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Abstract: The robotic systems continuously interact with complex dynamical
systems in the physical world. Reliable predictions of spatiotemporal evolution
of these dynamical systems, with limited knowledge of system dynamics, are cru-
cial for autonomous operation. In this paper, we present HybridNet, a framework
that integrates data-driven deep learning and model-driven computation to reli-
ably predict spatiotemporal evolution of a dynamical systems even with in-exact
knowledge of their parameters. A data-driven deep neural network (DNN) with
Convolutional LSTM (ConvLSTM) as the backbone is employed to predict the
time-varying evolution of the external forces/perturbations. On the other hand, the
model-driven computation is performed using Cellular Neural Network (CeNN),
a neuro-inspired algorithm to model dynamical systems defined by coupled partial
differential equations (PDEs). CeNN converts the intricate numerical computation
into a series of convolution operations, enabling a trainable PDE solver. With a
feedback control loop, HybridNet can learn the physical parameters governing the
system’s dynamics in real-time, and accordingly adapt the computation models to
enhance prediction accuracy for time-evolving dynamical systems. The experi-
mental results on two dynamical systems, namely, heat convection-diffusion sys-
tem, and fluid dynamical system, demonstrate that the HybridNet produces higher
accuracy than the state-of-the-art deep learning based approach.
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1 Introduction

Modeling and prediction of spatiotemporal behavior of complex physical systems is an important
problem in science and engineering. The physical systems are mostly defined by coupled partial
differential equations (PDEs). Traditionally, computationally expensive numerical methods running
on high-performance computing systems have been used to study these systems. The success of
deep learning has motivated recent developments in machine learning algorithms for analysis and
forecasting of physical systems, for example, motion tracking [1, 2], video prediction [3, 4, 5],
weather forecasting [6], to name a few. The deep learning based approaches promise improved
speed of prediction, thanks to the extensive research in energy-efficient algorithms and hardware
for deep learning [7, 8], making it feasible to run real-time forecasting in power-constrained mobile
platforms, such as in robotic agents or smart phones. However, DNNs are solely data-driven and
lacks consideration for the internal system dynamics nor physical mechanism. Any time-dependent
variation in system dynamics or parameters (such as velocity, force, pressure, etc) degrades the
effectiveness of the purely data-driven approach to modeling of dynamical systems.

There exist dynamical systems that are very hard to model with explicit physical equations; DNN-
based data-driven predictions is attractive for such systems (left end of Figure 1). Likewise, there
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Figure 1: An illustration of different modeling approaches for dynamical systems.

are systems that can be fully defined by physical principles, and governing equations for systems,
inputs, and all parameter values are known; numerical computations of the physical model is ap-
propriate for such systems (right end of Figure 1). However, most real-world applications exist in
between where only in-exact knowledge of system/input dynamics or physical parameters are avail-
able. For example, as shown in the middle of Figure 1, we know the dynamics of fluid system is
governed by Navier-Stokes equations. However, we can’t solve it without knowing the geometry of
the system, external forces and other physical parameters such as material density, viscosity, etc. For
such problems, we argue that it is important to integrate model-driven computation and data-driven
learning.

This paper presents HybridNet that couples deep learning algorithms and model-driven computation
to accurately predict spatiotemporal evolution of dynamical systems. HybridNet consists of two
interacting parts:

First, at the front-end, Convolutional LSTM (ConvLSTM) [6] is used as the data-driven deep learn-
ing algorithm. Unlike the classical LSTM, which performs input-to-state and state-to-state transition
with dense connections (i.e. fully connected), ConvLSTM has all the input, hidden state, output and
gates as 3-D tensor with uniform spatial dimensions. The internal transition is conducted in a con-
volutional fashion to retain the spatial information during processing [6]. We utilize ConvLSTM
to predict the evolution of external perturbation/force (i.e. input) to a system. Examples of pertur-
bation can be the moving heat source/sink in a heat dissipation system, an revolving obstacle in a
fluid dynamic system or more realistically, a tropical cyclone on earth. The benefits of using Con-
vLSTM network to predict the motion pattern of external perturbation are two-fold: first, for most
dynamics systems, the perturbation can be easily measured or access (with only a few sensors) than
the system state (typically requires measurements for each mesh grid); Second, intuitively, learning
the spatiotemporal pattern of the external forces is easier than modeling the dynamics which can be
highly non-linear.

