, move_backward, move_left, move_right, turn_left, and
turn_right), and the same set of hyperparameter values (e.g., learning rate, batch size, momentum,
layer sizes, etc). Only the model parameters are different and learned separately. Such an experiment
setting tests the generalizability, efficacy, and portability of GFT as a language grounding module.



Type | Navigation target | Example command

nav the specified object “Please go to the chair.”

nav_nr an object near the specified one “Move to the object near the chair.”

nav_bw the location between the two objects | “Go to the location between the chair and the table?”
nav_avoid | any object but the specified one “Avoid the chair.”

nav_dir an object specified by a relative “Navigate to the object left of the chair.”

direction w.r.t. another object
Table 1: The five types of navigation tasks in both environments.

5.1 Comparison Methods

We perform an apples-to-apples comparison with six state-of-the-art language grounding modules for
embodied agents. To do so, we make minimal changes to our agent architecture when implementing
the comparison methods: only the multimodal function my is changed for each method, with the
remaining components unchanged. Regardless of the choice, the output of my is always flattened
to a vector as an input to fg. We assume that the input command is always first encoded into a
fixed-length embedding lg,w by a bag-of-words (BoW) encoder for training efficiency. The six
comparison methods are:

Concat [4, 6, 12, 30] directly concatenates a compact language embedding and a compact visual
embedding. We project > both Igw and C to the same dimension before the concatenation.

Gated [5] weights the feature maps of C € RP*" by a gate vector loae € [0, 1]P. In our case, Loate
is generated by a two-layer multilayer perceptron (MLP) from lg,w.

CGated [13] is a variant of Gated. Instead of weighting feature maps of C, they project C down to
a visual embedding which is then weighted by 1., a gate vector projected from lgow to the same
dimension of the visual embedding.

FiLLM [15] follows exactly Eq. 2 which can be seen as a special case of our method. All \; and b,
are generated by a two-layer MLP from lg,y .

Concept [7] directly treats lgow as a 1 x 1 filter. An attention map is obtained by convolving C with
the filter. In addition, C is convolved with a 1 x 1 filter at a stride of one to produce an environment
map. Finally, the attention map and the environment map are concatenated.

EncDec [29] makes several modifications to the original implementation to better suit our problem.
First, we train the CNN from scratch. Second, we compute the instruction context directly as lgow
without using word attention, since our teacher will not issue detailed, long-paragraph commands.
Third, we add one additional layer of GRU after the concatenation of the decoder state and the
instruction context, to model longer-range temporal dependency.

Two variants of our agent are reported: GFT-1 (J = 1) and GFT-2 (J = 2)°. We generate T; by a
two-layer MLP from lg,w. After training, each of the eight methods is evaluated for 10k test sessions,
where the models saved for the final three passes (each pass contains Sk minibatches) of each method
are used to obtain an average result. The comparison setting described in this section applies to
both XWORLD2D and XWORLD3D. More details of the comparison methods and our method are
described in Appendix B.

5.2 Optimization Details

The optimization details described in this section apply to all the methods in both environments. We
adopt RMSprop [39] with a learning rate of 10~°, a damping factor of ¢ = 0.01, and a gradient
moving average decay of p = 0.95. The gradient has a momentum of 0.9. The batch size is set to
128. The total number of training batches is 2 million. The parameters of each method are initialized
with four different random seeds, the results of which are averaged and reported.

5.3 Results for XWORLD2D

Environment and action. We modified the XWORLD2D environment [7] to host our navigation
tasks. The original fully-observable setting now becomes a partially-observable egocentric setting

5In the remainder of this paper, a projection denotes a fully-connected (FC) layer followed by a nonlinear
activation function.

