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Abstract: Our goal is to synthesize controllers for robots that provably gener-

alize well to novel environments given a dataset of example environments. The

key technical idea behind our approach is to leverage tools from generalization
theory in machine learning by exploiting a precise analogy (which we present in

the form of a reduction) between robustness of controllers to novel environments

and generalization of hypotheses in supervised learning. In particular, we utilize

the Probably Approximately Correct (PAC)-Bayes framework, which allows us

to obtain upper bounds (that hold with high probability) on the expected cost of

(stochastic) controllers across novel environments. We propose control synthesis

algorithms that explicitly seek to minimize this upper bound. The corresponding

optimization problem can be solved efficiently using convex optimization (Rela-

tive Entropy Programming in particular) in the setting where we are optimizing

over a finite control policy space. In the more general setting of continuously pa-

rameterized controllers, we minimize this upper bound using stochastic gradient

descent. We present examples of our approach in the context of obstacle avoidance

control with depth measurements. Our simulated examples demonstrate the po-

tential of our approach to provide strong generalization guarantees on controllers

for robotic systems with continuous state and action spaces, nonlinear dynamics,

and partially observable state via sensor measurements.

1 Introduction

Imagine an unmanned aerial vehicle that successfully navigates a thousand different obstacle envi-

ronments or a robotic manipulator that successfully grasps a million objects in our dataset. How

likely are these systems to succeed on a novel (i.e., previously unseen) environment or object? How

can we explicitly synthesize controllers that provably generalize well to such environments or ob-

jects? Current approaches for designing controllers for robotic systems either do not provide such

guarantees on generalization or provide guarantees only under extremely restrictive assumptions

(e.g., strong assumptions on the geometry of a novel environment [1, 2, 3, 4]).

The goal of this paper is to develop an approach for synthesizing controllers for robotic systems that

provably generalize well with high probability to novel environments given a dataset of example

environments. The key conceptual idea for enabling this is to exploit a precise analogy between

robustness of controllers to novel environments and generalization in supervised learning. This

analogy allows us to translate techniques for learning hypotheses with generalization guarantees

in the supervised learning setting into techniques for synthesizing control policies for robot tasks

with performance guarantees on novel environments. In particular, here we leverage PAC-Bayes

theory (Probably Approximately Correct Bayes) [5], which provides some of the tightest known

generalization bounds for classical supervised learning approaches [6, 7] and has also very recently

been used to promote and explain generalization of deep neural nets [8, 9, 10].

Statement of Contributions: To our knowledge, the results in this paper constitute the first attempt to

provide generalization guarantees for learning-based controllers for robotic systems with continuous

state and action spaces, nonlinear dynamics, and partially observable state operating in novel envi-

ronments. To this end, this paper makes three primary contributions. First, we provide a reduction
that allows us to translate generalization bounds from supervised learning to generalization bounds

for controllers. We apply this reduction to translate PAC-Bayes bounds to the control setting we con-

sider here (Section 4). Second, we propose solution algorithms for minimizing the regularized cost
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Figure 1: We demonstrate our approach

on the problem of synthesizing reac-

tive obstacle avoidance controllers for a

differential-drive robot model equipped

with a depth sensor. Our approach pro-

vides strong guarantees on the perfor-

mance of the synthesized controllers on

novel environments even with a small

number of training environments (e.g.,

guaranteed expected collision-free traver-

sal rate of 82.2% with 100 training

environments).

functions specified by PAC-Bayes theory in order to synthesize controllers with generalization guar-

antees (Section 5). In the setting where we are optimizing over a finite policy space (Section 5.1),

we show how to solve the corresponding optimization problem using convex optimization (Relative
Entropy Programs (REPs) in particular). In the more general setting of continuously parameterized

controllers (Section 5.2), we rely on stochastic gradient descent to perform the optimization. Third,

we demonstrate our approach (Section 6) on the problem of synthesizing reactive obstacle avoidance

controllers for a differential-drive robot model with 20-dimensional depth measurements (Figure 1).

Our simulation results demonstrate that we are able to obtain strong performance guarantees even

with a relatively small number of training environments. We compare the bounds obtained from

PAC-Bayes theory with exhaustive sampling to illustrate the tightness of the bounds.

1.1 Related Work

One approach for synthesizing controllers with guaranteed performance is to leverage robust con-

trol techniques (e.g., H-infinity control [11] or chance-constrained programming [12, 13, 14, 15]).

