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Abstract: In this paper we introduce Smooth Particle Networks (SPNets), a
framework for integrating fluid dynamics with deep networks. SPNets adds two
new layers to the neural network toolbox: ConvSP and ConvSDF, which enable
computing physical interactions with unordered particle sets. We use these lay-
ers in combination with standard neural network layers to directly implement fluid
dynamics inside a deep network, where the parameters of the network are the fluid
parameters themselves (e.g., viscosity, cohesion, etc.). Because SPNets are imple-
mented as a neural network, the resulting fluid dynamics are fully differentiable.
We then show how this can be successfully used to learn fluid parameters from
data, perform liquid control tasks, and learn policies to manipulate liquids.
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1 Introduction

From mixing dough to cleaning automobiles to pouring beer, liquids are an integral part of many
everyday tasks. Humans have developed the skills to easily manipulate liquids in order to solve
these tasks, however robots have yet to master them. While recent results in deep learning have
shown a lot of progress in applying deep neural networks to challenging robotics tasks involving
rigid objects [1–3], there has been relatively little work applying these techniques to liquids. One
major obstacle to doing so is the highly unstructured nature of liquids, making it difficult to both
interface the liquid state with a deep network and to learn about liquids completely from scratch.

In this paper we propose to combine the structure of analytical fluid dynamics models with the tools
of deep neural networks to enable robots to interact with liquids. Specifically, we propose Smooth
Particle Networks (SPNets), which adds two new layers, the ConvSP layer and the ConvSDF layer,
to the deep learning toolbox. These layers allow networks to interface directly with unordered sets
of particles. We then show how we can use these two new layers, along with standard layers, to
directly implement fluid dynamics using Position Based Fluids (PBF) [4] inside the network, where
the parameters of the network are the fluid parameters themselves (e.g., viscosity or cohesion).
Because we implement fluid dynamics as a neural network, this allows us to compute full analytical
gradients. We evaluate our fully differentiable fluid model in the form of a deep neural network
on the tasks of learning fluid parameters from data, manipulating liquids, and learning a policy to
manipulate liquids. In this paper we make the following contributions 1) a fluid dynamics model that
can interface directly with neural networks and is fully differentiable, 2) a method for learning fluid
parameters from data using this model, and 3) a method for using this model to manipulate liquid
by specifying its target state rather than through auxiliary functions. In the following sections, we
discuss related work, the PBF algorithm, SPNets, and our evaluations of our method.

2 Related Work

Liquid manipulation is an emerging area of robotics research. In recent years, there has been much
research on robotic pouring [5–13]. There have also been several papers examining perception of
liquids [14–19]. Some work has used simulators to either predict the effects of actions involving
liquids [20], or to track and reason about real liquids [21]. However, all of these used either task
specific models or coarse fluid dynamics, with the exception of [21], which used a liquid simulator,
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although it was not differentiable. Here we propose a fluid dynamics model that is fully differentiable
and show how to use it solve several tasks.

One task we evaluate is learning fluid parameters (e.g., viscosity or cohesion) from data. Work by
Elbrechter et al. [17] and Guevara et al. [22] focused on learning fluid parameters using actions
to estimate differences between the model and the data. Other work has focused on learning fluid
dynamics via hand-crafted features and regression forests [23], via latent-state physics models [24],
or via conventional simulators combined with a deep net trained to solve the incompressibility con-
straints [25]. Both [24] and [25] use grid-based fluid representations, which allows them to use
standard 3D convolutions to implement their deep learning models. Both [26] and [27] also used
standard convolutions to implement fluid physics using neural networks. In this paper, however, we
use a particle-based fluid representation due to its greater efficiency for sparse fluids. In [23] the
authors also use a particle-based representation, however they require hand-crafted features to al-
low their model to compute particle-particle interactions. Instead, we directly interface the particles
with the model. While there have been several recent papers that develop methods for interfacing
unordered point sets with deep networks [28–30], these methods focus on the task of object recog-
nition, a task with significantly different computational properties than fluid dynamics. For that
reason, we implement new layers for interfacing our model with unordered particle sets.

The standard method of solving the Navier-Stokes equations [31] for computing fluid dynamics
using particles is Smoothed Particle Hydrodynamics (SPH) [32]. In this paper, however, we use
Position Based Fluids (PBF) [4] which was developed as a counterpart to SPH. SPH computes
fluid dynamics for compressible fluids (e.g., air); PBF computes fluid dynamics for incompressible
fluids (e.g., water). Additionally, our model is differentiable with analytical gradients. There has
been some work in robotics utilizing differentiable physics models [33] as well as differentiable
rendering [34]. There has also been work on learning physics models using deep networks such as
Interaction Networks [35, 36], which model the interactions between objects as relations, and thus
are also fully differentiable. However, these works were primarily focused on simulating rigid body
physics and physical forces such as gravity, magnetism, and springs. To the best of our knowledge,
our model is the first fully differentiable particle-based fluid model.

3 Position Based Fluids
1: function UPDATEFLUID(P, V)
2: V ′ = APPLYFORCES(V )

3: P ′ = P + V ′

∆t
4: while ¬CONSTRAINTSSATISFIED(P ′) do
5: ∆Pω = SOLVEPRESSURE(P ′)
6: ∆P c = SOLVECOHESION(P ′)
7: ∆P s = SOLVESURFACETENSION(P ′)
8: P ′ = P ′ + ∆Pω + ∆P c + ∆P s

9: P ′ = SOLVEOBJECTCOLLISIONS(P ′)
10: end while
11: V ′ = P ′−P

∆T
12: V ′ = V ′ + APPLYVISCOSITY(P ′, V ′)
13: return P ′, V ′
14: end function
Figure 1: The PBF algorithm. P is the list of particle lo-
cations, V is the list of particle velocities, and ∆T is the
timestep duration.

In this paper, we implement fluid dynam-
ics using Position Based Fluids (PBF) [4].
PBF is a Lagrangian approximation of the
Navier-Stokes equations for incompressible
fluids [31]. That is, PBF uses a large col-
lection of particles to represent incompress-
ible fluids such as water, where each particle
can be thought of as an individual “packet”
of fluid. We chose a particle-based repre-
sentation for our fluids rather than a grid-
based (Eulerian) representation as for sparse
fluids, particles have better resolution for
fewer computational resources. We briefly
describe PBF here and direct the reader to
[4] for details.

Figure 1 shows a general outline of the PBF
algorithm for a single timestep. First, at each
timestep, external forces are applied to the particles (lines 2–3), then particles are moved to solve
the constraints (lines 5–9), and finally the viscosity is applied (line 12), resulting in new positions
P ′ and velocities V ′ for the particles. In this paper, we consider three constraints on our fluids: pres-
sure, cohesion, and surface tension, which correspond to the three inner loop functions in Figure 1
(lines 5–7). Each computes a δpi correction in position for each particle i that best satisfies the given
constraint.

