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Abstract:

We explore the problem of learning to decompose spatial tasks into segments, as
exemplified by the problem of a painting robot covering a large object. Inspired
by the ability of classical decision tree algorithms to construct structured parti-
tions of their input spaces, we formulate the problem of decomposing objects into
segments as a parsing approach. We make the insight that the derivation of a
parse-tree that decomposes the object into segments closely resembles a decision
tree constructed by ID3, which can be done when the ground-truth available. We
learn to imitate an expert parsing oracle, such that our neural parser can generalize
to parse natural images without ground truth. We introduce a novel deterministic
policy gradient update, DRAG (i.e., DeteRministically AGgrevate) in the form of
a deterministic actor-critic variant of AggreVaTeD [1], to train our neural parser.
From another perspective, our approach is a variant of the Deterministic Policy
Gradient [2, 3] suitable for the imitation learning setting. The deterministic pol-
icy representation offered by training our neural parser with DRAG allows it to
outperform state of the art imitation and reinforcement learning approaches.
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1 Introduction

Consider the task of a robot painting an object or an aerial robot surveying a large field. These
spatial tasks represent a coverage problem that the robot may not be able to address in a single shot.
For instance, a robot may not be able to paint the entirety of a large object with a single stroke,
being limited by the footprint of its paint brush. Instead, the robot must decompose the spatial task
of painting objects into smaller segments that it can cover in single stroke. However, discovering
or learning an appropriate decomposition of such tasks into segments is challenging. In the object-
painting problem, there may be several constraints upon the resultant segments, such as the overall
paint coverage. Further, there exist multiple ways to decompose an object into constituent segments
- for example, an object may be decomposed into length or breadth-wise segments.

A few well studied algorithms are able to somewhat circumvent these challenges. In particular, when
applied to the task of classifying a set of points, ID3 [4] and C4.5 [5] recursively partition the input
space in order to achieve an accurate classification of the points. As we demonstrate in Section 3, an
ID3-like Information Gain maximizing algorithm, IGM, builds a similar partitioning of an object as
in Fig. 1. However, this IGM algorithm (like the ID3 and C4.5 algorithms it is derived from) requires
ground truth classification labels, and cannot be applied to decompose novel objects for which the
ground truth labels are unavailable, or are expensive to obtain.
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To bypass this issue, we approach the problem of decomposing objects into segments as a parsing
problem, based on the insight that the derivation of a parse-tree (Fig. 1) that decomposes a given
object into segments closely resembles a decision tree constructed by IGM (Fig. 1). Rather than learn
to parse objects by reinforcement learning (RL) as in [6], we propose to learn how to parse objects
into such structured decompositions via imitation learning (IL), treating the IGM algorithm as a
parsing oracle. Our neural parser is trained to parse objects by imitating the IGM oracle observing
only raw object images as input, while the IGM oracle exploits access to ground truth information
to demonstrate how to parse a particular object. This allows our neural parser to construct structured
decompositions of novel unseen objects despite lacking ground truth information. As expected, our
imitation learning approach significantly outperforms reinforcement learning baselines in practice.

We further introduce a novel deterministic policy gradient update, DRAG, suitable for training deter-
ministic policies in the hybrid imitation-reinforcement learning setting. The DRAG policy gradient
update serves to train the deterministic policy component of our neural parser, eliminating the com-
plexity of maintaining probability distributions specific to the parsing setting. By rephrasing the
AggreVaTeD [1] objective in the deterministic policy case, we retrieve a gradient update to a deter-
ministic policy that relies on a differentiable approximation to the oracle’s cost-to-go. This policy
gradient update may be viewed as a deferministic actor-critic variant of AggreVaTeD, which we
refer to as DRAG (i.e., DeteRministically AGgrevate). DRAG may also be viewed as a variant of
the Deterministic Policy Gradient [3] suitable for imitation learning, and replaces an approximation
to the true gradient in the original Deterministic Policy Gradient [3], with the true policy gradient.

Training our parser via DRAG allows our parser to outperform several baselines on the task of
parsing novel objects, showcasing its potential to achieve performance closer to that of the oracle
than several other existing imitation and reinforcement learning approaches.

2 Related Work

Facade Parsing: Facade parsing attempts to identify the topology of a building facade, by parsing
an image of the facade into its various components [7, 6, 8, 9, 10]. [7, 6] learn to apply production
rules of a grammar to reduce a shape into its constituent segments in the RL setting. We build on
[6], addressing the problem of decomposing objects. In contrast to other facade parsing approaches
that use labels of the resulting parse [8, 9, 10], we seek to imitate the decisions of an expert parser.

Policy Gradient Reinforcement Learning: Stochastic policy gradient approaches [11, 12, 13, 14]
have been used to learn control policies in the reinforcement learning (RL) setting. Silver et al. [2]
introduced the Deterministic Policy Gradient (DPG), a deterministic counterpart to [11], and later
extended DPG to the function approximator case [3]. We introduce a variant of DPG [2, 3] suitable
for imitation learning, that removes the approximation of the true gradient used in DPG [2, 3].