8 According to our observation, .J = 3 appears to be a saturation point whose performance has almost no
gain over J = 2.
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Figure 3: Success rates (averaged over four random restarts) vs. number of training samples (time
steps). The shaded area around each curve denotes the standard deviation. Although each method
trains the same number of minibatches, for details explained in Appendix A, the total number of
actions taken by the agent might vary slightly for different methods.

in 2D. The original action set is augmented with turn_left and turn_right, of which the yaw
changes are both 90°. To increase the visual variance, at each session we randomly rotate each
object and scale it randomly within [0.5, 1.0]. Suppose each map is X x Y, then a session will end
after 3XY time steps if a success or failure is not achieved. In the experiment, we set X =Y = 8.
Each 8 x 8 map contains 4 objects and 16 obstacles. We use Prim’s algorithm [40] to randomly
generate a minimal spanning tree for placing the obstacles so that the map is always a valid maze.
The objects and the agent are then randomly initialized while complying with the sampled navigation
task k. The agent can only see a 5 x 5 area in front of it, excluding any region occluded by obstacles.
Generalization to larger maps will be investigated in Appendix E.

Rewards. A success (failure) according to the teacher’s command gives the agent a +1 (—1) reward.
A failure is triggered whenever the agent hits any object that is not required by the command. The
time penalty of each step is —0.01. No other extrinsic or intrinsic rewards are used.

Objects and vocabulary. We use a collection of 345 object instances released by Yu et al. [7],
constituting 115 object classes in total. The vocabulary contains 115 object words, 8 spatial-relation
words, and 40 grammatical words, for a total size of 163. In total, there are 1,187,850 distinct
sentences that can be generated by the teacher’s predefined context-free grammar (CFG). The lengths
of these sentences range from 1 to 15.

Results. The training curves of success rates are shown in Figure 3 (a). We observe that GFT-1 has
some marginal improvement on the success rates of the best-performing comparison methods such as
FiLM and Gated. As we perform a second feature transformation, GFT-2 produces a performance
jump. Our explanation is that the visual recognition challenge, with random object yaws and scales
in each session, requires an expressive language grounding function that can be better modeled by
multiple steps of Eq. 1. Table 2 (2D) shows the test results split into five navigation types. GFT-2
produces the best numbers in all the five columns. Unsurprisingly, nav_avoid has the highest rate
because the agent only has to go to an arbitrary target which is not the specified one. nav has the
lowest rate because the agent cannot exploit any object arrangement pattern like in nav_bw. See
Figure 4 Appendix F for example navigation sessions.

5.4 Results for XWORLD3D

Environment and action. The environment layout and the agent’s action are both discrete in
XWORLD3D. An X X Y map consists of XY square grids, each grid as a unit containing an object,
an obstacle, or nothing. An object always has a unit scale and a random yaw when initialized. An
obstacle has one of four scales: 1.0, 0.7, 0.5, and 0.3, which is randomly sampled when the obstacle
is initialized. The agent walks (move_{forward,backward,left,right}) roughly half of a grid
per time step. The yaw change of the agent when it turns (turn_{left,right}) is 45° per time step.
A session will end after 10.X'Y time steps if a success or failure is not achieved. In the experiment,



nav nav_avoid nav_bw nav_dir nav_near

2D 3D 2D 3D 2D 3D 2D 3D 2D 3D

Concat 54.1£3.7 | 73.4£34 90.7+2.8 94.0+2.2 77.8+5.4 78.6+3.2 | 53.1£30.1 | 47.6£3.9 | 58.5+11.8 | 62.1£2.9
Gated 58.14+3.8 | 74.2£3.8 90.6+2.3 942428 84.0+£3.9 80.4+5.2 74.5+4.1 48.1+4.9 63.7+3.7 61.5+5.0
CGated | 58.7£3.9 | 74.0+£2.9 91.2+1.9 95.1£1.9 84.6+3.1 80.6£3.8 69.31+4.2 47.7+4.6 63.4+3.2 64.8+4.0
FiLM 58.84+3.8 | 78.6£2.9 91.0+2.4 95.4+1.8 83.7+2.9 78.61+4.2 73.24+4.3 52.0+4.6 66.4+5.6 68.0+3.7
Concept | 64.6+4.3 | 65.8+19.1 | 93.4+1.6 | 90.5+£10.8 | 80.8+3.0 | 60.9+24.4 | 61.5£3.9 | 31.7£13.7 | 64.943.9 | 54.0+16.7
EncDec | 51.5+7.4 | 67.1£5.1 | 84.4+11.0 | 92.7+1.9 | 73.6£12.1 | 77.7£3.9 | 20.5+27.4 | 48.9+3.8 | 50.9£12.2 | 59.1+4.1
GFT-1 65.0+4.2 | 852434 | 938419 | 96.3+1.3 | 84.7+3.5 | 82.1+53 | 76.4+3.1 612439 | 704442 | 78.3+4.5
GFT-2 70.7+3.5 | 84.6£3.0 94.5+1.8 96.3+1.9 85.6+2.3 80.5+£2.7 80.7+2.6 61.4+4.9 72.3+3.7 78.8+2.6