The pressure correction δpωi for each particle i is computed to satisfy the constant pressure con-
straint. Intuitively, the pressure correction step finds particles with pressure higher than the con-
straint allows (i.e., particles where the density is greater than the ambient density), then moves them
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along a vector away from other high pressure particles, thus reducing the overall pressure and satis-
fying the constraint. The pressure correction δpωi for each particle i is computed as

δpωi =
∑

j∈P−{i}

nji(ωi + ωj)Wω(dij , h) (1)

where nji is the normalized vector from particle j to particle i, ωk is the pressure at particle k, Wω

is a kernel function (i.e., monotonically decreasing continuous function), dij is the distance from i
to j, and h is the cutoff for Wω (that is, for all particles further than h apart, Wω is 0). The pressure
at each particle is computed as

ωk = λω max (ρk − ρ0, 0) (2)
where λω is the pressure constant, ρk is the density of the fluid at particle k, and ρ0 is the rest density
of the fluid. Density at each particle is computed as

ρk =
∑
j∈P

mjWρ(dkj , h) (3)

where mj is the mass of particle j. For Wω we use 30
πh3

(
1− d

h

)
1
h and for Wρ we use 15

πh3

(
1− d

h

)2, the
same as used in [4]. The details for computing SOLVECOHESION, SOLVESURFACETENSION, and
APPLYVISCOSITY are described in the appendix.

To compute the next set of particle locations P ′ and velocities V ′ from the current set P, V , these
functions are applied as described in the equation in figure 1. For the experiments in this paper, the
constants are empirically determined and we set h to 0.1.

4 Smooth Particle Networks

In this paper, we wish to implement Position Based Fluids (PBF) with a deep neural network. Cur-
rent networks lack the functionality to interface with unordered sets of particles, so we propose two
new layers.. The first is the ConvSP layer, which computes particle-particle pairwise interactions,
and the second is the ConvSDF layer, which computes particle-static object interactions1. We com-
bine these two layers with standard operators (e.g., elementwise addition) to reproduce the algorithm
in figure 1 inside a deep network. The parameters are the λ∗ values descried in section 3. We imple-
mented both forward and backward functions for our layers in PyTorch [37] with graphics processor
support.

4.1 ConvSP

The ConvSP layer is designed to compute particle to particle interactions. To do this, we implement
the layer as a smoothing kernel over the set of particles. That is, ConvSP computes the following

ConvSP (X,Y ) =

{∑
j∈X

yjW (dij , h)
∣∣∣ i ∈ X}

where X is the set of particle locations and Y is a corresponding set of feature vectors2, yj is the
feature vector in Y associated with j, W is a kernel function, dij is the distance between particles i
and j, and h is the cutoff radius (i.e., for all dij > h, W (dij , h) = 0). This function computes the
smoothed values over Y for each particle using W .

While this function is relatively simple, it is enough to enable the network to compute the solutions
for pressure, cohesion, surface tension, and viscosity (lines 5–7 and 12 in figure 1). In the fol-
lowing paragraphs we will describe how to compute the pressure solution using the ConvSP layer.
Computing the other 3 solutions is nearly identical.

To compute the pressure correction solution in equation (1) above, we must first compute the density
ρk at each particle k. Equation (3) describes how to compute the density. This equation closely
matches the ConvSP equation from above. To compute the density at each particle, we can simply
call ConvSP (P,M), where P is the set of particle locations and M is the corresponding set of
particle masses. Next, to compute the pressure ωk at each particle k as described in equation (2), we

1The code for SPNets is available at https://github.com/cschenck/SmoothParticleNets
2In general, these features can represent any arbitrary value, however for the purposes of this paper, we use

them to represent physical properties of the particles, e.g., mass or density.
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can use an elementwise subtraction to compute ρk − ρ0, a rectified linear unit to compute the max,
and finally an elementwise multiplication to multiply by λω . This results in Ω, the set containing the
pressure for every particle.

Plugging these values into equation (1) is not as straightforward. It is not obvious how the term
nji(ωi + ωj) could be represented by Y from the ConvSP equation. However, by unfolding the
terms and distributing the sum we can represent equation (1) using ConvSP.

First, note that the vector nji is simply the difference in position between particles i and j divided
by their distance. Thus we can replace nji as follows

δpωi =
∑

j∈P−{i}

pi − pj
dij

(ωi + ωj)Wω(dij , h)

where pk is the location of particle k. For simplicity, let us incorporate the denominator dij into Wω

to get it out of the way. We define Wω(dij , h) = 1
dij
Wω(dij , h).

Next we distribute the terms in the parentheses to get

δpωi =
∑

j∈P−{i}

(piωi + piωj − pjωi − pjωj)Wω(dij , h).

We can now rearrange the summation and distribute Wω to yield

δpωi = piωi
∑
Wω(dij , h) + pi

∑
ωjWω(dij , h)− ωi

∑
pjWω(dij , h)−

∑
pjωjWω(dij , h).

Here we omitted the summation term j ∈ P − {i} from our notation for clarity. We can compute
this over all i using the ConvSP layer as follows

∆Pω = P ∗ Ω ∗ ConvSP (P, {1}) + P ∗ ConvSP (P,Ω)− Ω ∗ ConvSP (P, P )− ConvSP (P, P ∗ Ω)

where ∗ represents elementwise multiplication and + and − are elementwise addition and subtrac-
tion respectively. {1} is a set containing all 1s.

4.2 ConvSDF

The second layer we add is the ConvSDF layer. This layer is designed specifically to compute
interactions between the particles and static objects in the scene (line 9 in figure 1). We represent
these static objects using signed distance functions (SDFs). The value SDF (p), where p is a point
in space, is defined as the distance from p to the closest point on the object’s surface. If p is inside
the object, then SDF (p) is negative.

We define K to be the set of offsets for a given convolutional kernel. For example, for a 1×3 kernel
in 2D, K = {(0,−1), (0, 0), (0, 1)}. ConvSDF is defined as

ConvSDF (X) =

{∑
k∈K

wk min
j
SDFj(pi + k ∗ d)

∣∣∣∣ i ∈ X
}

where wk is the weight associated with kernel cell k, pi is the location of particle i, SDFj is the
jth SDF in the scene (one per rigid object), and d is the dilation of the kernel (i.e., how far apart the
kernel cells are from each other). Intuitively, ConvSDF places a convolutional kernel around each
particle, evaluates the SDFs at each kernel cell, and then convolves those values with the kernel. The
result is a single value for each particle.