Imitation Learning: Recent imitation learning algorithms [15, 16, 17] address the setting when
one has access to an expert policy that may be queried. Ross et al. [17] demonstrated an inferactive
imitation learning paradigm, DAgger, is preferable over a naive behavioural cloning approach. Ross
and Bagnell [18] further introduced AggreVaTe, using estimates of the cost-to-go of the expert to
better learn control policies. Sun et al. [1] subsequently derived a stochastic policy gradient update
of the AggreVaTe [18] objective, enabling its use on complex neural network policies. [19, 20]
further explore the hybrid imitation and reinforcement learning, by reward shaping using an oracle
and switching to policy gradient RL after imitation respectively. We follow [18, 1], by training
agents with partial information to imitate oracles with full information at train time, as in [21, 22].

Semantic Segmentation: The problem of semantic segmentation addresses assigning semantic la-
bels to pixels in a given image. [23] employed a graph partitioning approach for image segmenta-
tion, to construct image superpixels. Several recent works [24, 25, 23, 26] train end-to-end models
on large scale datasets for semantic segmentation, as more thoroughly reviewed in [27]. While the
notion of a set of segments with assigned labels is common to our parsing approach and semantic
segmentation, our approach builds a hierarchical decomposition of the object image as the end re-
sult. Our problem further differs in that constraints may be imposed that exclude arbitrary results
such as the aforementioned stroke coverage constraints of a painting robot.

3 Method

We seek to learn how to parse objects directly using object images as input, by learning to imitate
an expert parsing oracle. The connection between object parsing and the decision trees constructed
by IGM Fig. 1 afford us such a parsing oracle, that makes the imitation setting preferable over the
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Figure 1: Constructing an equivalent hierarchical decomposition of an object image by two methods. The
Information Gain Maximization algorithm creates a decision tree (legend on the left), while the Shape Parsing
approach to the right constructs a parse tree (legend to the right). The equivalent hierarchical decomposition
(center), shows correspondence of each node in the decision tree and parse tree to an image segment.

RL setting followed in [6]. To successfully learn a policy capable of imitating a parsing oracle, we
introduce DRAG, a deterministic actor-critic variant of AggreVaTeD [1]. We explain our approach to
learning this parsing policy by first describing the problem setting of parsing objects, then describing
the IGM algorithm that serves as a ground truth parsing oracle. We then demonstrate how the object
parsing problem may be framed as an MDP, finally highlighting how we use DRAG to train a neural
parser to decompose objects.

Consider the following problem setting. Given an object image to be painted, our objective is to de-
compose the object image into a set of segments, maximizing the paint coverage of the object while
minimizing the “paint wasted”. We may view this as assigning labels of whether or not to paint each
pixel, where painting object pixels increases coverage, while not painting the surroundings decreases
“wasted paint”. Under this label assignment problem, our objective translates to constructing an ob-
ject decomposition (a set of segments) constrained to mutually compose the object image, while
accurately assigning labels of whether or not to paint each of the resultant segments.

3.1 Parsing Objects by Imitating Maximal Information Gain

Representing the painting process as a labeling problem allows us to employ decision tree algorithms
such as ID3 [4] and C4.5 [5], that naturally address labeling tasks by partitioning the space (i.e., the
object image) into regions that each contain pixels of a single class. ID3 achieves this by using
ground truth information to select the partitioning with the maximum information gain over the
resultant segments. By modifying ID3 to allow multiple splits (i.e., partitions) along a particular
axis (or attributes in ID3), we construct a ground-truth oracle that is able to perfectly label any object
image allowed sufficient partitions. We refer to this oracle as the Information Gain Maximization
algorithm (IGM), or mrgn- Fig. 1 depicts such a “decision tree” constructed by IGM on a toy image.

The IGM oracle uses ground truth labeling of object images, which are unavailable for novel objects.
To address this issue, we draw inspiration from facade parsing literature [7, 6], where images of
facades were decomposed into various components via shape-parsing. We observe that parse-trees
that decompose an image into segments in [6] resemble the decision trees constructed by IGM (Fig.
1). Motivated by this insight, we decompose objects into segments via a parsing approach.

3.2 Shape Parsing Objects

To learn how to decompose object images into their constituent segments, we require an appropriate
representation of the recursive object decompositions that arise in the divide-and-conquer paradigm.
Shape parsing [6] provides us a compact representation of such potentially complex decompositions
of an object. We adopt a shape parsing approach similar to [6], using a binary split grammar
to represent the hierarchical object decomposition. Formally, we use a probabilistic context-free
grammar G, defined as a tuple G = (V, T, R, V, P), where V is a set of non-terminal symbols, T
is a set of terminal symbols, V} is a starting symbol, R is a set of production rules, and P defines a
set of probabilities of applying the production rules on a given non-terminal V.

Set of non-terminal symbols V: A non-terminal symbol V' € V is defined as an axis-aligned
rectangle over the input image. Each non-terminal is specified with a set of attributes (x,y, w, h),
where (z,y) defines the origin of the rectangle and (w, h) define the spatial extents of the rectangle
along the horizontal and vertical directions respectively. The starting symbol V, € V is a rectangular
region encompassing the entire object image.