Table 2: The evaluation results for 10k test sessions. The average navigation success rates are reported
as percentages. Numbers in bold represent the best ones. The second number in each cell represents
the standard deviation over twelve test runs, each run corresponding to one pass (out of three final
passes) of one trained model (out of four random initializations).

we set X =Y = 8. Each 8 x 8 map contains 4 objects and 16 obstacles, and its initialization follows
the same process in the 2D case. Generalization to larger maps will be investigated in Appendix E.

Rewards. The reward function is the same with the 2D case.

Objects and vocabulary. XWORLD3D contains 88 different objects downloaded from http://www.
sweethome3d.com/freeModels. jsp. There are three types of obstacles: brick, crate, and cube.
The vocabulary is the same with the 2D case, except that there are 88 different object words and the
vocabulary size is now 136. In total, there are 709,383 distinct sentences that can be generated by the
teacher according to the same set of syntax rules in the 2D case. The lengths of these sentences also
range from 1 to 15.

Results. The training curves of success rates are shown in Figure 3 (b). We observe that GFT-1
already has a huge advantage over the best-performing comparison method FiLM. On top of this,
GFT-2 shows a faster performance increase during the training time. This suggests that the original
feature space cannot easily comply with various language commands. A rotation of the feature space
depending on the input command, an operation which FiLM lacks but GFT-1 owns, is important
for producing better grounding results. Table 2 (3D) shows the test results split into five navigation
types. Unlike in the 2D case, now for GFT-2, nav has the second-best success rate while nav_dir
has the lowest rate. Visualization of the nav_dir test cases reveals that due to severe perspective
distortion in 3D, the agent has some difficulty of grounding the spatial-relation words, especially
when multiple objects are located nearby. But still, GFT agents obtain much better nav_dir results
than the comparison methods (over a 15% increase on average). Several example navigation sessions
are shown in Figure 5 Appendix F.

5.5 Limitations

While GFT is theoretically more expressive and empirically better than some of the existing language
grounding modules, there are certain limitations of it. First, because each T is generated from the
command, it requires a large projection matrix. In our implementation, the projection matrix that
converts a hidden sentence embedding of length 128 to T'; has a size of 128 x D(D+1) = 128 x 4160
assuming D = 64. Thus usually GFT has more parameters to be learned compared with its simplified
versions like FILM. An alternative might be to explicitly constrain T'; to be sparse and possibly
low-rank. Second, GFT performs several steps of transformations, each of which has a different
transformation matrix. This further linearly increases the number of learnable parameters. One
solution would be to set Ty = ... = T; = ... = T}, i.e,, do a recurrent feature transformation.
However, this method has been observed slightly worse than the current GFT in the performance.
Third, depending on the actual value of J, GFT might be slower in computation than other gated
networks which perform a single transformation. These three issues are left to our future work.

6 Conclusions

We have presented GFT, a simple but general neural language grounding module for embodied agents.
GFT provides a unifying view of some existing language grounding modules, and further generalizes
on top of them. The evaluation results on two challenging navigation environments suggest that
GFT can be easily adapted from one problem to another robustly. Although evaluated on navigation,
we believe that GFT could potentially serve as a general-purpose language grounding module for
embodied agents that need to follow language instructions in a variety of scenarios.


http://www.sweethome3d.com/freeModels.jsp
http://www.sweethome3d.com/freeModels.jsp
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Appendices