Second, we use Cellular Neural Network (CeNN) [9], a neuro-inspired algorithm with highly paral-
lel computation fabric to solve coupled PDEs. We show that CeNN transforms numerical computa-
tions in a PDE solver to iterative convolution operations and hence, can be efficiently solved using
optimized machine learning frameworks (such as Tensorflow and Caffe). Moreover, the convolution
based operation in CeNN facilitates learning unknown physical parameters (such as diffusion coeffi-
cient in heat system or material density in fluid system) using standard back-propagation algorithms
without explicit definition of gradients for each physical/mathematical equations. Moreover, with a
CeNN-based ’trainable’ PDE solver, the system can even adaptively refine the model when system
parameters change over time. The details of CeNN based PDE solver are discussed in Section 3.

We evaluate HybridNet with two applications. First, we consider a simple heat dissipation sys-
tem with moving heat sources. Second, we study fluid dynamic system defined by Naiver-Stokes
equations, which is important for many robotic applications such as underwater robot, soft robot,
and aero/hydro-dynamics optimization. Our experiments1 show that the proposed method pro-
duces more accurate prediction, when compared to results from solely data-driven (machine learn-

1All experiments are implemented with Python and Tensorflow running on a NVIDIA GTX 1080 Ti GPU.
All the source code is available at https://github.gatech.edu/ylong32.
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ing) approach or purely model-driven numerical solver with in-complete knowledge of dynam-
ics/parameters.

2 Related Work

Recently, machine learning based spatiotemporal processing have achieved higher accuracy than
conventional approaches such as optical flow based methods [10]. In [11], a recurrent neural network
architecture is utilized for both video frame prediction and language modeling. In [12], an LSTM
based encoder-decoder architecture is proposed for video reconstructing and predicting. An action
conditional auto-encoder model is developed to predict next frames of Atari games in [13]. To
enhance the spatial correlation of the classical LSTM network, ConvLSTM is proposed to deal
with the spatiotemporal sequence forecasting problems [6]. More recently, generative adversarial
network (GAN) is extensively researched for production of plausible video frames [3, 4, 2].

Conventionally, modeling and predicting dynamical systems is conducted with numerical computing
(i.e. solving multiple coupled PDEs) [14, 7]. Recently, along with the success of machine learning,
modeling the dynamical system with data-driven approaches have attracted research attention and
produces satisfactory results for several scientific problems [6, 15, 16, 17, 18]. Singh et al., train
a neural network to select the best model and parameters for the turbulence modeling task [16].
Tompson et al., utilize DNN to accelerate the simulation of Eulerian fluid system [17]. Recently,
Karpatne et al., propose a physical-guided neural network (PGNN) to model the lake temperature
which leverages the output of physical system to generate prediction using a multi-layer perceptron
[18].

There are also efforts in training robots to learn system dynamics. Guevara et al., propose using
approximate fluid simulation to teach robots not to spill [19]. Whitman et al., present a differentially-
constrained machine learning model to learn physical phenomena for robotic design tasks [20].

Compared to the prior works, this paper makes following unique contributions:

• We present a hybrid network that couples data-driven learning to predict external forces
(using ConvLSTM) with model-driven computation (with CeNN) for system dynamics.

• We present CeNN with trainable template as a neuro-inspired algorithm for computing the
dynamical system model that transforms PDE solution to iterative convolution operations.

• We demonstrate that in a CeNN based model-driven computation, templates can be trained
with backpropagation algorithm to learn unknown physical parameters.

• We develop a feedback-driven algorithm for real-time adaptation of the HybridNet (specif-
ically, the CeNN templates), to enable accurate forecasting even with systems with time-
evolving physical parameters.

3 CeNN as PDE solver

CeNN is a novel algorithm proposed by Chua and Yang [9]. A single layer CeNN is composed of a
set of cells organized as a 2-D array, shown in Figure 2(a). Each cell in CeNN follows an ordinary
differential equation (ODE). Each cell is connected to a set of neighbouring cells and external inputs
using feedback and feedforward templates, respectively. The template weights define dynamics of
the system.