However, such techniques typically require an explicit description of the uncertainty affecting the

system. While uncertainty models for the robot’s dynamics (or measurement model) can often be

obtained via system identification, assuming an uncertainty model for the environment (e.g., a distri-

bution over all possible environment geometries) is unrealistic. One way to address this is to assume

that a novel environment satisfies conditions that allow a real-time planner to always succeed. For

example, in the context of navigation, this constraint could be satisfied by hand-coding emergency

maneuvers (e.g., stopping maneuvers or loiter circles) [1, 2, 3] or assuming that the environment

satisfies certain geometric conditions (e.g., large separation between obstacles) that allow for safe

navigation [4]. However, such conditions are rarely satisfied by real-world environments. Moreover,

such conditions are domain specific; it is not clear how one would specify such constraints for other

applications (e.g., grasping).

Another conceptually appealing approach for synthesizing controllers with guaranteed performance

on a priori unknown environments is to model the problem as a Partially Observable Markov Deci-

sion Process (POMDP) [16], where the environment is part of the (partially observed) state of the

system [17]. Computational considerations aside, such an approach is made infeasible by the need

to specify a distribution over environments the robot might encounter. Unfortunately, specifying

such a distribution over real-world environments is extremely challenging. Thus, many approaches

(including ours) assume that we only have indirect access to the true underlying distribution over

environments in the form of examples. For example, Richter et al. [17, 18] propose an approxima-

tion to the POMDP framework in the context of navigation by learning to predict future collision

probabilities from past data. The work on deep-learning based approaches for manipulation repre-

sents another prominent set of techniques where interactions with example environments (objects in

this case) are used to learn control policies [19, 20, 21, 22, 23]. While the approaches mentioned

above have led to impressive empirical demonstrations, it is very challenging to guarantee that such

methods will perform well on novel environments (especially when a limited number of training

examples are available, as is often the case for robotics applications).

The primary theoretical framework we utilize in this paper is PAC-Bayes generalization theory [5],

which provides some of the tightest known generalization bounds for classical supervised learning

problems [6, 7] and has recently been applied to explain and promote generalization in deep learning

[8, 9, 10]. PAC-Bayes theory has also been applied to learn control policies for Markov Decision

Processes (MDPs) with provable sample complexity bounds [24, 25]. However, we note that the

focus of our work is quite different from the work on PAC-Bayes MDP bounds (and the more general

framework of PAC MDP bounds [26, 27, 28]), which consider the standard reinforcement learning
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setup where a control policy must be learned through multiple interactions with a given MDP (with

unknown transition dynamics and/or rewards). In contrast, here we focus on zero-shot generalization

to a novel environment. In other words, a controller learned from examples of different environments

must immediately perform well on a new one (i.e., without further exploratory interactions with the

new environment). We further note that [24] considers finite state and action spaces along with

policies that depend on full state feedback while [25] relaxes the assumption on finite state spaces

but retains the other modeling assumptions. In contrast, we target systems with continuous state and

action spaces and synthesize control policies that rely on rich sensory inputs.

On the algorithmic front, we make significant use of Relative Entropy Programs (REPs) [29], which

constitute a rich class of efficiently solvable convex optimization problems (containing linear and

second-order cone programs [30] as special cases). REPs are problems in which a linear functional

of the decision variables is minimized subject to linear constraints and conic constraints given by

a relative entropy cone (see [29] for a more thorough introduction). Importantly for us, REPs can

handle constraints of the form KL(pkq)  c, where p and q are decision vectors and KL(·k|·)
represents the Kullback-Leibler divergence. This will allow us to use REPs to synthesize controllers

using the PAC-Bayes framework in the setting where we are optimizing over a finite set of policies.

2 Problem Formulation

Notation: We use v[i] to refer to the i-th component of a vector v 2 Rn
. We denote by Rn

+ the set

of elementwise nonnegative vectors in Rn
and use � to denote element-wise multiplication.

We assume that the robot’s dynamics are described by a discrete-time system x(t + 1) =

f(x(t), u(t);E), where t 2 Z+ is the time index, x(t) 2 X is the state, u(t) 2 U is the con-

trol input, and E is the environment that the robot operates in. We use the term “environment” here

broadly to refer to any factors that are external to the robot (e.g., an obstacle field that a mobile robot

is navigating, external disturbances, or an object that a manipulator is attempting to grasp).

Let E denote the space of all possible environments. We assume that there is an underlying distri-

bution D over E from which environments are drawn. Importantly, we do not assume that we have

explicit descriptions of E or D. Instead, we only assume indirect access to D in the form of a data

set S = {E1, . . . , EN} of N training environments drawn i.i.d. from D.

Let g : X ⇥ E ! Y denote the robot’s sensor mapping from a state x and an environment E

to an observation y = g(x;E) 2 Y . Let ⇡ : Y ! U denote a control policy that maps sensor

measurements to control inputs. Note that this is a very general model that captures policies that

depend on histories of sensor measurements (by augmenting x to keep track of histories of states

and letting Y denote the space of histories of measurements).