A Agent Architecture

The agent history h{*! has two constituents: an action history hg ] summarizing previous taken actions
and a visual history hLZ] summarizing previous visual experience. We instantiate fy and hg as GRUs
(Figure 2):
bl = GRU(me(o[t] 1), b,
h[t] GRU(al, ™),
£ = GRU (b}, nii 1, £li-10),
hltl — (h ,[;], H)

®)

Our RL training design is synchronous advantage actor-critic (ParallelA2C) [11]. We run Nygen
agents in parallel with model parameters shared among them to encourage exploration and reduce
variance in the policy gradient. Each backpropagation is done with a minibatch of Ny time steps
collected from all the agents, each agent contributing Noaen time steps. In either environment, every
agent gets blocked until the network parameters are updated with the current minibatch, after which
it forwards % time steps again with the updated model parameters. To speed up training, we adopt

an n-step temporal difference (TD) when computing the advantage Al*l (Eq. 6), in a forward manner
similar to Mnih et al. [18]. Finally, we empirically set the discount « to 0.99, the entropy weight x to
0.05, and the value regression weight ) to 1.0 throughout the experiments.

Sometimes an agent might provide fewer than %"“‘“‘ actions for each minibatch due to the end of an

episode, because once an agent hits an episode end, it will be initialized in a new session for the next
minibatch. Thus the actual size of the minibatch might be smaller than Ny, In the experiments, we
set Nagent = 32, and Npgeen = 128.

The agent is trained purely from reward signals, without:

1) prior visual knowledge such as a pre-trained CNN,

2) prior linguistic knowledge such as a parser, or

3) any auxiliary task such as image reconstruction [6, 4], reward prediction [4], or language prediction
(4, 7].

B Method Details

General. The sentence embedding lg,w is obtained by sum-pooling word embeddings. A word
embedding has a length of 128, except for the Concept method (see below). The agent perceives
84 x 84 egocentric RGB images in XWORLD3D and 80 x 80 egocentric RGB images in XWORLD2D.
Regardless of the image dimensions, the CNN has three convolutional layers for processing the image:
(8,4,32), (4,2,64), and (3,1, 64), where (a, b, ¢) represents a layer configuration of ¢ filters of size
a % a at a stride of b. Each action is embedded as a vector of size 128 before being input to GRU
to generate the action history h, which also has 128 units. The other two recurrent layers GRUy"

and GRUg both have 512 units, and both have an extra hidden layer of size 512 to preprocess their
inputs. The policy network is a two-layer MLP where the first layer has 512 units and the second
layer is a softmax for outputting actions. The value network is a two-layer MLP where the first layer
has 512 units and the second layer outputs a scalar value without any activation. Unless otherwise
stated, all the layer outputs are ReLU activated.

Concat. Both lg,w and C are projected to a latent space of 512 dimensions.

Gated. The MLP for generating lgy from lg,w has two layers: the first layer has 128 units and the
second layer has D = 64 units which are sigmoid activated.

CGated. The gate vector lgye has 512 units which are sigmoid activated.

FiLM. The MLP for generating A4 and b, has two layers: the first layer has 128 units and the second
layer has D + 1 = 65 units without any activation.
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Concept. Because the sentence embedding lgow is directly used as the 1 x 1 filter, each word
embedding has a length of D = 64. The attention map and environment map are both ReL.U
activated.

EncDec. This method has a slightly reorganized computational flow compared to the one in Eq. 8.
We refer the reader to the original paper [15] for details. Except this, the configuration of each layer
is the same with that of its counterpart that can be found in Concat.

GFT. The MLP for generating the transformation matrix T; from lg,w has two layers: the first layer
has 128 units and the second layer has D x (D + 1) = 64 x 65 = 4160 units. The second layer has
no activation. For GFT-2, we share the parameters of the first layers between T and To. We set the
activation function g in Eq. 1 as ReLU.

C Vocabulary

The following 8 spatial-relation words and 40 grammatical words are shared between the XWORLD2D
and XWORLD3D.

Spatial-relation (8) | Grammatical (40)

behind, I, ., 2, and, anything, avoid,
besides, but, can, collect, could, destination,
between, do, done, end, except, go,

by, goal, grid, in, is, location,

front, move, navigate, not, object, of,
left, place, please, reach, target, that,
near, the, time, to, up, well,

right. will, wrong, you, your.