The behavior of each cell in CeNN is defined by the following equation:
∂xij(t)

∂t
= −xij(t) +

∑
C(k,l)∈Nr(i,j)

Akl · xkl(t) +
∑

C(k,l)∈Nr(i,j)

Bkl · ukl(t) + z (1)

where i and j are row and column location index, xij(t) is the cell state, ukl(t) is the external input,
and z is the offset. Akl is the cell state interaction template (feedback template) which represent
the impact of cell’s neighborhood, Bkl is the template of input from external source or other lay-
ers (feedforward template). Here, Nr(i; j) represents the scope of intercommunication region (i.e.
connected neighbors). C(k; l) ∈ Nr(i; j) indicates cell (k; l) is inside the intercommunication re-
gion of cell (i; j). As shown in Figure 2(b), CeNN with multiple coupled layers can construct more
complex system where the dynamics are described by coupled differential equations [7, 21].
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Numpy implementation:

𝑇 1:−1, 1: −1 = 𝑇 1:−1, 1: −1 + 𝑎 ∗ 𝑑𝑡 ∗ ℎଶ*(
𝑇 2: , 1: −1 + 𝑇[: −2, 1: −1]

𝑇 1:−1: , 2: + 𝑇[1: −1, ∶ −2]

−4 ∗ 𝑇[1: −1, 1: −1])

Tensorflow implementation:

𝑇 = 𝑡𝑓. 𝑛𝑛. 𝑐𝑜𝑛𝑣2𝑑(𝑇, 𝑘𝑒𝑟𝑛𝑒𝑙, 𝑝𝑎𝑑𝑑𝑖𝑛𝑔)

Figure 2: (a) A 2-D CeNN array. Cells are locally connected. (b) Multi-layers CeNN with each
layer represents one variable to form coupled and complex system dynamics. (c) Pseudo code for
heat equation solving with native numpy array implementation and convolution operations.

We use heat equation as an example to illustrate how to map PDE onto CeNN. Please refer to
the supplementary materials for example mapping of more complex and coupled dynamics. Heat
equation and its discretized form are given by:

∂T (x, y, t)

∂t
= K ·∆T (x, y, t) (2)

∂T (x, y)

∂t
= K·{T (x + h, y) + T (x− h, y)− 2T (x, y)

h2
+
T (x, y + h) + T (x, y − h)− 2T (x, y)

h2
}

(3)
where T (x, y, t) is the temperature at location (x, y) and time t, K is the heat diffusion coefficient
and ∆ is the Laplace operator (equals to ∇2 or ∇ · ∇). h is the step size in 2-D Euclidean space.
Equation (1) and (3) are essentially identical if we define the CeNN templates as follow:

A = K ·

 0 1/h2 0
1/h2 −4/h2 + 1 1/h2

0 1/h2 0

 , B = 0, Z = 0.

We observe that CeNN provides a unique approach to build a general purpose, trainable PDE solver
by converting PDEs to convolution operations. For example, mapping heat equation to CeNN gives
a space-invariant template (all cells in the CeNN share the same templates: A,B and Z). Therefore,
the cell state (xij), which represents temperature at each grid, can be updated with convolutional
operations. To be more specific, the 2-D heat map recording the temperature at each spatial grid
can be treated as an input feature map of a convoluational layer with input channel size 1; the
template (A) is then used as a 3 × 3 × 1 kernel to perform convolution operation over the feature
map. The pseudo code in Figure 2 illustrates the classical array based implementation as well as our
convolution based method (using Tensorflow) for solving heat equation. In summary, with CeNN
based PDE solver, we perform the numerical computing in a machine learning fashion (i.e. using
the convoluational layer), keeping the gradients for back-propagation and making the numerical
computing also ’trainable’.

4 The proposed model: HybridNet

Figure 3 shows the architecture of HybridNet. The front end composes of multiple stacked
ConvLSTM, receiving a series of input maps recording the past information of external forc-
ing/perturbation. The output of ConvLSTM network is the prediction of perturbation map for the
next time step. For example, considering there is an moving obstacle inside a fluid system, the
ConvLSTM network will predict the location of the obstacle based on its previous locations.