Set of terminal symbols 7 A terminal symbol 7" € T is an axis-aligned rectangle image segment,
with an additional attribute b denoting whether a region is to be painted or not.

Set of production rules R: We consider binary split rules, which split a non-terminal V' along its

axes into two constituent non-terminals. A split rule is specified by a horizontal or vertical split axis
v:l

(h or v), and split location [, as V' ﬂ> V V,or V. — V V. An instance of a horizontal split rule
is visualized in the top row of Fig. 1, resulting in two non-terminals (Vieg, Viign:). Our grammar also
includes assignment rules that assign a precedant non-terminal symbol to one of the two terminal
symbols, a region by, to be painted, or a region not to be painted, by,,. The full set R is as follows:

x: y:l
R = {VE) — ‘/7 Vv _l> (Vieflv Vn’ght)a Vv J—> (V;opa %ottom)» V- bpv V- bnp}

Rule probabilities P: Production rules r have an associated probability p, of applying rule r on the
current non-terminal (i.e., an image segment). In our problem, we seek to learn these probabilities
py of applying the production rules, along with the associated split location attribute [ of the rules.

Recursively applying production rules R of the grammar G described above on an object image |
(and the resultant segments) decomposes the image into its constituent segments, a process known
as shape-parsing. Parsing an object image results in a hierarchical decomposition of the object, or
an object parse-tree, as depicted for a toy object image in Fig. 1.

Starting with the entire image (represented by starting symbol V})), the object parse-tree is con-
structed by expanding each node in the tree in a top-down and depth-first manner. While expanding
anode N of the parse-tree, we sample a rule » € R with probability p,, from the set of rules appli-
cable on N. We add the antecedants of this rule to the parse tree as children nodes of the expanded
node. We then continue to derive the tree in a depth-first fashion, moving on to the next unexpanded
node in the tree. The labels assigned to these leaf nodes of a fully expanded image parse tree yield
a segmentation of the image. We present a sample object image, the corresponding image parse tree
derived via shape parsing, and the final segmented image in Fig. 1.

3.3 Shape Parsing as a Markov Decision Process

The shape parsing process may be seen as a sequential decision making process, where a parsing
agent finds a sequence of partitions and label assignments that maximizes the paint coverage of the
object, while affording us a decomposition of the object. We can formally describe the sequential
process of shape parsing as a Markov Decision Process (MDP) M.

Here, the current image segment p; corresponds to node IV in the parse tree as the current state
s € §of M. Actions a € A correspond to applying production rules € R with a particular split
location [ € [0, 1]. Upon taking an action a from state s, we “transition” to the next unexpanded
node s’ in the parse tree. Here, s’ is specified by the deterministic transition dynamics p(s¢.y1|a¢, St)
enforced by the top-down, depth-first expansion of the tree 7.

The sequence of nodes expanded during the expansion of the image parse-tree corresponds to the
sequence of states observed by our agent. This may be incorporated elegantly in the definition
of both the one-step reward and the cumulative discounted reward (returns) G of the agent. The
one-step reward function encodes the coverage objective of our object parsing problem. For every
terminal symbol T, we evaluate the image correlation between the predicted label assignments P
over each of the terminal segments, and the ground truth paint labels of the objects L. For any non-
terminal node V' in the parse tree, the return G(V') is defined recursively in Eq. (1) as the discounted
sum of the returns of all child nodes of V. This recursion propagates rewards up the tree in a
bottom-up manner, starting from the terminal leaf-nodes 7', where the return is the one-step reward.

E(Ly)ENL(l‘,y)P(x,y) iftNeT

G(N) = .

{ZceChildren(N) G(c) ifN eV
Here, x and y represent pixel locations in the image, Children(N) is the set of children nodes of N
in the tree, C indexes these child nodes.

(D

We seek to learn a policy m : s — a mapping the current state s to one of the possible actions
a available in the current state. In our setting, the policy must select (1) which production rule to
apply, and (2) a corresponding split location. To predict these facets of an action a directly from
visual input of the current image segment, we represent our policy as a deep convolutional network.
Our policy network thus takes in as input an image region p;(x,y,w, h) defined by the current
non-terminal V' that is being expanded.



Algorithm 1 Train Parser via DRAG

Input: D, 7*, 8, Niterations > Require a dataset, expert parser, mixing parameter, iterations
Output: 7y > Output the learned policy
1: 0+ 0,M<«+ {} > Initialize Policy Parameters, Initialize Memory

2: fori € [1, 2, Niterations] do

3: m < B+ (1 — B)mg

4: for j € [1,2,..., Nimages = |D|] do

5: t ~U[l, H] > Sample a switching index
6: 7; = Parse(D;) > Parse the image, following 7; till step ¢, and 7* thereafter.
7: G = G(T;) > Evaluate returns at node TJ’? via expert’s cost to go in Eq. (1).
8: M~ MU {(st,74, 11,8, Gy) } > Store the transition at index ¢ in memory
9: B ~UM]|]|Bl=B > Sample a minibatch from memory
10: 0+ 0+ aVyls > Update 6 via Eq. (18) approximated at B
11: w+w—aVy,ls > Update w by gradient of objective in Eq. (6) approximated at B