We can use ConvSDF to solve object collisions as follows. First, we construct ConvSDFR which
uses a size 1 kernel (that is, a convolutional kernel with exactly 1 cell). We set the weight for the
single cell in that kernel to be 1. With a size 1 kernel and a weight wk of 1, the summation, the
kernel weight wk, and the term k ∗ d fall out of the ConvSDF equation (above). The result is the
SDF value at each particle location, i.e., the distance to the closest surface, where negative values
indicate particles that have penetrated inside an object. We can compute that penetration R of the
particles inside objects as

R = ReLU(−ConvSDFR(P ))

where ReLU is a rectified linear unit. R now contains the minimum distance each particle would
need to move to be placed outside an object, or 0 if the particle is already outside the object. Next,
to determine which direction to “push” penetrating particles so they no longer penetrate, we need to
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find the direction to the surface of the object. Without loss of generality, we describe how to do this
in 3D, but this method is applicable to any dimensionality. We construct ConvSDFX , which uses a
3×1×1 kernel, i.e., 3 kernel cells all placed in a line along the X-axis. We set the kernel cell weights
wk to -1 for the cell towards the negative X-axis, +1 for the cell towards the positive X-axis, and 0
for the center cell. We construct ConvSDFY and ConvSDFZ similarly for the Y and Z axes. By
convolving each of these 3 layers, we use local differencing in each of the X, Y, and Z dimensions
to compute the normal of the surface of the object nSDF , i.e., the direction to “push” the particle in.
We can then update the particle positions P ′ as follows

P ′ = P ′ +R ∗ nSDF .

That is, we multiply the distance each particle is penetrating an object (R) by the direction to move
it in (nSDF ) and add that to the particle positions.

4.3 Smooth Particle Networks (SPNets)

(a) Ladle Scene
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Figure 2: (Top) The ladle scene. The left two images are before
and after snapshots, the right image shows the particles pro-
jected onto a virtual camera image (with the objects shown in
dark gray for reference). (Bottom) The difference between the
estimated and ground truth fluid parameter values for cohesion
λc and viscosity λv after each iteration of training for both the
L1 loss and the projection loss. The color of the lines indicates
the ground truth λc and λv values.

Using the ConvSP and ConvSDF lay-
ers described in the previous sections
and standard network layers, we design
SPNets to exactly replicate the PBF al-
gorithm in figure 1. That is, at each
timestep, the network takes in the cur-
rent particle positions P and velocities
V and computes the fluid dynamics by
applying the algorithm line-by-line, re-
sulting in new positions P ′ and veloci-
ties V ′. We show an SPNet layout di-
agram in the appendix. By repeatedly
applying the network to the new po-
sitions and velocities at each timestep,
we can simulate the flow of liquid over
time. We utilize elementwise layers,
rectified linear layers (ReLU), and our
two particle layers ConvSP and Con-
vSDF to compute each line in figure 1.
Since elementwise and ReLU layers are
differentiable, and because we imple-
ment analytical gradients for ConvSP
and ConvSDF, we can use backpropaga-
tion through the whole network to com-
pute the gradients. Additionally, our
layers are implemented with graphics
processor support, which means that a
forward pass through our network takes
approximately 1

15 of a second for about
9,000 particles running on an Nvidia Ti-
tan Xp graphics card.

5 Evaluation & Results

To demonstrate the utility of SPNets, we evaluated it on three types of tasks, described in the fol-
lowing sections. First, we show how our model can learn fluid parameters from data. Next, we show
how we can use the analytical gradients of our model to do liquid control. Finally, we show how we
can use SPNets to train a reinforcement learning policy to solve a liquid manipulation task using pol-
icy gradients. Additionally, we also show preliminary results combining SPNets with convolutional
neural networks for perception.
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5.1 Learning Fluid Parameters

We evaluate SPNets on the task of learning, or estimating, some of the λ∗ fluid parameters from data.
This experiment illustrates how one can perform system identification on liquids using gradient-
based optimization. Here we frame this system identification problem as a learning problem so that
we can apply learning techniques to discover the parameters. We use a commercial fluid simulator
to generate the data and then use backpropagation to estimate the fluid parameters. We refer the
reader to the appendix for more details on this process.

We used the ladle scene shown in Figure 2a to test our method. Here, the liquid rests in a rectangular
container as a ladle scoops some liquid from the container and then pours it back into the container.
Figures 2b and 2c show the difference between the ground truth and estimated values for the cohe-
sion λc and viscosity λv parameters when using the model to estimate the parameters on each of the
9 sequences we generated, for both the L1-loss, which assumes full knowledge of the particle state,
and the projection loss, which assumes the system has access to only a 2D projection of the particle
state. In all 9 cases and for both losses, the network converges to the ground truth parameter values
after only a couple hundred iterations. While the L1 loss tended to converge slightly faster (which is
to be expected with a more dense loss signal), the projection loss was equally able to converge to the
correct parameter values, indicating that the gradients computed by our model through the camera
projection are able to correctly capture the changes in the liquid due to its parameters. Note that for
the projection loss the camera position is important to provide the silhouette information necessary
to infer the liquid parameters.

5.2 Liquid Control

(a) Plate (b) Pouring (c) Catching

Figure 3: The control scenes used in the evaluations in this
paper. The top row shows the initial scene; the bottom row
shows the scene after several seconds.

To test the efficacy of the gradients pro-
duced by our models, we evaluate SP-
Nets on 3 liquid control problems. The
goal in each is to find the set of controls
U = {ut} that minimize the cost

L =
∑
t

l(Pt, Vt, ut) (4)

where l is the cost function, Pt is the set
of particle positions at time t, and Vt is
the set of particle velocities at time t.
To optimize the controls U , we utilize
Model Predictive Control (MPC) [38].
MPC optimizes the controls for a short,
finite time horizon, and then re-optimizes
at every timestep. We evaluated our
model on 3 scenes: the plate scene, the pouring scene, and the catching scene. We refer the reader
to the appendix for details on how MPC is used to optimize the controls for each scene.

The Plate Scene: Figure 5a shows the plate scene. It consists of a plate surrounded by 8 bowls.
A small amount of liquid is placed on the center of the plate, and the plate must be tilted such that
the liquid falls into a given target bowl. Figure 4a shows the results of each of the evaluations on
the plate scene. In every case, the optimization produced a trajectory where the plate would “dip”
in the direction of the target bowl, wait until the liquid had gained sufficient momentum, and then
return upright, which allowed the liquid to travel further off the edge of the plate. Note that simply
“dipping” the plate would result in the liquid falling short of the bowl. For all bowls except one, this
resulted in 100% of the liquid being placed into the correct bowl. For the one bowl, when it was set
as the target, all but a small number of the liquid particles were placed in the bowl. Those particles
landed on the lip of the bowl, eventually rolling off onto the ground. Nonetheless, it is clear that our
method is able to effectively solve this task in the vast majority of cases.