The front end ConvLSTM network can be further divided into two parts: encoding and forecasting.
The encoding network contains two stacked ConvLSTM with 64 and 128 output channels, respec-
tively. The input/state as well as convolution kernel size are annotated in Figure 3. The forecasting
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Figure 3: Architecture of HybridNet including multi-layer ConvLSTM network to learn and pre-
dict the external perturbation, and CeNN based PDE solver to learn the unknown coefficients and
perform computation for system dynamics.

network consists of one ConvLSTM with 64 output channels and a convolutional layer to squeeze
the output from the last ConvLSTM into a 3-D tensor as the predicted input map at Tn+1. It should
be noted that the third dimension of this tensor is application-dependent, equals to the number of
variables inside the input map. We explored increasing the size of the encoding-forecasting network
via adding more ConvLSTM layers, downsampleing/upsampling the feature map size, and integrat-
ing skip connections. We observed that such modifications deliver trivial accuracy improvements
for the tested application while slowing down the training/inference speed.

At the back end, the CeNN takes the output from ConvLSTM networks as input, perform model-
driven computation (solving PDEs) and output the system state (e.g. a temperature map in heat
system) for the next time step. Since our model predicts one frame per cycle, we then roll-out the
model, passing in the prediction from the previous time step to generate new prediction.

The size of each CeNN layer is identical to the ConvLSTM network. The number of CeNN layers
and templates is also application-dependent. For example, in heat diffusion and convection system,
there are one layer and two templates (for diffusion and convection, respectively). In the Navier-
Stokes system, there are 5 layers and 13 templates (depending on the physical principles, layers are
coupled together with templates). Moreover, since we perform the numerical computing with time
discretization, an internal while loop is employed to perform the convolution iteratively.

5 Training and Real-time Learning in HybridNet

Train the ConvLSTM for perturbation prediction: The objective of our ConvLSTM network is
to predict the perturbation map at the next time step (It+1) based on the observation of a sequence
of previous perturbation maps (It, It−1, It−2, ...It−N ) by minimizing the prediction loss function2:

arg min
fConvLSTM

Loss(Ît+1, It+1) where Ît+1 = fConvLSTM (It, It−1, It−2, ...It−N ) (4)

During training, we take 5 frames of perturbation maps as known information to predict the pertur-
bation map at next time step. We employ Adam optimizer (with initial learning rate = 0.001) for the
training since it results in better convergence than RMSProp and SGD in our experiments.

Learn physical parameters with CeNN:

Thanks to the trainability, CeNN based PDE solver has the ability to recognize the unknown physical
parameters by minimizing the mismatch between the computed system state X̂t+1 and the ground
truth Xt+1.

arg min
fCeNN

Loss(X̂t+1, Xt+1) where X̂t+1 = fCeNN (Ît+1, Xt) (5)

In our training approach, first, the CeNN is programmed to map the system dynamics (i.e. PDEs)
by defining the coupling between nodes and layers. The template weights related to the unknown

2The loss function combines of L1-norm and L2-norm: Loss = α
∑
i,j |Ŷij − Yij |+ β

∑
i,j(Ŷij − Yij)

2

where α = 0.2, β = 0.8
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physical parameters (such as heat diffusion coefficient) are kept trainable. Next, the training starts
with random initialization of the physical parameters. Standard back-propagation algorithm using
Stochastic Gradient Descent (SGD) is utilized for the coefficient regression. This is similar to the
training of ConvLSTM except that CeNN training uses much larger initial learning rate and decay
rate since there are only a few parameters are trainable inside CeNN. The trainable CeNN allows us
to learn the parameters of a specific system from data, rather that depending on exact knowledge of
the parameter values.

Figure 4: CeNN can adaptively re-learn the coef-
ficient via a feedback control loop.

The more intriguing opportunity of having a
trainable PDE solver is the feasibility of real-
time learning of the parameters using a feed-
back control loop. This is very useful con-
sidering that parameters of real-world physi-
cal systems are often not fixed and can change
over time. Our approach is shown in Figure 4
that considers availability of observed data (for
example, measurements from sensors or cam-
eras). Once the mismatch between the observa-
tion and predicted output from CeNN becomes
larger than the preset threshold, the CeNN is informed by the feedback control loop to re-learn the
coefficient. This ensures the system can always provide accurate prediction even the system pa-
rameters change over time. This is essentially a reinforcement learning system where the robots
(i.e. agents) interact with the physical systems (i.e. environments) and minimize the prediction loss
(maximize the rewards) based on observation rather than training data. Moreover, the adaptive re-
learning feature also provides a new approach to approximate some physical parameters especially
when these values are difficult to measure or can’t be derived from math equations. Should be noted
that we only consider the error caused by coefficients changing rather than the change of perturba-
tion pattern nor the physical laws. Therefore, only the coefficients is trainable and all other variables
inside the network are frozen when re-learn the coefficients.