The policy then predicts (1) a categorical probability distribution over the valid production rules,
m(r|s, 0), and (2) a split-location [ = (s¢|#) within the current image segment in case of applying
a split rule. Since the size of the image segment varies at every step, the valid split locations vary
with the current state. While maintaining a valid probability distribution over such a varying range
of values is possible, it is notably challenging, due to the normalizing a distribution across changing
scale and limits of the distribution at every step. Instead, we employ a deterministic representation of
the split location policy, thus p(s:|0) is deterministically predicted as a scaled logistic function of the
deep network features. The two components of our policy network represent the mixed deterministic
and stochastic nature of the our policy.

3.4 Learning the Shape Parser via Imitation Learning

While Teboul et al. [6] learn a shape-parser via reinforcement learning, it is known that the imitation
learning paradigm is preferable to reinforcement learning if an expert agent may be easily obtained
[18]. In our case, the connection object parsing and the decision trees constructed by IGM afford
us such an expert. We hence consider learning this mixed deterministic-stochastic policy in the
imitation learning setting. The stochastic component of the policy 7(r|s, §) may be learned via off-
policy Monte-Carlo [12] or actor-critic [13] policy gradient algorithms (we point the reader towards
[2] for a review of these algorithms). However, existing algorithms for learning the deterministic
component of the policy I = u(s|6) (notably the Deterministic Policy Gradient introduced in [2]),
have only been developed in the reinforcement learning setting, not the imitation learning setting.

To learn the deterministic component of the policy (s|6), we introduce a deterministic policy gra-
dient update suitable for training deterministic policies in the cost sensitive imitation learning set-
ting. DRAG (DeteRministically AGgrevate) may be viewed as a deterministic actor-critic variant of
AggreVaTeD [1], or alternatively, a variant of the Deterministic Policy Gradient [3] suitable for im-
itation learning. DRAG replaces an approximation to the true gradient in the original Deterministic
Policy Gradient [3], with the correct gradient.

We present DRAG by first describing the AggreVaTe / AggreVaTeD setting - an ideal starting point
given we have an oracle (IGM) that we may query for the optimal action to execute from any state.
AggreVaTe [18] and AggreVaTeD [1] approach the problem of learning a policy 7y by training the
policy 7y, at training iteration n to minimize the cost-to-go Q* of the oracle 7*, over the aggregated
distribution of states dﬁrn induced by the current learner’s policy, 7y, . To do so, they roll-out a
trajectory with a mixture policy 7, (s) = B7*(s) + (1 — B)mp(s) till time step ¢ € [1, ..., H], and
subsequently follow the expert 7* then onwards. [ simply represents the mixing coefficient, and
H is the horizon length of the MDP, and the aggregated distribution of states dﬁrn is defined as

Z{si,ai}igtq po(sl)Ht_}ﬂn(at|st_1)p(st\st_1, at—1), and pg is the initial state distribution. The

1=

AggreVaTe [18] objective to be optimized may be represented as:
Jn(e) =E t~U(1,...,H),st~d§rl:n ,as~Tp (als) {Qf (St> at):| . 2

Sun et al. [1] assume a stochastic policy 7(a|s, ) to derive a stochastic policy gradient update to
the parameters of the policy 6. However, as mentioned in section 3.3, maintaining a valid
probability distribution over split locations in the stochastic policy case is challenging. We hence
employ a deterministic policy p(s|@) for split locations — making the stochsatic policy gradient



update derived in [1] unsuitable for learning y(s]0). The AggreVaTe objective [18] of minimizing
the cost-to-go of the oracle in the deterministic policy setting may be expressed as:

Jn(0) =E tU (L, H) semdl, [Q:(St’ M(8|9))]- €))

Rather than sampling a split location /; from a stochastic policy, we retrieve the split location de-
terministically from the policy I; = p(s|f). As in [1], we may improve the policy by updating its
parameters 6 in the direction of improvement of J,,(#), given by the gradient of equation 3:

VoJn(0) =E v, m)si~a, [Vle(St,M(SW))] 4
The Deterministic Policy Gradient [2] allows us to evaluate this gradient, applying the chain rule:
VoJn(0) = Eiov@,..H)si~d,, {Va Q: (56, 0)| o= (510 Vg,u(s\G)}. &)

The AggreVaTeD framework [1] uses Monte Carlo samples G, of the oracle’s cost to go, directly
estimating Q; (s, a) by sampling. While this provides an unbiased estimate of ()}, we cannot com-
pute the gradient V,Q; (s, a) using non-differentiable samples of the oracle’s cost-to-go. Instead,
we construct a differentiable approximation of the oracle’s cost to go, in the form of a critic net-
work Q(s, alw), parametrized by w. While the notion of the critic network is similar to that present
in DPG [2] and DDPG [3], note that our critic network approximates the cost-of-go of the oracle,
rather than the learner’s policy p, i.e., the critic is trained to optimize:

rrgn Baymds, ampin(s1/0) [(Q(st, alw) — Gt)z] ) (6)