We assume that the robot’s desired behavior is encoded through a cost function. In particular, let

r⇡ : E ! (X ⇥ U)T denote the function that “rolls out” the system with control policy ⇡, i.e., r⇡
maps an environment E to the state-control trajectory obtained by applying ⇡ (up to a time horizon

T ). We will assume that the environment captures all sources of stochasticity (including random

initial conditions) and the rollout function for a particular environment is thus deterministic. We

then let C(r⇡;E) denote the cost incurred by control policy ⇡ when operating in environment E

over a time horizon T . We assume that the cost C(r⇡;E) is bounded and will assume (without

further loss of generality) that C(r⇡;E) 2 [0, 1].

The primary assumption we make in this work is the following.

Assumption 1. Given any control policy ⇡, we can compute the cost C(r⇡;Ei) for the training
environments E1, . . . , EN .

This assumption is satisfied if one can simulate the robot’s operation in the environments

E1, . . . , EN . We note that computational considerations aside, we do not make any restrictions

on the dynamics f or the sensor mapping g beyond the ability to simulate them. The models that our

approach can handle are thus extremely rich in principle (e.g., nonlinear or hybrid dynamics, sensor

models involving raycasting or simulated vision, etc.). Another possibility for satisfying Assump-

tion 1 is to run the controller ⇡ on the hardware system itself in the given environments. This may

be feasible for problems such as grasping, which are not safety-critical in nature. In such cases, our

approach does not require models of the dynamics, sensor mapping, or the rollout function.

Goal: Our goal is to design a control policy that minimizes the expected value of the cost C across

environments:

min

⇡2⇧
CD(⇡) := E

E⇠D
[C(r⇡;E)]. (1)
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In this work, it will be useful to consider a more general setting where we choose a distribution P

over the control policy space ⇧ (since the PAC-Bayes bounds we will use will assume this setting).

Our goal is then to solve the following optimization problem, which we refer to as OPT :

C

?
:= min

P2P
CD(P ) := min

P2P
E

E⇠D
E

⇡⇠P
[C(r⇡;E)], (OPT )

where P denotes the space of probability distributions over ⇧. Note that the outer expectation here is

taken with respect to the unknown distribution D. This is the primary challenge for tackling OPT .

3 Background: PAC-Bayes Theory in Supervised Learning

The primary technical framework we leverage in this paper is PAC-Bayes theory. Here we provide a

brief overview of the key results from PAC-Bayes theory in the context of supervised learning. Let

Z be an input space and Z 0
be a set of labels. Let D be the (unknown) true distribution on Z . Let H

be a hypothesis class consisting of functions hw : Z ! Z 0
parameterized by w 2 Rd

(e.g., neural

networks parameterized by weights w). Let l : H ⇥ Z ! R be a loss function

1

. We will denote

by P the space of probability distributions on the parameter space Rd
. Informally, we will refer to

distributions on H when we mean distributions over the underlying parameter space.

PAC-Bayes theory then applies to learning algorithms that output a distribution over hypotheses.

Specifically, the PAC-Bayes framework applies to learning algorithms with the following structure:

(1) Choose a “prior” distribution P0 2 P before observing any data; (2) observe training data

S = {zi}Ni=1 and choose a “posterior” distribution P 2 P . It is important to note that the posterior

distribution P need not be the Bayesian posterior. PAC-Bayes theory applies to any distribution P .

Let us denote the training loss associated with the posterior distribution P as lS(P ) :=

1
N

P
z2S E

w⇠P
[l(hw; z)] and the true expected loss as lD(P ) := E

z⇠D
E

w⇠P
[l(hw; z)]. The follow-

ing theorem is the primary result from PAC-Bayes theory

2

.

Theorem 1 (PAC-Bayes Bound for Supervised Learning [5, 31]). For any � 2 (0, 1), with proba-
bility at least 1� � over samples S ⇠ DN , the following inequalities hold:

lD(P )

| {z }
True loss

 KL

�1

⇣
lS(P )k

KL(PkP
0

) + log(

2

p
N

�
)

N

⌘
 lS(P )

| {z }
Training loss

+

s
KL(PkP

0

) + log(

2

p
N

�
)

2N| {z }
“Regularizer”

. (2)

Here, the KL inverse is defined as: KL

�1
(pkc) := sup{q 2 [0, 1] | KL(pkq)  c} (see Section

1 of the Appendix for more details). Theorem 1 provides two upper bounds on the true expected

loss lD(P ). The second follows from the first by applying the well-known upper bound for the KL

inverse: KL

�1
(pkc)  p +

p
c/2 and is easier to work with for the purpose of optimization. It

provides a strategy for choosing a distribution P over hypotheses by minimizing a combination of

the training loss and a “regularizer”.