The Pouring Scene: We also evaluated our method on the pouring scene, shown in Figure 5b.
The goal of this task is to pour liquid from the cup into the bowl. In all cases we evaluated, all
liquid either remained in the cup or was poured into the bowl; no liquid was spilled on the ground.
For that reason, in figure 4b we show how close each evaluation was to the given desired pour
amount. In every case, the amount poured was within 11g of the desired amount, and the average
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(b) Pouring Scene

Initial Policy Policy
Movement MPC Train Test

Right 97.9% 98.3% 99.2%
Left 99.7% 99.5% 93.8%

Both 98.8% 98.9% 96.5%

(c) Catching Scene

Figure 4: Results from the liquid control task. From left to right: The plate scene. The numbers in each bowl
indicate the percent of particles that were successfully placed in that bowl when that bowl was the target. The
pouring scene. The x axis is the targeted pour amount and the y axis is the amount of liquid that was actually
poured where the red marks indicate each of the 11 pours. The catching scene. Shown is the percent of liquid
caught by the target cup where the rows indicate the initial direction of movement of the source.

difference across all 11 runs between actual and desired was 5g. Note that the initial rotation of
the cup happens implicitly; our loss function only specifies a desired target for the liquid, not any
explicit motion. This shows that physical reasoning about fluids using our model enables solving
fine-grained reasoning tasks like this.

The Catching Scene: The final scene we evaluated on was the catching scene, shown in Figure 5c.
The scene consisted of two cups, a source cup in the air filled with liquid and a target cup on the
ground. The source cup moved arbitrarily while dumping the liquid in a stream. The goal of this
scene is to shift the target cup along the ground to catch the stream of liquid and prevent it from
hitting the ground. The first column of the table in Figure 4c shows the percentage of liquid caught
by the cup averaged across our evaluations. In all cases, the vast majority of the liquid was caught,
with only a small amount dropped due largely to the time it took the target cup to initially move
under the stream. It is clear from these results and the liquid control results on the previous two
scenes that our model can enable fine-grained reasoning about fluid dynamics.

5.3 Learning a Liquid Control Policy via Reinforcement Learning

Finally, we evaluate our model on the task of learning a policy in a reinforcement learning setting.
That is, the control ut at timestep t is computed as a function of the state of the environment, rather
than optimized directly as in the previous section. Here the goal of the robot is to optimize the
parameters of the policy. We refer the reader to the appendix for details on the policy training
procedure. We test our methodology on the catching scene. The middle column of the table in
figure 5c shows the percent of liquid caught by the target cup when using the policy to generate the
controls for the training sequences. In all cases, the vast majority of the liquid was caught by the
target cup. To test the generalization ability of the policy, we modified the sequences as follows. For
all the training sequences, the source cup rotated counter-clockwise (CCW) when pouring. To test
the policy, we had the source cup follow the same movement trajectory, but rotated clockwise (CW)
instead, i.e., in training the liquid always poured from the left side of the source, but for testing it
poured out of the right side. The percent of liquid caught by the target cup when using the policy
for the CW case is shown in the third column of the table in figure 5c. Once again the policy is able
to catch the vast majority of the liquid. The main point of failure is when the source cup initially
moves to the left. In this case, as the source cup rotates, the liquid initially only appears in the
upper-left of the image. It’s not until the liquid has traveled downward several centimeters that the
policy begins to move the target cup under the stream, causing it to fail to catch the initial liquid.
This behavior makes sense, given that during training the policy only ever encountered the source
cup rotating CCW, resulting in liquid never appearing in the upper-left of the image. Nonetheless,
these results show that, at least in this case, our method enables us to train robust policies for solving
liquid control tasks.

5.4 Combining SPNets with Perception

While the focus in this paper has been on introducing SPNets as a platform for differentiable fluid
dynamics, we also wish to show an example of how it can be combined with real perception. So in
this section we show some initial results on a liquid state tracking task. That is, we use a real robot
and have it interact with liquid. During the interaction, the robot observes the liquid via its camera.
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It is then tasked with reconstructing the full 3D state of the liquid at each point in time from this
observation. To make this task feasible, we assume that the initial state of the liquid is known and
that the robot has 3D models of and can track the 3D pose of the rigid objects in the scene. The
robot then uses SPNets to compute the updated liquid position at each point in time, and uses the
observation to correct the liquid state when the dynamics of the simulated and real liquid begin to
diverge. This is the same task we looked at in [21]. We describe the details of this method in the
appendix.

(a) RGB (b) SPNets (c) SPNets+Perception

Figure 5: Results when combining SPNets with perception.
The images in the top and bottom rows show 2 example frames.
From left-to-right: the RGB image (for reference), the RGB
image with SPNets overlayed (not using perception), and the
RGB image with SPNets with perception overlayed. In the
overlays, the blue color indicates ground truth liquid pixels,
green indicates the liquid particles, and yellow indicates where
they overlap.

We evaluated the robot on 12 pouring
sequences. Figure 5 shows 2 example
frames from 2 different sequences and
the result of both SPNets and SPNets
with perception. The yellow pixels in-
dicate where the model and ground truth
agree; the blue and green where they dis-
agree. From this it is apparent that SP-
Nets with perception is significantly bet-
ter at matching the real liquid state than
SPNets without perception. We eval-
uate the intersection-over-union (IOU)
across all frames of the 12 pouring se-
quences. SPNets alone (without percep-
tion) achieved an IOU of 36.1%. SP-
Nets with perception achieved an IOU
of 56.8%. These results clearly show
that perception is capable of greatly im-
proving performance even when there is
significant model mismatch. Here we
can see that SPNets with perception in-
creased performance by 20%, and from
the images in Figure 5 it is clear that
this increase in performance is signifi-
cant. This shows that our framework can
be very useful for combining real perceptual input with fluid dynamics.

6 Conclusion & Future Work

In this paper we presented SPNets, a method for computing differentiable fluid dynamics and their
interactions with rigid objects inside a deep network. To do this, we developed the ConvSP and
ConvSDF layers, which allow the model to compute particle-particle and particle-rigid object inter-
actions. We then showed how these layers can be combined with standard neural network layers to
compute fluid dynamics. Our evaluation in Section 5 showed how a fully differentiable fluid model
can be used to 1) learn, or identify, fluid parameters from data, 2) control liquids to accomplish a
task, 3) learn a policy to control liquids, and 4) be used in combination with perception to track
liquids. This is the power of model-based methods: they are widely applicable to a variety of tasks.
Combining this with the adaptability of deep networks, we can enable robots to robustly reason
about and manipulate liquids. Importantly, SPNets make it possible to specify liquid identification
and control tasks in terms of the desired state of the liquid; the resulting controls follow from the
physical interaction between the liquid and the controllable objects. This is in contrast to prior ap-
proaches to pouring liquids, for instance, where the relationships between controls and liquid states
have to be specified via manually designed functions.