Using a critic network Q¢ (s¢, aw) to approximate the oracle’s cost-to-go allows us to perform an up-
date to the policy p(s|6) by replacing Q7 (s¢, a) in equations 4 and 5 with critic network’s estimate,
Q+(st, a|w), leading to the following deterministic policy gradient update:

Von(0) = E ovq,...m) s~ {Va Qu(st; alw)l,—(s10) VW(S|9)]~ (7

Employing a differentiable critic network to estimate the oracle’s cost-to-go thus introduces an de-
terministic actor critic variant of AggreVaTeD, which we refer to as DRAG. DRAG hence serves as
a deterministic policy gradient update that we use for training our deterministic split location policy
1(s|0) in the cost sensitive imitation learning setting.

We further note that applying the Deterministic Policy Gradient Theorem [2] typically requires an
approximation of the true gradient Vg J,,(6) from [13], due to the implicit dependence of Q (s, at|w)
on the parameters of the policy §. However, in DRAG, the learned estimates of Q (s, a¢|w) estimate
the cost-to-go of the oracle m*, and not the learner’s policy 7(a¢|s, #). The true cost-to-go of the
oracle Q*(s¢, a;) (and any estimate Q(s;, a;|w) of this cost) are both independent of the parameters
6 of the learner’s policy. DRAG hence removes the dependence of Q) (¢, a;|w) on the learner’s policy
0 by virtue of following the oracle after time ¢, hence the gradient update we present in equation 7
is no longer an approximation to the true gradient based on [13].

DRAG allows us to compute a gradient update to deterministic split-location component of our
neural parser, while we employ a standard stochastic actor-critic policy gradient update to for the rule
policy m(als, 8). This leads to a mixed stochastic-deterministic policy gradient update in Eq. (18):

Von(0) =E vq,... H),s,~at

Tlin:Hlin

a0y | Vo108 w51, 0) - Qulsts o, p(s116) )

+Vi Qt(startvl|w)|lzu(st\0) Vou(sild)|. (8

The full derivation of this mixed policy gradient update is provided in the supplementary material.
The resultant mixed stochastic-deterministic policy gradient update is based on DRAG, and is ap-
plicable to any policy with both a deterministic and stochastic component. We utilize this mixed
update to train our neural parser, as described in Algorithm 1.

4 Experimental Results and Analysis

We evaluate our idea of learning to parse objects by imitation, and quantify how well our proposed
DRAG approach is able to parse novel objects relative to baseline imitation learning (IL), reinforce-
ment learning (RL) and hybrid IL+RL approaches, and the IGM oracle. This also provides us insight



Table 1: Parsing Accuracies of Proposed model and various baselines.

Model Train Accuracy Test Accuracy
IGM Oracle with GT Access (Depth 7) 98.50% —
Monte-Carlo Policy Gradient (RL) 53.54% 51.23%
DDPG (RL) 51.94% 48.78%
Behavior Cloning (IL) 75.11% 75.10%
DAgger (IL) 84.01% 84.03%
Stochastic AggreVaTeD (IL+RL) 81.85% 81.07%
Actor-Critic AggreVaTeD (IL+RL) 82.18% 81.31%
Off-Policy Monte-Carlo Policy Gradient (IL+RL) 84.85% 83.65%
Off-Policy Actor-Critic Policy Gradient (IL+RL) 80.91% 80.94%
DRAG (IL+RL) (Ours) 88.05% 86.86 %

into the relative benefits of IL, RL, and IL+RL approaches in the context of parsing. The IL and
IL+RL baselines are provided access to the IGM Oracle, with a maximum allowed parse tree depth
of 7 enforced for computational reasons. The considered baselines are as follows (with details in the
supplementary).

RL baselines: We consider two RL baselines where the learner must maximize its own cumula-
tive reward without IGM oracle access: 1) An on-policy stochastic Monte-Carlo Policy Gradient
(MCPG) as in [12], 2) A Deterministic Policy Gradient (DPG) as in [3].

IL baselines: We consider two IL baselines, where the learner imitates the IGM oracle, with no
reward function access. 1) Behavior Cloning (BC), where the agent imitates a fixed set of demon-
strated parses from the oracle, 2) the interactive IL paradigm DAgger [17].

Hybrid IL+RL baselines: We consider four hybrid IL+RL baselines, where the learner has ac-
cess to both the IGM oracle and the reward function during training. 1) The original stochastic
AggreValeD policy gradient [1], 2) An Actor-Critic variant of AggreValeD (AC-AggreVaTeD), 3) A
stochastic Off-Policy Monte-Carlo Policy Gradient (Off-MCPG), where the oracle acts as a behav-
ioral policy, and it’s actor-critic variant, 4) An Off-Policy Actor-Critic Policy Gradient (Off-ACPG).
Note that all stochastic baselines are evaluated selecting the most likely action at test time.