4 PAC-Bayes Controllers

We now describe our approach for adapting the PAC-Bayes framework in order to tackle the con-

trol synthesis problem OPT and synthesize (stochastic) control policies with guaranteed expected

performance across novel environments. Our key idea for doing this is to exploit a precise analogy

between the supervised learning setting from Section 3 and the control synthesis setting described

in Section 2. Table 1 presents this relationship.

One can think of the relationship in Table 1 as providing a reduction [32] from the control synthesis

problem OPT to a supervised learning problem. We are provided input data in the form of a data

set of example environments. Choosing a “hypothesis” corresponds to choosing a control policy

⇡ (since the rollout function r⇡ is determined by ⇡). A “hypothesis” maps an environment E to

a “label”, corresponding to the state-control trajectory obtained by applying ⇡ on E. This “label”

incurs a loss C(r⇡;E).

1

Note that we are considering a slightly restricted form of the supervised learning problem (which is suffi-

cient for our needs here) where each input z 2 Z has only one correct label z0 2 Z 0
.

2

The bound we state here is a well-known bound due to Maurer [31] that improves slightly upon the original

PAC-Bayes bounds [5]. This bound holds when costs are bounded within [0, 1] (as assumed here) and N � 8.
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Supervised Learning Control Synthesis

Input data z 2 Z Environment E 2 E
Hypothesis hw : Z ! Z 0  Rollout function r⇡ : E ! (X ⇥ U)H
Loss l(hw; z) Cost C(r⇡;E)

Table 1: A reduction from the control synthesis problem we consider here to supervised learning.

We can use this reduction to translate the PAC-Bayes theorem for supervised learning (Theorem 1)

to the control setting. We assume that the space ⇧ of control policies is parameterized by w 2 Rd
.

This in turn parameterizes rollout functions. With a slight abuse of notation, we will refer to rollout

functions rw instead of r⇡ (with the understanding that w is the parameter corresponding to ⇡).

Let P0 be a “prior” distribution over the parameter space Rd
. The prior can be used to encode

domain knowledge, but need not be “true” in any Bayesian sense (i.e., bounds will hold for any

prior). Let P be a (possibly data-dependent) “posterior”. Following the notation from Section 2, we

denote the true expected cost across environments by CD(P ). We denote the cost on the training

environments as

CS(P ) :=

1

N

X

E2S

E
w⇠P

[C(rw;E)]. (3)

The following theorem then allows us to upper bound CD(P ).

Theorem 2 (PAC-Bayes Bound for Control Policies). For any � 2 (0, 1), with probability at least
1� � over sampled environments S ⇠ DN , the following inequality holds:

CD(P )

| {z }
True expected cost

 KL

�1

⇣
CS(P )k

KL(PkP
0

) + log(

2

p
N

�
)

N

⌘
 CS(P )

| {z }
Training cost

+

s
KL(PkP

0

) + log(

2

p
N

�
)

2N| {z }
“Regularizer”

.

(4)

Proof. The proof follows immediately from Theorem 1 given the reduction in Table 1.

The left hand side of inequality (4) is the cost function CD(P ) of the optimization problem OPT .

Theorem 2 thus provides an upper bound (that holds with probability 1 � �) on the true expected

performance across environments of any controller distribution P in terms of the loss on the training

environments in S = {Ei}Ni=1 and a “regularizer”. Our approach for choosing P is to minimize

this upper bound. Algorithm 1 outlines the steps involved in our approach. We note that while

P is chosen by optimizing C

PAC

(P ), the final upper bound C

?
bound

on CD(P ) is not computed as

C

PAC

(P

?
PAC

). While this is a valid bound, a tighter bound is provided by the KL inverse term in (4).

The Appendix (Section 1) shows how to compute the KL inverse using a simple REP.

Algorithm 1 PAC-Bayes Control Synthesis

1: Fix prior distribution P
0

2 P over controllers

2: Inputs: S = {E
1

, . . . , EN}: Training environments, �: Probability threshold

3: Outputs:

4: P ?
PAC

= argmin

P2P

C
PAC

(P ) :=

1

N

P
E2S E

w⇠P
[C(rw;E)] +

r
KL(PkP0)+log(

2
p

N
� )

2N

5: C?
bound

:= KL

�1

⇣
CS(P

?
PAC

)kKL(P?
PAC

kP0)+log(

2
p

N
� )

N

⌘

5 Computing PAC-Bayes Controllers

We now describe how to tackle the optimization problem in Algorithm 1 for minimizing the upper

bound on the true expected cost. We first show how to perform this optimization using Relative

Entropy Programming in the setting where the control policy space ⇧ is finite (Section 5.1). We

then tackle the more general setting where ⇧ is continuously parameterized (Section 5.2).