6 Experimental Results

6.1 Heat diffusion and convection system

For heat convection-diffusion system, the system size is 128 × 128. We consider using a moving
heat source to represent the perturbation. The heat source is a round region with radius equals to
20. The initial location of heat source is randomly selected. The moving direction as well as the
moving velocity of the heat source are also randomly chosen but once initialized, stay fixed. Then,
we calculate the system state (temperature at each grid) numerically based on the locations of heat
source following two types of dynamics: heat convection and diffusion3.

Learning heat diffusion coefficient with CeNN: As shown in Figure 5(a), we randomly initialize
the heat diffusion coefficient. The error is large at the beginning but quickly drops, meanwhile the
value of diffusion coefficient converges to the ground truth.

Forecast System Evolution with HybridNet: We now demonstrate forecasting performance of
HybridNet with learned physical parameters. We compare HybridNet with both numerical method
and machine learning method. The numerical approach solves heat equation without knowing the
heat source motion. The machine learning approach utilizes ConvLSTM network (the front end
of HybridNet) solely to predict the heat map (essentially, it can be viewed as a classical video
prediction network similar with the one proposed in [6]). Figure 6(a) demonstrates the ground
truth and predicted heat maps from different configurations. We also quantitatively evaluate the
accuracy of different configurations based on Peak Signal to Noise Ratio (PSNR) [4] and our own
LOSS function (shown in the table inside Figure 5). Note that for PSNR, larger value indicates a
smaller mismatch while for LOSS larger value indicates a larger mismatch. HybridNet consistently
outperforms other configurations even though all methods tend to have a lower accuracy for long-
term prediction.

3The function for heat dissipation and convection is: ∂Txy

∂t
= C · (Texternal−Txy) +K ·∆Txy , C and K

are convection and diffusion coefficient, respectively.
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Figure 5: (a): Heat dissipation system: Learn the diffusion coefficient from a random value. (b)
Fluid system: Adaptively learn the material density. Prediction error is shown in grey line.
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PSNR 𝑇ାଵ 𝑇ାଶ 𝑇ାଷ 𝑇ାସ 𝑇ାହ

Numerical* 37.23 25.90 20.77 17.75 15.91

ConvLSTM 45.43 36.82 31.62 27.48 24.35

HybridNet 61.82 51.06 44.69 40.42 37.60

LOSS 𝑇ାଵ 𝑇ାଶ 𝑇ାଷ 𝑇ାସ 𝑇ାହ

Numerical* 6.52e-4 4.99e-3 1.48e-2 2.95e-2 4.71e-2

ConvLSTM 3.60e-4 1.15e-3 2.49e-3 4.88e-3 8.75e-3

HybridNet 2.68e-5 1.34e-4 3.57e-4 7.58e-4 1.45e-3

𝑇ାଵ 𝑇ାଶ 𝑇ାଷ 𝑇ାସ 𝑇ାହ

* We assume the numerical solutions don’t know the perturbation.

Figure 6: (a-c): Qualitative and quantitative comparison between HybridNet, numerical approach
(without knowing the perturbations) and machine learning approach. Models predict 5 frames of
system state. PSRN and LOSS are used to evaluate the prediction accuracy.

6.2 Navier-Stokes equations for fluid dynamics systems

The dynamics of fluid system is governed by Navier-Stokes equations4. Different with linear PDEs
in heat diffusion-convection system, the Navier-Stokes equations comprise two coupled nonlinear
PDEs, making the system dynamics more complex and unpredictable. We consider a 2-D fluid
dynamics system with a driven lid. As shown in Figure 7(a), the top boundary is moving with
a fixed speed while other boundaries keep still. An square obstacle (with random initial location
and moving direction) is placed inside to disturb the flow pattern. In this work, we only concern
the steady state, i.e. we predict the velocity and pressure when the system converges to stationary.
Modeling transient sate and turbulence is our next step work.