We believe that by combining model-based methods with deep networks for liquids, SPNets pro-
vides a powerful new tool to the roboticist’s toolbox for enabling robots to handle liquids. A possible
next step for future work is to add a set of parameters to SPNets to facilitate learning a residual model
between the analytical fluid model and real observed fluids, or even to learn the dynamics of differ-
ent types of substances such as sand or flour. SPNets can also be used to perform more complex
manipulation tasks, such as mixing multiple liquid ingredients in a bowl, online identification and
prediction of liquid behavior, or using spoons to move liquids, fluids, or granular media between
containers.
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A Position Based Fluids Continued

In section 3 of the main paper we gave a brief overview of the Position Based Fluids (PBF) algorithm.
The key steps of the PBF algorithm are moving the particles (lines 2–3 in figure 1 in the main paper),
iteratively solving the constrains imposed by the incompressibility of the fluid (lines 4–10), and
updating the velocities (lines 11–12). Solving the constraints entails iteratively moving each particle
to better satisfy each constraint until the constraints are satisfied. In PBF, this is approximated by
repeating the inner loop (lines 4–10) a fixed number of times.

In the main paper we described some of the details of computing the various constraint solutions.
Here we describe computing the solutions to the SOLVECOHESION (line 6), SOLVESURFACETEN-
SION (line 7), and APPLYVISCOSITY (line 12) functions.

The cohesion correction δpci for each particle i is computed as

δpci =
∑

j∈P−{i}

λcnijWc(dij , h)

where λc is the cohesion constant and Wc is a kernel function. For Wc we use

Wc(d, h) =
−(1− d0)

d2
0

(
d

h

)3

+
d2

0 + d0 + 1

d2
0

(
d

h

)2

− 1

where d0 is the fluid rest distance as a fraction of h. For this paper we fix d0 to 0.5.

The surface tension correction δpsi for each particle i is computed using the following 2 equations

δpci =
∑

j∈P−{i}

λs
ρ0

(nj − ni)I(dij ≤ h)

where λs is the surface tension constant, nk is the normal of the fluid surface at particle k, and I is
the indicator function. The normal nk is computed as

nk =
∑

j∈P−{i}

nijWc(dij , h)

where Wc is the same kernel function used for the cohesion constraint.

Finally, the viscosity update δvi for each particle i computed by APPLYVISCOSITY is

δvi =
∑

j∈P−{i}

λv
ρ0

(vj − vi)Wρ(dij , h)

where λv is the viscosity constant, vk is the velocity of particle k, andWρ is the same kernel function
used to compute the density.

B SPNet Diagram

As described in section 3, Smooth Particle Networks (SPNets) implements the Position Based Fluids
(PBF) alrogithm, which is shown in the main paper in figure 1. Figure 6 shows the layout of SPNets
as a network diagram. The network takes as input the current particle positions P and velocities V ,
and computes the fluid dynamics for a single timestep resulting in the new positions P ′ and velocities
V ′. For clarity, the fhe functions SOLVEPRESSURE, SOLVECOHESION, SOLVESURFACETENSION,
and SOLVEOBJECTCOLLISIONS are collapsed into individual boxes in figure 6a. The full layout for
SOLVEPRESSURE and SOLVEOBJECTCOLLISIONS are shown in figures 6c and 6d respectively.

The first operation the network performs is to apply the external forces to the particles, line 2 of
the PBF algorithm (shown in figure 1 in the main paper) and the lavender box in the upper-left of
figure 6a here. Next the network updates the particle positions according to their velocities, line 3 of
PBF and the element-wise multiplication and addition immediately to the right of APPLYFORCES.
After this, the network iteratively solves the fluid constraints (lines 5–9), shown by the SOLVECON-
STRAINTS boxes in figure 6a. Here we show 3 constraint solve iterations, however in principle the
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Figure 6: The layout for SPNet. The upper-left shows the overall layout of the network. The functions SOLVE-
PRESSURE, SOLVECOHESION, SOLVESURFACETENSION, and SOLVEOBJECTCOLLISIONS are collapsed for
readability. The lower-right shows the expansion of the SOLVEOBJECTCOLLISIONS function, with the line in
the top of the box being the input to the SOLVEOBJECTCOLLISIONS in the upper-left diagram and the line out
of the bottom of the box being the line out of the box. The lower-left shows the expansion of the SOLVEPRES-
SURE function. For clarity, the input line (which represents the particle positions) is colored green and the line
representing the particle pressures is colored pink.
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network could have any number. Each constraint solve partially updates the particle positions to
better satisfy the given constraints.

We consider 3 constraints in this paper: pressure (line 5), cohesion (line 6), and surface tension
(line 7). Each is shown as an individual box in figure 6a. Figure 6c shows the full network layout for
the pressure constraint. This exactly computes the solutions to equations 1–3 from the main paper
as derived in section 4.1. Note the column under the leftmost ConvSP layer in figure 6a; it computes
the pressure set Ω. This is then used to compute the result of the other 4 ConvSP layers. The final
step of each constraint solve iteration is to solve the object collisions. The expansion of this box
is shown in figure 6d. The ConvSDF layer on the left computes the particle penetration R into the
SDFs, and the 3 on the right compute the normal nSDF of the SDFs. Note that in this diagram
we show the layout for particles in 3D (there are 3 ConvSDF layers on the right of figure 6d, one
to compute the normal direction in each dimension), however this can applied to particles in any
dimensionality.

After finishing the constraint solve iterations, the network computes the adjusted particle velocities
based on how the positions were adjusted (line 11 of the PBF algorithm), shown in figure 6a as the
element-wise subtraction and multiplication above the APPLYVISCOSITY box. Finally, the network
computes the viscosity, shown in the tan box in the bottom-right of figure 6a. Viscosity only affects
the particles velocities, so the output positions of the particles are the same as computed by the
constraint solver.

There are several parameters and constants in this network. In the APPLYFORCES box in the upper-
left of figure 6a, Gravity is set to be −9.8ms2 and ∆t is set to be 1

60 . The rest density ρ0, shown
in the APPLYVISCOSITY box in the lower-right of figure 6a and in the SOLVEPRESSURE box in
figure 6c, is set empirically based on the rest density of water. The fluid parameters λω and λv are
shown in figure 6c and the lower-right of figure 6a respectively.