5.1 Finite Control Policy Space

Let the space of policies be ⇧ = {⇡1, . . . ,⇡L}. Our goal is then to optimize a discrete probability

distribution P (with corresponding probability vector p) over the space ⇧. Thus, p[j] denotes the

probability assigned to controller ⇡j . Define a matrix

ˆ

C of costs, where each element

ˆ

C[i, j] :=
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C(r⇡j ;Ei) corresponds to the cost incurred on environment Ei 2 S by controller ⇡j 2 ⇧ (recall

that Assumption 1 implies that we can compute each

ˆ

C[i, j]). The training cost CS(P ) is then:

1

N

X

E2S

E
⇡⇠P

[C(r⇡;E)] =

1

N

NX

i=1

LX

j=1

ˆ

C[i, j]p[j] :=

¯

Cp. (5)

We note that finding a vector p that minimizes the training cost corresponds to a Linear Program.

Minimizing the PAC-Bayes upper bound C

PAC

(P ) corresponds to solving the following optimization

problem (see Section 2 of the Appendix for a detailed derivation):

min

p2RL,⌧,�
⌧ (6)

s.t. �

2 �
KL(pkp0) + log(

2
p
N

� )

2N

, � = ⌧ � ¯

Cp, � � 0, 0  p  1,

X

j

p[j] = 1.

Our key observation here is that for a fixed � = �0, the above problem is a Relative Entropy Program

(REP) since it consists of minimizing a linear cost function subject to linear equality and inequality

constraints and an additional inequality constraint of the form KL(pkp0)  constant. We can thus

solve this problem very efficiently (see [29, 33] for details on computational complexity).

We note that � 2 [0, 1] since � = ⌧ � ¯

Cp, where ⌧ 2 [0, 1] (because ⌧ upper bounds the true

expected cost) and

¯

Cp 2 [0, 1] (recall that we assumed that costs are bounded in [0, 1]). In order

to solve problem (6) to global optimality, we can thus simply search over � 2 [0, 1] (e.g., using a

bisection search) to find the � that leads to the lowest optimal value for the corresponding REP.

5.2 Continuously-Parameterized Control Policy Space

We now consider policies ⇡w parameterized by the vector w 2 Rd
(e.g., neural net weights). We

will consider stochastic policies defined by Gaussian distributions w ⇠ N (µ,⌃) with diagonal

covariance ⌃ = diag(s) (with s 2 Rd
+). We use the shorthand Nµ,s := N (µ, diag(s)). Using

Gaussians makes computations easier since we can express the KL divergence between Gaussians

in closed form. We can then apply Algorithm 1 and choose µ, s to minimize the PAC-Bayes bound

C

PAC

(Nµ,s). For this to be a practical algorithm, there are two primary issues we need to address.

First, in order to minimize the bound C

PAC

(Nµ,s), one would like to apply gradient-based meth-

ods. However, the cost function may not be a differentiable (or even continuous) function of the

parameters w. For example, in the case of designing obstacle avoidance controllers, a natural (but

discontinuous) cost function is the one that assigns a cost of 1 if the robot collides (and 0 otherwise).

To tackle this issue, we employ a differentiable surrogate for the cost function during optimization

(note that the final bound is still evaluated for the original cost function).

The second challenge is the fact that computing the training cost CS(Nµ,s) requires computing

E
w⇠Nµ,s

[C(rw;E)]. For most realistic settings, this expectation cannot be computed in closed form.

We address this issue in a manner similar to [8]. In particular, in order to optimize µ and s using

gradient descent, we use the following unbiased estimator of CS(Nµ,s):

1

N

X

E2S

C(rµ+
p
s�⇠;E), ⇠ ⇠ N0,Id . (7)

In other words, in each gradient step we use an i.i.d. sample of ⇠ and compute gradients of (7)

with respect to µ and s. At the end of the optimization procedure, we fix the optimal µ

?
and

s

?
and estimate the training cost CS(P ) = CS(Nµ?,s?) by producing a large number of samples

w1, . . . , wL drawn from Nµ?,s? :

ˆ

CS(Nµ?,s?) :=

1
NL

P
E2S

PL
i=1 C(rwi ;E). We can then use

a sample convergence bound (see [34]) to bound the error between

ˆ

CS(Nµ?,s?) and CS(Nµ?,s?).

In particular, the following bound is an application of the relative entropy version of the Chernoff

bound for random variables (i.e., costs) bounded in [0, 1] and holds with probability 1� �0:

CS(Nµ?,s?)  ¯

CS(Nµ?,s? ;L, �
0
) := KL

�1
(

ˆ

CS(Nµ?,s?)k
1

L

log(

2

�

0 )). (8)

Combining inequalities (4) and (8) using the union bound, we see that the following bound holds

with probability at least 1� � � �0:

CD(Nµ?,s?)  C

?
bound

:= KL

�1

 
¯

CS(Nµ?,s? ;L, �
0
)k

KL(Nµ?,s?kP0) + log(

2
p
N

� )

N

!
. (9)
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This is the final version of our bound. Our approach is summarized in Algorithm 1 in the Appendix.