Experimental Setup: To evaluate our proposed DRAG approach against the above baselines, we
collect a set of 362 RGB object images of size 256 x 256 pixels, each annotated with a per-pixel
binary label of 1 (to be painted), or 1 (not to be painted), serving as ground truth object labels. We
evaluate our models with 3-fold cross validation, training on 3 sets of 300 randomly sampled images,
measuring performance on 3 corresponding sets of 62 test images. We measure performance as the
pixel accuracy between the predicted assignment of labels of the object image against these ground
truth object labels, presented for each of the above baselines and our approach in Table 1. An ideal
parse assigns contiguous paint labels to all portions of the object to be painted, ensuring that parts
of the object do not go unpainted. We present the parses created for 3 sample images in Fig. 2.

Analysis: We make the following observations based on the results in Table 1 and Figure 2:

1) Reinforcement learning applied to our task is unsuccessful. The recursive nature of the parsing
process requires good rules and split locations to be selected consistently for a good parse, which
is unlikely via random exploration. The MCPG and DPG baselines rely on random exploration of
rules and splits, thus only achieving random performance and failing to parse object images at all.

2) Imitation learning applied to our parsing task is successful. The structural similarity between
IGM decision-trees and parsing allows the IGM oracle to guide sampling towards good rules and
split locations rather than the naive exploration of RL. As seen in Table 1, even our most naive IL
baseline, Behavior Cloning, significantly outperforms the RL baselines, achieving 75.10% test ac-
curacy. DAgger reconciles with the state distribution mismatch [17], boosting the parser to 84.03%
test accuracy. The IL paradigm is thus able to learn reasonable parses of object images, overcoming
the issues of learning a parser present in the RL setting.

3) DRAG outperforms state-of-the-art IL and RL baselines on the task of parsing novel objects.
Quantitatively, our proposed DRAG approach achieves notably higher train and test accuracies
(88.05 % and 86.86% respectively) than other baseline approaches. We note the following:

(a) While some improvement of performance may be attributed to the use of a lower variance return
estimate offered by a critic network, comparing the performance achieved by the actor-critic
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Figure 2: Depiction of constructed sample parses for a metal plate (rows 1 & 2), a window frame (rows 3 &
4), and a car door (rows 5 & 6), from the oracle (column 2), the proposed DRAG (column 3), and the various
baselines (columns 4-9). The first column shows the original image (odd rows) with ground truth labels (even
rows, red object pixels are to be painted, blue are not to be painted). Each column shows the segmented object
image along with the predicted label assignment.
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baselines against their actor-only variants shows there is little benefit to using a critic network
with a stochastic policy representation. The deterministic policy representation used in DRAG
allows for better learning of split locations, contributing towards the notable improvement in
performance observed.

(b) The deterministic policy representation of split locations used in DRAG enables it to construct
more regular parses of the object images by selecting splits that align with object boundaries,
as compared to baseline approaches. This is particularly suitable for axis-aligned images, or
images with small aberrations (such as rows 3 & 4 in Fig. 2). While the stochastic hybrid
IL+RL baselines are able to capture coarse object structure, they fail to capture splits aligned
with prominent image gradients. In contrast, DRAG is able to assign labels that correlate strongly
with that of the ground truth (and the IGM oracle).

(c) DRAG better optimizes for the underlying cost compared to other hybrid IL+RL baselines, gen-
eralizing past demonstrated expert actions. This is exemplified in the case of irregular images
such as the car door in rows 5 & 6 of Fig. 2. Here, the IGM oracle misses out on the correctly
labeling the rim of the door due to a restricted parse tree depth. Despite this lack of supervisory
actions to imitate, DRAG learns to correctly label this portion of the door, and is capable of
performing cost-sensitive imitation in a superior manner compared to other baseline approaches.

S Conclusion

In this paper, we address the problem of learning to parse objects into hierarchical decompositions
via imitation learning. By treating an Information Gain Maximizing algorithm as an expert parsing
oracle, our neural parser learns to parse objects by imitating this IGM oracle, observing only raw
object images as input. We further introduce a novel deterministic policy gradient update, DRAG ,
suitable for generic imitation learning tasks with a deterministic policy representation. The proposed
DRAG may be seen as both as an deterministic actor-critic variant of AggreVaTeD [1] and a variant
of DDPG [3] suitable for imitation learning. Training our neural parser to parse objects using DRAG
outperforms existing RL, IL and IL+RL baselines, leading to more accurate and coherent parses. Our
experimental results demonstrate the capability of our approach to successfully parse objects, and
potentially address more generic spatially decomposable tasks.
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Supplementary Material

Mixed Policy Gradient:

In section 3.4 of the main paper, we derived a deterministic policy gradient update to deterministic
policy trained in the AggreVaTeD [1] setting.

The specific policy representation that we employ in our neural parser has a stochastic component
predicting which rules to apply, 7(r|s:, ), as well as a deterministic component to predict split
locations, u(s¢|6). Given such a mixed stochastic-deterministic policy representation, we derive
a corresponding mixed stochastic-deterministic policy gradient update that we employ to train our
neural parser.