C Model Comparison

We include here a comparison between our model and an established implementation of the same
algorithm for verification, which there was not enough room to include in the paper itself. We
compared our model to Nvidia FleX [39], a commercially available physics simulation engine which
implements fluid dynamics using Position Based Fluids (PBF). For this comparison, we set all the
model parameters (e.g., the pressure parameter λω) to be the same for both FleX and SPNets, we
initialize the particle poses and velocities to the same values, and all rigid objects follow the same
trajectory. We compare FleX and SPNets on two scenes. In the scooping scene, the liquid rests at
the bottom of a large basin as a cup moves in a circle, scooping liquid and then dumping it into the
air. In the ladle, the liquid rests in a rectangular container as a ladle scoops some from the container
and then pours it back into it. Images from the ladle scene are shown in figure 2a. We simulate each
scene 9 times, once for each combination of values for the cohesion parameter λc ∈ {0.01, 0.1, 0.2}
and viscosity parameter λv ∈ {0.001, 10, 120} (we fix all other constants).

To compare FleX and SPNets, we compute the intersection over union (IOU) of the two particle
sets at each point in time. To compute the intersection between two particle sets with real valued
cartesian coordinates, we relax the “identical” constraint to be within a small ε, i.e., the intersection
is the set of all particles from each set that have at least one neighbor in the opposing set that is
within ε units away. For this comparison we set ε to be 2.5cm. For the scooping scene, the IOU was
91.0%, and for the ladle scene, the IOU was 97.1%. Given this, it is clear that while SPNets is not
identical to FleX, it matches closely and produces stable fluid dynamics.

D Evaluation Details

Here we detail how we evaluated our model on the control tasks from section 5.

D.1 Estimating Fluid Parameters

To estimate the fluid parameters from data for the results in Section 5.1, we did the following. We
used Nvidia FleX [39] to generate ground truth data, and then used backpropagation and gradient de-
scent to iteratively update the parameter values until convergence. FleX is a commercially available
physics simulation engine which implements fluid dynamics using Position Based Fluids (PBF).
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Figure 7: Diagram of the rollout procedure for optimizing the controls u. The dynamics are computed forward
(black arrows) for a fixed number of timesteps into the future (shown here are 3). Then gradients of the loss are
computed with respect to the controls backwards (blue arrows) through the rollout using backpropagation.

Given sequences P = {Pt} and V = {Vt} of particle positions and velocities over time generated
by FleX, at each iteration we do the following. First we randomly sample B particle positions P
and velocities V from P ,V to make a training batch PB , VB . Next, SPNet is used to roll out the
dynamics T timesteps forward in time to generate P̃B+T , ṼB+T , the predicted particle positions
and velocities after T timesteps. We then compute the loss l(P̃B+T , ṼB+T ,PB+T ,VB+T ) between
the predicted positions and velocities and the ground truth positions and velocities. Since our model
is differentiable, we can use backpropagation to compute the gradient of the loss with respect to
each of the fluid parameters. We then take a gradient step to update the parameters. This process is
repeated until the parameters converge.

We used the ladle scene shown in Figure 2a to test our method. Here, the liquid rests in a rect-
angular container as a ladle scoops some liquid from the container and then pours it back into
the container. We generated 9 sequences, one for each combination of the cohesion parameter
λc ∈ {0.05, 0.1, 0.15} and viscosity parameter λv ∈ {30, 60, 90} (we fixed all other fluid parame-
ters). Each sequence lasted exactly 620 frames. We set our batch size to 8, T to 2, and use Adam [40]
with default parameter values and a learning rate of 1e−2 to update the fluid parameters at each it-
eration. We evaluate using 2 different loss functions. The first is an L1 loss between the predicted
and ground truth particle positions and velocities. This is possible because we know which particle
in Flex corresponds to which particle in the SPNet prediction. In real world settings, however, such
a data association is not known, so we evaluate a second loss function that eschews the need for
it. We use the projection loss, which simulates a camera observing the scene and generating binary
pixel labels as the observation (similar to the heatmaps generated by our method in chapter ??). We
compute the projection loss between the predicted and ground truth states by projecting the visible
particles onto a virtual camera image, adding a small Gaussian around the projected pixel-positions
of each particle, and then passing the entire image through a sigmoid function to flatten the pixel
values. The loss is then the L1 difference between the projected image of the predicted particles
and the ground truth particles. Projecting the particles as a Gaussian allows us to compute smooth
gradients backwards through the projection. For the ladle scene, the camera is placed horizontally
from the ladle, looking at it from the side.

D.2 Liquid Control

For the liquid control results described in Section 5.2, we generated them in the following manner.
The goal in each is to find the set of controls U = {ut} that minimize the cost

L =
∑
t

l(Pt, Vt, ut) (5)

where l is the cost function, Pt is the set of particle positions at time t, and Vt is the set of particle
velocities at time t. Pt and Vt are defined by the dynamics as follows

Pt, Vt = SPN(Pt−1, Vt−1, OP (ut)) (6)

where SPN is the fluid dynamics computed by SPNets, and OP transforms the control ut to the
poses of the rigid objects in the scene at time t. The initial positions P0 and velocities V0 of the
particles, the loss function l, and the control function OP are fixed for each specific control task.

To optimize the controls U , we utilized Model Predictive Control (MPC) [38]. MPC optimizes the
controls for a short, finite time horizon, and then re-optimizes at every timestep. Specifically, given
the current particle positions Pt and velocities Vt and the set of controls U computed at the previous
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timestep, MPC first computes the future positions Pt+1, ..., Pt+T and velocities Vt+1, ..., Vt+T by
repeatedly applying the SPNet for some fixed horizon T . Then, MPC sums the loss over this horizon
as described in equation (5) and computes the gradient of the loss Lwith respect to each control ∆ut
via our differentiable model. Finally, the updated controls U ′ are computed as follows

U ′ =

{
ui − s

∆ui
‖∆ui‖

∣∣∣∣∣ i ∈ [t, t+ T ]

}
where s is a fixed step size. The first control u′t ∈ U ′ is executed, the next particle positions Pt+1

and velocities Vt+1 are computed, and this process is repeated to update all controls again. Note
that this process updates not only the current control ut but also all controls in the horizon, so that
by the time control ut+T is executed, it has been updated T times. Figure 7 shows a diagram of this
process. We set T to 10 and use velocity controls on our 3 test scenes. The controls u are initialized
to 0 and T is set to a fixed horizon for each scene.

We evaluated SPNets on 3 liquid control tasks:

• The Plate Scene: Figure 3a shows the plate scene. It consists of a plate surrounded by 8
bowls. A small amount of liquid is placed on the center of the plate, and the plate must be
tilted such that the liquid falls into a given target bowl. The controls for this task are the
rotation of the plate about the x (left-right) and z (forward-backward) axes3. We set the loss
function for this scene to be the L2 (i.e., Euclidean) distance between the positions of the
particles and a point in the direction of the target bowl. We ran 8 evaluations on this scene,
once with each bowl as the target.