6 Example: Reactive Obstacle Avoidance Control

In this section, we demonstrate our approach on the problem of synthesizing reactive obstacle avoid-

ance controllers for a ground vehicle model equipped with a depth sensor. We first consider a finite

policy space ⇧ and leverage the REP-based framework described in Section 5.1 to provide guar-

antees on the performance of the controller across novel obstacle environments. We then consider

continuously parameterized policies and apply the approach from Section 5.2.

Dynamics. A pictorial depiction of the robot is provided in Figure 1. The state is [x, y, ], where

x and y are the x and y positions of the vehicle respectively, and  is the yaw angle. We model

the system using the (nonlinear) equations of motion of a differential drive vehicle with two control

inputs ul and ur corresponding to the left and right wheel speeds respectively (see Section 4 of

Appendix for details). We set ul = u0 � u

diff

, ur = u0 + u

diff

with u0 chosen to ensure that the

robot has a fixed speed v0 = 2.5m/s. We limit the turning rate by constraining u

diff

2 [�u0/2, u0/2].

The system is simulated as a discrete-time system with time-step �t = 0.05s.

Obstacle environments. A typical obstacle environment is shown in Figure 1 and consists of N

obs

cylinders of varying radii along with three walls that bound the environment between x 2 [�5, 5]m
and y 2 [0, 10]m. Environments are generated by first sampling the integer N

obs

uniformly between

20 and 40, and then independently sampling the x-y positions of the cylinders from a uniform dis-

tribution over the ranges x 2 [�5, 5]m and y 2 [2, 10]m. The radius of each obstacle is sampled

uniformly from the range [0.05, 0.2]m. The robot’s state is always initialized at [x, y, ] = [0, 1, 0].

Obstacle Avoidance Controllers. We assume that the robot is equipped with a depth sensor that

provides distances y[i] along 20 rays in the range ✓[i] 2 [�⇡/3,⇡/3] radians (+ve is clockwise) up

to a sensing horizon of 5m (as shown in Figure 1). A given sensor measurement y thus belongs

to the space Y = R20
. Let ŷ = 1/y 2 R20

be the inverse distance vector computed by taking an

element-wise reciprocal of y. We then choose u

diff

as the following dot product:

u

diff

= K · ŷ. (10)

An example of K 2 R20
is (see Figure 1 in the Appendix for a plot):

K[i] =

⇢
(y0/x0)(x0 � ✓[i]) if ✓[i] � 0,

(y0/x0)(�x0 � ✓[i]) if ✓[i] < 0.

(11)

For ✓[i] > 0, K[i] is a linear function of ✓[i] with x- and y-intercepts equal to x0 and y0. This is

reflected about the origin for ✓[i] < 0. Intuitively, this corresponds to a simple reactive controller

that computes a weighted combination of inverse distances in order to turn away from obstacles that

are close. Simple reactive controllers of this kind have been shown to be quite effective in practice

[35, 36, 37, 38], but can often be challenging to tune by hand in order to achieve good expected

performance across all environments. We tackle this challenge by applying the PAC-Bayes control

framework proposed here.

Results (finite policy space). To obtain a finite policy space, we choose L = 50 different K’s of

the form (11) by choosing different x and y intercepts x0 and y0. In particular, (x0, y0) is chosen

by discretizing the space [0.1, 5.0] ⇥ [0, 10.0] into 5 values for x0 and 10 values for y0. Our policy

space is thus ⇧ = {⇡1, . . . ,⇡L}, where each controller ⇡i corresponds to a particular choice of K.

We consider a time horizon of T = 100 and assign a cost of 1 if the robot collides with an obstacle

during this period (and 0 otherwise). We choose a uniform prior over the policy space ⇧ and apply

the REP framework from Section 5.1. The PyBullet package [39] is used to simulate the dynam-

ics and depth sensor; we use these simulations to compute the elements of the cost matrix

¯

C (ref.

Section 5.1). Each simulation takes ⇠ 0.01s to execute in our implementation (note that the com-

putation of the different elements of

¯

C can be entirely parallelized). Given the matrix

¯

C with 100

sampled environments, each REP (corresponding to a fixed value of � in Problem (6)) takes⇠ 0.05s

to solve using the CVXPY package [40] and the SCS solver [41]. We discretize the interval [0, 1]

into 100 values to find the optimal �. Complete code for this implementation is available online (see

Section 6 of Appendix).