Consider that at any time step t, rules r; are sampled from 7 (r|s:, §), and split locations [; are given
by w(s¢|0). Following the AggreVaTeD [1] training paradigm, we seek to train the components of
our policy 7 (r|s¢, 8) and p(s¢|#), to maximize the cost to go of the expert, Q*(sy, ¢, l;). Formally,
we seek to maximize:

e~y (7] 8¢,0) [Q:(Stﬂatvu(stw»} (9)

As described in section 3.4 of the main paper, the actor critic variant of AggreVaTeD uses a learnt
estimate Q(st,14,1:|w) of the cost-to-go of the expert Q*(s¢, 71, 1;). The objective equation 9 thus
becomes:

Jn(e) =E t~U(1,...,H),s¢~dt

Tlin: Hl:in

Jn(0) =E tU (L. H) spmdt,

noH1:

rommatrlsn0) | Qe s i(si]6) )] (10)

The expectation of r; ~ m(r|s¢, #) may be represented as follows:

| 2 wlridse.0) QulsereplsdO)) | A

reR

Jn(6‘) =E t~U(1,...,H),s;~dt

T1lin Hl:n

To compute an update to the policy, we may compute the gradient of this objective J,,(0) with
respect to the parameters of the policy 6:
Vodn(0) = Vo Evq,.. H)s~a

T1l:in Hl:n

(32 wrlse, 0) Qulsere (sl | 12)
reR

Considering the linearity of expectations, and taking the gradient Vy inside the sum ) ., this
gives us:

Vodu(0) =E vy somar, 0| D0 Vo{m(rilse,0) Qulsirep(sil)l) )] (13)
reER
Note that Proposition (1) from Marbach and Tsitsiklis [28] shows that the gradient of a cummula-
tive reward objective, Vy.J,, (), is independent of the gradient of the state distribution d’.
Applying the product rule, we have:

Von(0) =E v, si~a, [Z {VM(M% 0) . Qu(st,7e, 1(s¢]0)|w)
reR

1insHlm”

o+ w(rilse, ) VoQusis e (sil0)w) | (14)

The first term in the expectation, Vo (r¢]s¢, 0) . Q¢(st, 7+, p1(s¢]6)|w) may be simplified by applying
the importance sampling trick:

VQT('(T‘t‘Sh 9)
m(re]se, 0)
+ 7 (rils0,0) VoQu(se e, plsil) )} (15)
This becomes the gradient of the log-probability of the policy 7(r|s;, 6):

[Z {W(Tt|8t, 0) .Vologm(re|ss,0) . Qi(se, e, p1(s5¢]0)|w)

reR

VoJ,(0) =E U (L, H) sprodty [Z {T(Tt|5t7 0) . Q56,75 1(5¢]0)|w)

reER

Vodn(0) =E vq,... H),5,~at

Tlin Mlin

+ 7 (re|se, 0) ~V9Qt(5t77"t,ﬂ(5t\9)|w)” (16)
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The second term in the expectation, m(r¢|s¢, 0) .VoQy(se, re, 1(s¢|0)|w), may be computed using
the Deterministic Policy Gradient Theorem [2] (i.e. essentially applying the chain rule):

Vodn(0) =E vq,... H),s~at

Tlin Hl:n

[Z {ﬂ'(’l‘t|8t, 0) .Vologm(relse,0) . Qi(se, 7, u(s¢|0)|w)

reR
(il 0) V1 Qulse, 1 1(5110) ) i) Vorlsil0) ] (A7)

We may now convert the expression ) m(r|ss,6) back to an expectation of r; ~ 7(r|s¢,0),
leading to the following policy gradient update to our neural parser:

VOJn (0) =E t~U(1 ;re~Ty (7] 8¢,0) [VO lOg ﬂ—("At|8157 9) . Qt(3t7 Tty M(st|9)|w)

+ V1 Qulst e, 1O 10y Vorlsil6)]  (18)

H),s¢~dt

Tlin Hl:n

.

Note that applying the Deterministic Policy Gradient Theorem typically requires an approximation
from [13], due to the implicit dependence of Q(s;, a;|w) on the parameters of the policy 6. However,
in the deterministic variant of AggreVaTeD, the learnt estimates of (Q(s;, a;|w) estimate the cost-to-
go of the expert policy 7*, and not the learner’s policy 7(a|s¢, 6).

The true cost-to-go of the expert Q* (s, a;) (and any estimate Q(s:,at|w) of this cost) are both
independent of the parameters of the policy 6. The deterministic actor-critic variant of AggreVaTeD
removes the dependence of Q (s, a:|w) on 6, thus removes the necessity for the approximation from
Degris et al. [13].

Use of a Memory Replay:

Uniformly sampling from a replay memory (as in Algorithm 1) corresponds to sampling states from
the distribution of states encountered during training, i.e. a sample approximation of the aggregated
state distribution dﬁrl:m 11, - Justifying the use of a replay memory in the aggregated state distribution
case. Indeed, using states visited from training iterations 1 to n is closer to the original AggreVaTe

objective [18] than AggreVaTeD [1], which uses only states from iteration n.