The two environments have two different sets of object words:

Object
XWORLD3D (88)

XWORLD2D (115)

apples, backpack, barbecue, barrel, basket,
basketball, bathtub, bed, bench, boiler,
books, bookshelf, bottle, bread, brush,
bucket, burger, cake, calender, camera,
candle, car, carpet, cat, chair,
chessboard, clock, comb, cooker, crib,
cup, dart, dog, dog-house, drawers,
drums, fan, fence, firehydrant, flashlight,
flowers, fountain, gift, guitar, hair-dryer,
headphones, horse, iron, lamp, laptop,
mailbox, milk, oven, pan, phone,

photo, piano, pillow, plant, pool-table,
puzzle, rabbit, rooster, scale, scissors,
screen, slippers, sofa, speaker, squeezer,
staircase, stove, sunglasses, table,
table-tennis, toilet, towel, train,
trampoline, trashcan, treadmill, tricycle,
umbrella, vacuum, vase, wardrobe,
wheelchair.

D Curriculum Learning

apple, armadillo, artichoke, avocado, banana, bat,
bathtub, beans, bear, bed, bee, beet,

beetle, bird, blueberry, bookshelf, broccoli, bull,
butterfly, cabbage, cactus, camel, carpet, carrot,

cat, centipede, chair, cherry, clock, coconut,

corn, cow, crab, crocodile, cucumber, deer,

desk, dinosaur, dog, donkey, dragon, dragonfly,
duck, eggplant, elephant, fan, fig, fireplace,

fish, fox, frog, garlic, giraffe, glove, horse,

goat, grape, greenonion, greenpepper, hedgehog,
kangaroo, knife, koala, ladybug, lemon, light,

lion, lizard, microwave, mirror, monitor, monkey,
monster, mushroom, octopus, onion, orange, ostrich,
owl, panda, peacock, penguin, pepper, pig,
pineapple, plunger, potato, pumpkin, rabbit, racoon,
rat, rhinoceros, rooster, seahorse, seashell, seaurchin,
shrimp, snail, snake, sofa, spider, squirrel,

stairs, strawberry, tiger, toilet, tomato, turtle,
vacuum, wardrobe, washingmachine, watermelon,
whale, wheat, zebra.

To help the agent learn, we adopt curriculum learning [41] to gradually increase the environment
size and complexity, according to the curriculum in Table 3. The training always starts from level 1.
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Level | Map size (X = Y) | number of goals per map | number of obstacles per map
1 3 2 0
2 4 2 3
3 5 2 6
4 6 4 9
5 7 4 12
6 8 4 16
Table 3: The curriculum used for training the agents.
nav nav_avoid nav_bw nav_dir nav_near
2D 3D 2D 3D 2D 3D 2D 3D 2D 3D
Concal | 46.174.9 | 63.6542 | O41£13 | 965512 | 722462 | 721441 | 4624261 | 388%3.8 | 47.1£11.7 | 49.6%43
Gated | 49.5+4.1 | 65.6+4.2 | 94418 | 95.8+1.7 | 777448 | 726454 | 66.4+50 | 37.7+41 | 555447 | 492435
CGated | 47.143.2 | 63.8+4.5 | 94.6+1.6 | 96.1+1.7 | 75.5+4.1 | 74.0+4.6 | 62.8+45 | 302442 | 56244.0 | 52.5+4.1
FILM | 49.04£3.6 | 682+3.1 | 944+1.6 | 974+1.1 | 76943.3 | 740438 | 67.5+5.1 | 43.3+3.1 | 57.5+44 | 56.6+2.8
Concept | 55.143.9 | 55.6:+17.1 | 96.3+1.5 | 95.044.6 | 73.7+3.5 | 533421.0 | 562452 | 27.6+12.7 | 57.5+4.5 | 43.7+14.7
EncDec | 40.3£7.3 | 56.044.0 | 89.4+6.6 | 953+2.1 | 66.9£10.3 | 69.84+4.5 | 20.6+25.4 | 38.1+3.9 | 433412.6 | 503437
GFT-1 | 55.1£2.8 | 783E3.0 | 953%1.6 | 978510 | 76.8£3.0 | 783144 | 708535 | 523554 | 605128 | 669+338
GFT-2 | 60.9+5.1 | 762436 | 96.8+1.3 | 98.1+09 | 77.6£3.8 | 763%4.1 | 714+37 | 51.8+58 | 65.1+£4.2 | 66.8+43
Table 4: The evaluation results for 10k test sessions on 9 x 9 maps. The average navigation success