Table 2 presents the upper bound C

?
bound

on the true expected cost of the PAC-Bayes controller P

?
PAC

(ref. Algorithm 1) for different sample sizes N with � = 0.01. The table also presents an estimate of

the true expected cost CD(P
?
PAC

) obtained by sampling 10

5
environments. As the table illustrates, the

PAC-Bayes bound provides strong guarantees even for relatively small sample sizes. For example,
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N (# of training environments) 100 500 1000 10000

PAC-Bayes bound (C?
bound

) 0.178 0.135 0.121 0.096

True expected cost (estimate) 0.087 0.084 0.088 0.083

Table 2: Comparison of PAC-Bayes bound with the true expected cost (estimated by sampling 10

5

obstacle

environments). Using only 100 samples, with probability 0.99 over samples, the PAC-Bayes controller is

guaranteed to have an expected success rate of 82.2%. The true expected success rate is approximately 91.3%.

using only 100 training environments, the PAC-Bayes controller is guaranteed (with probability

1�� = 0.99) to have an expected success rate of 82.2% (i.e., an expected cost of 0.178). Exhaustive

sampling indicates that the expected success rate for the PAC-Bayes controller is approximately

91.3% for this case. Videos of representative trials can be found online (see Appendix, Section 6).

Results (continuous policy space). Next, we consider a continuously parameterized policy space

and apply the approach from Section 5.2. We parameterize our policies using the matrix K 2 R20
in

equation (10) while ensuring symmetry of the control law, i.e., K[i] = �K[j] for ✓[i] = �✓[j] (note

that K is no longer constrained to be of the form (11)). The dimensionality of the parameter space

is thus d = 10. For the purpose of optimization, we employ a continuous surrogate cost function

in place of the discontinuous 0-1 cost. We choose this to be the negative of the minimum distance

to an obstacle along a trajectory (appropriately scaled to lie within [0, 1]). Note that we employ this

surrogate cost only for optimization; all results are presented for the 0-1 cost. Numerically estimated

gradients are used to perform gradient descent. We choose a prior P0 = Nµ0,s0 with s0 = 0.01; the

mean µ0 is given by a vector K of the form (11) with x-intercept 2.5 and y-intercept 10.0.

We use N = 100 training environments and choose confidence parameters � = 0.009, �

0
= 0.001,

and L = 30, 000 samples to evaluate the sample convergence bound in equation (8). The obtained

PAC-Bayes bound C

?
bound

is 0.224. Thus, with probability 0.99 over sampled training data, the op-

timized PAC-Bayes controller is guaranteed to have an expected success rate of 77.6%. Exhaustive

sampling with 10

5
environments indicates that the expected success rate is approximately 92.5%.

Videos of representative trials can be found online (see Appendix, Section 6).

7 Discussion and Conclusions

We have presented an approach for synthesizing controllers that provably generalize well to novel

environments given a dataset of example environments. Our approach leverages PAC-Bayes theory

to obtain upper bounds on the expected cost of (stochastic) controllers on novel environments and

can be applied to robotic systems with continuous state and action spaces, nonlinear dynamics,

and partially observable state. We synthesize controllers by explicitly minimizing this upper bound

using convex optimization in the case of a finite policy space and using stochastic gradient descent

in the case of continuously parameterized policies. We demonstrated our approach by synthesizing

depth sensor-based obstacle avoidance controllers with guarantees on collision-free navigation in

novel environments. Our simulation results compared the generalization guarantees provided by our

technique with exhaustive numerical evaluations in order to demonstrate that our approach is able to

provide strong bounds even with relatively few training environments.

Challenges and future work: On the practical front, our future work will focus on applying the pre-

sented approach to provide guarantees on neural-network based controllers for vision-based tasks

such as navigation and grasping by leveraging existing datasets such as the Stanford 3D Indoor

Spaces (S3DIS) dataset [42] and DexNet [22]. On the theoretical front, our approach inherits the

challenges associated with generalization theory in supervised learning. For example, here we as-

sumed that training and test environments are drawn independently from the same underlying dis-

tribution. There has been significant progress towards relaxing these assumptions in the supervised

learning context (e.g., domain adaptation techniques [43] and PAC-Bayes bounds that do not assume

i.i.d. data [44, 45]). An important feature of the reduction-based perspective we presented in Section

4 is the ability to immediately port over such improvements from the supervised learning setting to

the control setting. Another exciting future direction is to combine our approach with meta-learning
techniques in order to achieve provably data-efficient control on novel tasks. Specifically, we will

investigate using a PAC-Bayes bound as part of the objective of a meta-learning algorithm such as

MAML [46] to achieve improved generalization performance and few-shot learning.