• The Pouring Scene: We also evaluated our method on the pouring scene, shown in Fig-
ure 3b. The goal of this task is to pour liquid from the cup into the bowl. The control is the
rotation of the cup about the z (forward-backward) axis, starting from vertical. Note that
there is no limit on the rotation; the cup may rotate freely clockwise or counter-clockwise.
Since the cup needs to perform a two part motion (turning towards the bowl to allow liquid
to flow out, then turning back upright to stop the liquid flow), we use a two part piecewise
loss function. For the first part, we set the loss to be the L2 distance between all the liquid
particles and a point on the lip of the cup closest to the bowl. Once a desired amount of
liquid has left the cup, we switch to the second part, which is a standard regularization loss,
i.e., the loss is the rotation of the cup squared, which encourages it to return upright. We
ran 11 evaluations of this scene, varying the desired amount of poured liquid between 75g
and 275g.

• The Catching Scene: The final scene we evaluated on was the catching scene, shown in
Figure 3c. The scene consisted of two cups, a source cup in the air filled with liquid and
a target cup on the ground. The source cup moved arbitrarily while dumping the liquid
in a stream. The goal of this scene is to shift the target cup along the ground to catch
the stream of liquid and prevent it from hitting the ground. The control is the x (left-
right) position of the cup. In order to ensure smooth gradients, we set the loss to be the
x distance between each particle and the centerline of the target cup inversely weighted
by that particle’s distance to the top of the cup. The source cup always rotated counter-
clockwise (CCW), i.e., always poured out its left side. We ran 8 evaluations of our model,
varying the movement of the source cup. In every case, the source cup would initially move
left/right, then after a fixed amount of time, would switch directions. Half the evaluations
started with left movement, the other half right. We vary the switch time between 3.3s,
4.4s, 5.6s, and 6.7s.

D.3 Learning a Liquid Control Policy via Reinforcement Learning

Here we describe the details of how we evaluated our model on the task of learning a policy in a
reinforcement learning setting. Let ut to be the control at timestep t. It is computed as

ut = π(ot, θ)

where ot is the observation at time t, θ are the policy parameters, and π is a function mapping the
observation (and policy parameters) to controls. Since we have access to the full state, we compute

3In all our scenes, the y axis points up
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Figure 8: Diagram of the rollout procedure for optimizing the policy parameters θ. This is very similar to
the procedure shown in Figure 7. The dynamics are computed forward (black arrows) for a fixed number
of timesteps into the future (shown here are 3). Then gradients of the loss are computed with respect to θ
backwards (blue arrows) through the rollout using backpropagation.

the observation ot as a function of the particle positions Pt and velocities Vt. The goal is to learn
the parameters θ∗ that best optimize a given loss function l.

To do this, we can use a technique very similar to the MPC technique which we described in the
previous section. The main difference is that because the controls ut are a function of the policy,
we optimize instead the policy parameters θ. We rollout the policy for a fixed number of timesteps,
compute the gradient of the policy parameters with respect to the loss, and then update the param-
eters. This is possible because our model is fully differentiable, so we can use backpropagation to
compute the gradients backwards through the rollout. Figure 8 shows a diagram of this process.

We test our methodology on the catching scene. To train our policy, we use the data generated
by the 8 control sequences from the previous section using MPC on the catching Scene. At each
iteration of training, we randomly sample a different timestep t for each of the 8 sequences, then
rollout the policy starting from the particle positions Pt and velocities Vt. We initialize the target
cup X position by adding Gaussian noise to the X position of the target cup at time t in the training
sequences. The observation is computed by projecting the particles onto a virtual camera image as
described in section 5.1. The camera is positioned so that both cups are in its field of view. Its X
position is set to be the same as the X position of the target cup, that is, the camera moves with the
target cup.

Since the observation is effectively binary pixel labels, we use a relatively simple model to learn
the policy. We use a convolutional neural network with 1 convolutional layer (10 3×3 kernels with
stride of 2) followed by a rectified linear layer, followed by a linear layer with 100 hidden units,
followed by another rectified linear layer, and finally a linear layer with 1 hidden unit. We feed the
output through a hyperbolic tangent function to ensure it stays within a fixed range. We trained the
policy for 1200 iterations using the Adam [40] optimizer with a learning rate of 2.5e−5. The input
to the network is a 160×120 image and the output is the control.

E Combining Perception and SPNets

Here we layout the details of how combined SPNets with perception. We tasked the robot with
tracking the 3D state of liquid over time. We assume the robot has 3D mesh models of all the rigid
objects in the scene and knows their poses at all points in time. We further assume that the robot
knows the initial state of the liquid. The robot then interacts with the objects and observes the scene
with its camera. The task of the robot is to use its observations from its camera to track the changes
in the 3D liquid state over time. The robot is equipped with an RGB camera for observing the liquid.
We use a thermographic camera aligned to the RGB camera and heated water to acquire ground truth
pixel labels. We refer the reader our prior work [15] for details on the thermographic camera setup.

E.1 Methodology

To track the liquid state, the robot takes advantage of its knowledge of fluid dynamics built-in to
SPNets. In an ideal world, knowing the initial state of the liquid and the changes in poses of the rigid
objects, it should be possible to simulate the liquid alongside the real liquid, where the simulated
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liquid would perfectly track the real liquid. However, no model is perfect and there is inevitably
going to be mismatch between the simulation and the real liquid. Furthermore, due to the temporal
nature of this problem, a small error can quickly compound to a large deviation. The solution in this
case is to “close the loop,” i.e., use the robot’s perception of the real liquid to correct the state of the
simulation to prevent errors from compounding and better match the real liquid.

The methodology we adopt here is very similar to that of our prior work [21] where the robot simu-
lates the liquid forward in time alongside the real liquid while using perception to correct the state at
each timestep, however here the robot tracks the liquid state using noisier RGB observations rather
than the thermal camera directly. In this section, we use only pouring interactions, so we simulate
each as follows. Each interaction starts with a known amount of liquid in the source container. The
robot initializes the liquid state by placing a corresponding amount of liquid particles in the 3D mesh
of the source container. Then, at each timestep, the robot updates the poses of the rigid objects and
simulates the liquid forward for 1 timestep. During the simulation step, the robot uses its perception
to correct the particle positions (described in the next paragraph). Each timestep corresponds to 1

30
of a second in simulation time. The robot repeats this simulation process until the interaction is over.

The main difference between the methodology here and that in [21] is that instead of assuming the
robot has access to an expensive thermographic camera (and is using heated water), we assume the
robot has access only to an inexpensive RGB camera. Thus we must use a different methodology to
integrate the perception into the simulation. In our other prior work [15] we developed several deep
network architectures for producing pixel-wise liquid labels from RGB images. Here we use the
LSTM-FCN with RGB input to convert raw RGB images to pixel-wise liquid labels. We refer the
reader to that paper for more details on that network, which we briefly describe here. The LSTM-
FCN is a fully convolutional neural network that takes in an RGB image and outputs a binary pixel
label (liquid or not-liquid) for each pixel. It is recurrent, which means it uses an explicit memory that
it passes forward from one timestep to the next (it uses an LSTM layer to enable this recurrence).
It is composed of 6 convolutional layers, each followed by a rectified linear layer. The first 3 layers
are followed by max-pooling layers, the LSTM layer is inserted after the fifth convolutional layer,
and the network is terminated with a transposed convolution layer (to upsample the resolution to the
original input’s size). We trained the LSTM-FCN using the real robot dataset collected in that paper
using the same methodology. After training the LSTM-FCN, we froze the weights.