rates are reported as percentages. The second number in each cell represents the standard deviation
over twelve test runs, each run corresponding to one pass (out of three final passes) of one trained

model (out of four random initializations).

nav nav_avoid nav_bw nav_dir nav_near
2D 3D 2D 3D 2D 3D 2D 3D 2D 3D
Concat | 442%32 | 593522 | 949£1.6 | 965510 | 703%6.7 | 709146 | 43.8£249 | 35730 | 476£12.1 | 482542
Gated | 45.944.6 | 64.143.1 | 944+1.6 | 95.7+1.8 | 76.7+3.9 | 711441 | 63.5+4.0 | 362444 | 562456 | 50.6+4.9
CGated | 44.943.8 | 642450 | 93.941.5 | 96.94+1.0 | 763+4.9 | 70.0+44 | 63.4+4.2 | 37.5443 | 56.643.8 | 525429
FILM | 46.743.7 | 66.144.2 | 93.542.5 | 97.6+12 | 77.643.7 | 724437 | 647+438 | 412448 | 57.443.1 | 564427
Concept | 44.243.2 | 555+183 | 94.9+1.6 | 94.5+59 | 70.3+6.7 | 50.9+21.2 | 43.8+24.9 | 24.1+11.0 | 47.6+12.1 | 40.2+15.6
EncDec | 37.846.0 | 53.946.1 | 91.445.5 | 95.8+2.0 | 66.7+12.3 | 69.043.4 | 18.6423.7 | 35.943.5 | 41.9+11.0 | 474436
GFT-1 | 527434 | 78.1%43 | 95.0£1.7 | 983509 | 787529 | 755143 | 66.6535 | 51.6£3.8 | 60.512.6 | 683135
GFT2 | 60.7£2.7 | 78.84+32 | 97.3+1.4 | 98.6+13 | 78.6+6.2 | 762435 | 69.2+4.0 | 52.4+45 | 65.7+4.0 | 682452
Table 5: The evaluation results for 10k test sessions on 10 x 10 maps. The average navigation success

rates are reported as percentages. The second number in each cell represents the standard deviation
over twelve test runs, each run corresponding to one pass (out of three final passes) of one trained

model (out of four random initializations).

nav nav_avoid nav_bw nav_dir nav_near
2D 3D 2D 3D 2D 3D 2D 3D 2D 3D
Concat 362452 | 444439 [ 96.3+1.5 | 94.3+1.3 | 649£7.0 54.74+5.5 | 42.0+£23.0 | 25.943.0 | 41.2+12.8 | 31.94+3.9
Gated 40.3£5.2 | 47.3£5.7 | 96.0£1.8 | 94.9+2.0 | 70.5+4.6 58.9+£6.1 58.4+£5.0 | 25.243.0 | 48.7£3.6 33.5+4.0
CGated | 359+3.0 | 46.0£4.0 | 95.34+2.0 | 95.3+1.4 | 72.445.1 54.7£5.2 54.0£4.0 | 24.5£2.5 | 46.7£3.9 32.6+3.1
FiLM 39.9+4.4 | 53.24+4.6 | 96.8+1.1 | 955£1.0 | 72.4+3.7 59.1£5.4 59.3£5.0 | 28.3£3.4 | 49.2+43 36.6+3.9
Concept | 44.7+3.7 | 42.94+15.7 | 97.5+1.4 | 95.1+3.0 | 68.7£3.5 | 36.1+16.4 | 49.1+£4.1 | 17.44+9.6 | 48.7£39 | 27.6+11.2
EncDec | 31.7+£59 | 38.6+4.6 | 93.5443 | 94.1+1.3 | 62.3+11.6 | 56.54+3.3 | 16.1+21.7 | 25.94+4.3 | 38.0+11.5 | 32.4+2.8
GFT-1 43943.7 | 62.6+4.0 | 96.0+1.2 | 959+1.5 | 74.3+£3.3 | 64.4+4.6 | 61.7+£3.0 | 38.7+4.0 | 53.5+£5.5 | 49.54£3.6
GFT-2 51.54+3.5 | 63.2+52 | 98.0£1.3 | 96.0£1.5 | 72.44+4.5 64.2+5.4 64.1+5.5 | 37.5+£3.5 | 58.9£3.5 534442