Real-time Learning of Physical Parameters: Rather than learning the physical coefficient from
scratch, We evaluate the adaptive learning strategy considering fluid system with changing material
density (Figure 5(b)). At the beginning, the density coefficient matches the ground truth value and
the error is negligible. Then the density changes abruptly from 1.0 to 0.8 (can be interpreted as a
change from water to oil). A large error is detected at once and CeNN start to re-learn the parameters.
We also consider the case that the coefficient changes gradually. For example, we gradually inject
a new fluid and discharge the original one. Thus, the system contains a mixture of two materials
and the density is changing gradually. We observe density coefficient of CeNN can tightly follows
the numerical value. Further, our experiments indicate the adaptive re-learning typically only takes
a few steps (several seconds of running time on GPU) to converge to the correct value, enabling a

4Navier-Stokes equations: ∂~v
∂t

+ (~v · ∇)~v = − 1
ρ
∇p + ν∇2~v and ∇ · ~v = 0, representing momentum

and mass conservation, respectively. The original CFD implementation can refer to https://github.com/
barbagroup/CFDPython
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PSNR 𝑇ାଵ 𝑇ାଶ 𝑇ାଷ 𝑇ାସ 𝑇ାହ

ConvLSTM 32.21 28.31 25.54 23.40 22.42

HybridNet 51.26 46.23 40.56 38.66 38.62

LOSS 𝑇ାଵ 𝑇ାଶ 𝑇ାଷ 𝑇ାସ 𝑇ାହ

ConvLSTM 0.025 0.028 0.062 0.095 0.113

HybridNet 0.0056 0.0076 0.0080 0.013 0.027
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Figure 7: (a): 2-D fluid system with a driven lid and a moving obstacle. (b) Visualization of flow ve-
locity for ground truth, prediction of ConvLSTM network, prediction from HybridNet. Please refer
to https://github.gatech.edu/ylong32 for high resolution figures. Insert table: quantitatively
analyses for prediction accuracy in terms of PSNR and LOSS.

Table 1: Running speed of HybridNet on GPU and ASICs

Running time/step* Running speed @ GPU Running speed @ ASICs
ConvLSTM CeNN Total ConvLSTM CeNN Total

Heat system 0.048 s 0.28 s 0.33 s 2.3 ms 3.6 ms 5.9 ms
Fluid system 0.051 s 2.98 s 3.03 s 2.5 ms 38.7 ms 41.2 ms

*For heat system and fluid system, each step represent 50 ms and 100 ms real time, respectively.

real-time self correction system. We argue this is a critical feature for robot design when the robot
works at complex, time-evolving dynamical system.

Forecast fluid system with HybridNet: As a highly non-linear system, a marginal alternation of
perturbation might thoroughly change the system state. For example, as shown in the first row
of Figure 7(b), a subtle change of obstacle from time Tn+4 to Tn+5 causes very different flow
velocity patterns (2 vortices formed at Tn+5). We train the ConvLSTM network to predict the
obstacle motion pattern and CeNN to learn the physical parameters. We observe that HybridNet can
successfully capture this non-linearity, thanks to the CeNN PDE solver which performs numerical
computing precisely. On the other hand, the machine learning approach (ConvLSTM network)
failed to learn such complex non-linear data representation. We also quantitatively evaluate the
predicting accuracy (flow velocity and pressure at each mesh grid) in terms of PSNR and LOSS.
Again, HybridNet consistently outperform the machine learning solution.

6.3 Computational Performance

We investigate the computational performance of HybridNet considering GPU (measured with
NVIDIA GTX 1080Ti) as well as embedded hardware platform using hardware accelerators (esti-
mated) that can be integrated in robotic devices. For ConvLSTM, we project the run-time based
on the number reported by DaDianNao [8], a well-known DNN accelerator with 20.1W power
consumption; for CeNN, we estimate running time with a recent CeNN ASIC accelerator design
(1.56W) [7]. As demonstrated in Table 1, with dedicated ASICs, the HybridNet can run simulation
more than 10x faster than GPU with much lower power budget.

7 Conclusion

The HybridNet demonstrates the feasibility of integrating data-driven learning and model-driven
computation to predict spatiotemporal evolution of dynamical systems. With HybridNet, au-
tonomous agents can forecast system outputs even with in-exact knowledge of input perturbation
and can learn physical parameters in a real-time fashion, thereby, enabling higher flexibility when
interacting with complex and time-evolving dynamical systems.
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