We then used the pixel labels output by the LSTM-FCN to correct the state of the simulation. We
treat this perception correction as a constraint, similar to the pressure or cohesion constraints, allow-
ing us to add it to the inner loop of the PBF algorithm (lines 5–9 in Figure 1). We define the function
SOLVEPERCEPTION that takes as input the current set of particle locations P ′ and the RGB image
R and produces ∆PR, the vector to move each particle by to better satisfy the perception constraint.
We insert this function immediately after line 7 and append ∆PR to the summation on the follow-
ing line of the algorithm. This adds the perception correction to be computed alongside the other
corrections in the inner-loop of PBF. Note that because this is added as part of the inner loop in PBF,
the velocity is automatically updated based on this correction on line 11.

Figure 9 shows a diagram of how we implement the SOLVEPERCEPTION function. We first apply the
LSTM-FCN to the RGB image to generate pixel-wise liquid labels, which we refer to as observed
labels. Next we compute the observed distance field over the observed labels, i.e., the distance
from each pixel to the closest positive liquid pixel. We use this and a 2D convolution with fixed
parameters to compute the observed distance field gradient, i.e., for every pixel the direction to
the closest positive liquid pixel. In parallel, we project the state of the particles onto a 2D image
using the camera’s intrinsic and extrinsic parameters. This also generates a pixel-wise label image,
which we refer to as the model labels. We then subtract the model labels from the observed labels
to generate the disparity image, i.e., the pixels for which the model and observation disagree. We
then generate the disparity distance field gradient in the same manner as for the observed distance
field gradient. Furthermore, we feed the disparity image through 4 2D convolutions (the first three
of which are followed by a ReLU) and a sigmoid function. The output of this is a blending value for
each pixel. These blending values determine how to combine the two distance field gradients. We
multiply the observed distance field gradient by the blending values, and the disparity distance field
gradient by 1 minus the blending values and add them together. This results in a blended gradient
field. We project this back onto the particles in 3D, adjusting the gradient by the camera parameters.
The result is the set ∆PR, the distance to move each particle to better match the perception. Note
that for both projections (projecting 3D particles onto the 2D image plane and projecting the 2D
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Figure 9: A diagram of the SOLVEPERCEPTION method. It takes as input the current particle state (center-left)
and the current RGB image (lower-left). The RGB image is passed through the LSTM-FCN to generate pixel
labels, the particle state is projected onto 2D. From this, 2 gradient fields are computed, where the gradient
points in the direction of the closest liquid pixel. These fields are then blended and projected onto the particles
in 3D.

gradient field onto the 3D particles), we ignore particles that are blocked from view of the camera
by an object (e.g., particles in a container).

To train the parameters of the network, we do the following. We train the parameters of the LSTM-
FCN part of the network using the same training data and methodology as in our prior work [15]
and we refer the reader there for details. We then fix those parameters for the remainder of the
training. We pre-train the entire network in Figure 9 by randomly selecting frames from our dataset
and randomly placing particles in the scene. To compute the loss, we use the ground truth pixel
labels collected from the thermal camera as described in our prior work. The loss is computed as

L(L, P ) =

∑
p∈P

min
l∈L
||PROJ(p)− l||2

+

(∑
l∈L

min
p∈P
||l − PROJ(p)||2

)

whereL is the set of positive liquid pixels in the ground truth image, P is the set of particle positions,
and PROJ projects a particle location from 3D onto the 2D image plane. Intuitively, this loss
computes 2 terms: the accuracy, i.e., how far each particle is from a liquid pixel, and the coverage,
i.e., how far each liquid pixel is from a particle or how well the particles cover the liquid pixels. We
pre-train this network for 48,000 iterations using ADAM [40] with a learning rate of 0.0001, default
momentum values, and a batch size of 4. Finally, we train the network from end-to-end by adding
SOLVEPERCEPTION into SPNets, unrolling it over time, and computing the same loss. Again, this
is possible because SPNets can propagate the gradient backwards in time from one timestep to the
previous, allowing us to use those gradients to update the learned weights. We trained the network
this way for 3,500 iterations also using ADAM with the same learning rate and momentum values,
a batch size of 1, and unrolling for 30 timesteps4. A diagram showing this training process is shown
in Figure 10.

E.2 Evaluation

We evaluated SPNets combined with perception on the 12 pouring sequences we collected on the
real robot. That is, the robot executed 12 pouring sequences following a fixed trajectory with 2
different source containers (a cup and a bottle). One third of the sequences the container started 30%
full, one third 60% full, and one third 90% full. We tracked the liquid state using both SPNets with
perception and SPNets alone for comparison. For each sequence, the known amount of liquid was
placed in the source container at the start, and as the object poses were updated at each timestep, the
liquid was also updated via SPNets. For SPNets with perception, SOLVEPERCEPTION was added to
the PBF algorithm as described in the previous section and the RGB image from the robot’s camera

4Unrolling the network for training here is the same unrolling technique we used to train the LSTM-FCN in
[15].
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Figure 10: Diagram of the rollout procedure for optimizing the parameters of the perception network θ. This is
very similar to the procedures shown in Figures 7 and 8. The dynamics are computed forward (black arrows)
for a fixed number of timesteps into the future (shown here are 3). In this case the controls u are fixed.
The gradients of the loss are computed with respect to θ backwards (blue arrows) through the rollout using
backpropagation. The box “Perception Correction” corresponds to the network shown in Figure 9 and θ are its
parameters. Note that here the inner loop of the PBF algorithm in SPNets is shown (with 3 iterations) since this
is how the perception correction is intergrated into the dynamics.

was used at each timestep as input to that function. For SPNets alone, SOLVEPERCEPTION was not
added and the liquid state was tracked open-loop instead.

We evaluate the intersection-over-union (IOU) across all frames of the 12 pouring sequences. To
compute the IOU, we compare the true pixel labels from the ground truth (gathered using the thermal
camera) with the model pixel labels. To get the model pixel labels, we project each particle in the
simulation onto the 2D image plane. However, since there are far fewer particles than pixels, we
draw a circle of radius 5 around each particle’s projected location. The result is a set of pixel labels
corresponding to the state of the model. To compute the IOU, we divide the number of pixels where
the model and true labels agree by the number of pixels that are positive in either set of labels.
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