Table 6: The evaluation results for 10k test sessions on 11 x 11 maps. The average navigation success
rates are reported as percentages. The second number in each cell represents the standard deviation
over twelve test runs, each run corresponding to one pass (out of three final passes) of one trained
model (out of four random initializations).

During training, the teacher maintains the average success rate of each task type (Table 1), for a total
of 200 most recent sessions. If at some point, all the five average success rates are above a predefined
threshold of 0.7, then the teacher allows the agent to enter the next level and resets the maintained
rates. The progress of this curriculum is computed separately for each of the 32 agents running in
parallel. The above curriculum applies to all the methods in both environments. It should be noted
that the training curves and test results in Section 5 are computed for the final level with the maximal
difficulty, without being affected by the curriculum.

E Generalization to Larger Maps

We evaluate the agent models, trained for X = Y = 8 in Section 5, on three larger maps:
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i) X =Y =9, with 6 goals and 20 obstacles,
il) X =Y = 10, with 6 goals and 24 obstacles, and
iii) X =Y = 11, with 8 goals and 28 obstacles.

The evaluation results are shown in Table 4, Table 5, and Table 6, respectively. Although the
performance is not as good as on 8 x 8 maps (except for nav_avoid whose chance performance
tends to peak as there are more goals on the map before the map size becoming too large), the
GFT agents achieve reasonable generalizations and still greatly outperform the comparison methods.
This further demonstrates that our GFT agents are not trained to memorize environments in specific
settings.

F Navigation Examples

Below we show some navigation examples for the GFT-2 agents trained in 2D and 3D. For each
session, we present four key frames on the navigation path. More full-length navigation sessions are
shown in a video demo at https://www.youtube. com/watch?v=b0BbluhuJxg.
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https://www.youtube.com/watch?v=bOBb1uhuJxg

>

“Pineapple is your destination.”

“Collect the object in front of dragon.”

Figure 4: Five navigation examples for the GFT-2 agent trained in XWORLD2D. Four key frames
in temporal order are shown in each example. During navigation, the agent is able to see only the
highlighted regions. The shaded regions are for visualization purpose.
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“Go to the grid between dart and vaccum.”

Figure 5: Five navigation examples for the GFT-2 agent trained in XWORLD3D. Four key frames in
temporal order are shown in each example.
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G Visualization of Transformation Matrices

In this section, we visualize the transformation matrices of several example commands received by
the GFT-2 agent trained in XWORLD3D. We are particularly interested in comparing the T; and
T, of two different commands that have the same semantics or have a minimal semantic difference.
Figure 6 shows the visualization results. Unsurprisingly, we observe that

a) Two completely different commands with the same semantics (for our problem) will yield almost
identical transformation matrices (Figure 6 row 1).

b) Two commands with a minimal difference will yield matrices similar in general but differ in small
places that capture the difference (Figure 6 rows 2-4).
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Tl TQ Tl T2

“Please collect the object that is “Please collect the object
in the front of vase.” to the left of vase.”

“Go to the location between squeezer “Go to the location between vase
and candle please.” and candle please.”

“Go to the object left of bread.” “Go to the object left of basket.”

Figure 6: Visualization of the transformation matrices computed by the trained GFT-2 agent for four
example command pairs. For a better view, the matrices have been subtracted by the average T or

Ts (computed from 5k randomly sampled commands) to remove the biases. Then each matrix is
smoothed by a 7 x 7 uniform kernel.
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