Details of Baseline Algorithms:

We describe the exact policy representation used in each of the baseline algorithms mentioned in the
main paper below. For ease of comparison, we also provide a table of the training setting used in
the various baseline approaches and our model in Table 2. Each model uses a convolutional neural
network with 7 convolutional layers and 2 dense layers as a base model. The baseline approaches
then represent their respective policies as follows:

Pure RL baselines: In the pure RL setting, the learner is provided with evaluations of the quality of
the parses it constructs via the reward function, and does not have access to the IGM oracle agent in
any form. We consider two RL baselines, where the objective is to simply maximize the cumulative
reward achieved by the learner:

e Monte-Carlo Policy Gradient (MCPG): We consider an on-policy stochastic Monte-Carlo Policy
Gradient approach, similar to REINFORCE. The policy maintains a categorical distribution over
valid rules, predicted as a softmax of deep network features over the valid rules applicable at
the current image segment, and a logit-normal distribution over valid split locations within the
boundaries of the current image segment.

o Deterministic Policy Gradient (DPG): We then consider a DDPG [3] style approach, where the
policy deterministically predicts split locations as scaled logistic function of the object image
features. The rules here are still predicted stochastically as a softmax output of the deep policy
network.

Pure IL baselines: In contrast with the RL setting, the learner in the pure IL setting has access to
the actions taken by the IGM oracle, and not the reward function. Here, the learner simply tries to
copy the actions executed by the expert; this corresponds to maximizing the likelihood of the rules
selected by the expert under the learner’s policy, and regressing to the split locations selected by the
expert. We consider two IL baselines:
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Table 2: Training Setting Ablation of Proposed model and various baselines.

Model Training Setting  Policy Representation  Actor / Actor-Critic
MCPG RL Stochastic Actor
DDPG RL Deterministic Actor-Critic
Behavior Cloning IL Deterministic Actor
DAgger IL Deterministic Actor
AggreVaTeD IL+RL Stochastic Actor

AC AggreVaTeD IL+RL Stochastic Actor-Critic
Off-MCPG IL+RL Stochastic Actor
Off-ACPG IL+RL Stochastic Actor-Critic
DRAG (Ours) IL+RL Deterministic Actor-Critic

Behavior Cloning: Here, the agent minimizes the categorical cross entropy between the rules
selected by the IGM oracle, and the softmax probability distribution over rules predicted by the
policy network. This is equivalent to maximizing the log-likelihood of the rules selected by the
IGM oracle. The split locations are predicted as a scaled logistic function of the deep network
features. A L2 norm loss between the predicted and IGM oracle split is used to train the agent’s
split location policy.

DAgger: Following the interactive learning paradigm DAgger [17], objects are parsed according
to a mixture of the expert and the learner’s current policy. The policy representation is identical
to that used in the Behavior Cloning case.

Hybrid IL+RL baselines: Of particular interest to us is the hybrid IL+RL case, where the learner
has access to both the actions executed by the expert, as well as samples of the reward function for
the parses it constructs.

AggreVaTeD: We consider the original stochastic policy gradient training paradigm of Aggre-
VaTeD [1]. As in the Off-MCPG case, the rules are predicted via a categorical distribution from
the deep policy network features, and the split locations are predicted as a logit-normal distribu-
tion over valid splits.

Actor-Critic AggreVaTeD: We consider an Actor-Critic variant of AggreVaTeD [1], where the
Monte-Carlo estimate of the oracle’s return is replaced by the critic’s estimate of this return. The
critic is trained using Eq. (6) as in DRAG .

Off-Policy Monte-Carlo Policy Gradient (Off-MCPG): Treating the IGM oracle as a behavioral
policy, we maximize the learner’s returns via an off-policy Monte-Carlo policy gradient. As in
the case of the vanilla MCPG, the policy representation is a categorical distribution over the valid
rules, and the splits with a logit-normal distribution over valid splits.

Off-Policy Actor-Critic Policy Gradient (Off-ACPG): We finally consider an actor-critic variant
of Off-MCPG, using a critic network to estimate the oracle’s return. As in the case of AC-
AggreVaTeD, we use Eq. (6) to train the critic.

Training Details and Choice of Hyperparameters:

We note details regarding our training setup, as well as values of hyperparameters used during
training the various baseline approaches and our model:

Convergence: We ensure each approach is trained till convergence by evaluating the model on
the test set after the validation accuracy saturated (is no longer improving significantly).

3-fold Cross-Validation: Our image based problem allows us to maintain distinct training and
testing image sets, we follow 3-fold cross-validation, maintaining 3 different train-test sets, and
reporting average train and test accuracies across these sets.

Learning Rate: For all models, we use the Adam Optimizer available in TensorFlow [29]. All
our models are trained with an learning rate of 10~

Mixing Coefficient B: For the DAgger baseline, as well as the hybrid IL+RL baselines and
DRAG, we utilize an initial mixing coefficent of 1 (i.e. start off using the expert policy alone),
annealed to a final value of 0.5 (a 50% chance to use either the learner’s policy or the expert
policy), over 100 training epochs.

Gradient Clipping: For all models, we apply a gradient clipping to a maximum value of 10.
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