We believe that the approach presented here along with the indicated future directions represent an

important step towards synthesizing controllers with provable guarantees for challenging robotic

platforms with rich sensory inputs operating in novel environments.
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1 Computing KL inverse using Relative Entropy Programming

PAC-Bayes bounds are typically expressed as bounds on a quantity q

? 2 [0, 1] of the form
KL(pkq?)  c (for some p 2 [0, 1] and c � 0). These bounds can then be used to upper bound q

?

by the KL inverse as follows:

q

?  KL�1
(pkc) := sup{q 2 [0, 1] | KL(pkq)  c}. (1)

In prior work on PAC-Bayes theory [1, 2], the KL inverse was numerically approximated using
local root-finding techniques such as Newton’s method, which do not have a priori guarantees on
convergence to a global solution. Here we observe that the KL inverse is readily expressed as
the optimal value to a simple Relative Entropy Program. In particular, the expression for the KL
inverse in (1) corresponds to an optimization problem with a (scalar) decision variable q, a linear
cost function (i.e., �q), linear inequality constraints (i.e., 0  q  1), and a constraint on the KL
divergence between the decision variable q and the constant p. We can thus compute the KL inverse
exactly (up to numerical tolerances) using convex optimization (e.g., interior point methods [3]).

2 Derivation of Optimization Problem for Finite Policy Spaces

Minimizing the PAC-Bayes upper bound CPAC(P ) directly corresponds to solving the following
optimization problem:

min
p2RL

¯

Cp+

s
KL(pkp0) + log(

2
p
N

� )

2N

s.t. 0  p  1,

X

j

p[j] = 1. (2)

This optimization problem can be equivalently reformulated via an epigraph constraint [4] as:

min
p2RL,⌧

⌧

s.t. ⌧ � ¯

Cp+

s
KL(pkp0) + log(

2
p
N

� )

2N

0  p  1,

X

j

p[j] = 1.

We can then further equivalently rewrite this problem as:

min
p2RL,⌧,�

⌧ (3)

s.t. �

2 �
KL(pkp0) + log(

2
p
N

� )

2N

� = ⌧ � ¯

Cp, � � 0

0  p  1,

X

j

p[j] = 1.
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3 PAC-Bayes Control Synthesis via Gradient Descent

Algorithm 1 summarizes our approach for optimizing PAC-Bayes controllers in the setting where we
have a continuously parameterized policy space. Note that in order to ensure positivity of s 2 Rd

+,
we perform the optimization with respect to ⌘ := log(s).

Algorithm 1 PAC-Bayes Control Synthesis via Gradient Descent
1: Inputs:
2: S = {E

1

, . . . , EN}: Training environments
3: �, �0 2 (0, 1): Probability thresholds
4: P

0

: Prior over controllers
5: µ, s 2 Rd: Initializations for µ and s
6: �: step size for gradient descent
7: Outputs:
8: µ?, s?: Optimal µ, s

9: C?
bound := KL�1

⇣
¯CS(Nµ?,s? ;L, �

0
)kKL(Nµ?,s?kP0)+log(

2
p

N
� )

N

⌘

10: Procedure:

11: B(µ, s, w) :=

1

N

P
E2S C(rw;E) +

r
KL(Nµ?,s?kP0)+log(

2
p

N
� )

2N

12: while ¬converged do
13: Sample ⇠ ⇠ N

0,Id and set w  µ+

p
s� ⇠

14: µ µ� �rµB(µ, exp(⌘), w)

15: ⌘  ⌘ � �r⌘B(µ, exp(⌘), w)

16: s exp(⌘)
17: end while

4 Dynamics of Differential Drive Robot

We model the robot in our example as a differential drive vehicle. The state of the system is given
by [x, y, ], where x and y are the x and y positions of the vehicle respectively, and  is the yaw
angle. The nonlinear dynamics are given by:

2

4
ẋ

ẏ

˙

 

3

5
=

" � r
2 (ul + ur) sin( )

r
2 (ul + ur) cos( )

r
L (ur � ul)

#
, (4)

where ul and ur are the control inputs (corresponding to the left and right wheel speeds respectively),
r = 0.1m corresponds to the radius of the wheels, and L = 0.5m corresponds to the width of the
base of the vehicle. We set:

ul = u0 � udiff, ur = u0 + udiff, (5)

where u0 = v0/r with v0 = 2.5m/s. This ensures that the robot has a fixed speed v0. We limit
the turning rate by constraining udiff 2 [�u0/2, u0/2]. The system is simulated as a discrete-time
system with time-step �t = 0.05s.

2



5 Example of a Simple Reactive Controller

An example of K[i] as a function of ✓[i] is shown in Figure 1.

Figure 1: Example of K[i] as a function of ✓[i].

6 Code and Video

A complete implementation of our REP-based approach is available online at:
https://github.com/irom-lab/PAC-Bayes-Control

Videos of results are available online at:
https://youtu.be/zu O-lW5X 8
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