
On the Learnability of Fully-connected Neural Networks

Yuchen Zhang Jason D. Lee Martin J. Wainwright and Michael I. Jordan
Stanford University

zhangyuc@stanford.edu
University of Southern California

jasonlee@marshall.usc.edu
University of California, Berkeley
wainwrig@berkeley.edu
jordan@berkeley.edu

Abstract

Despite the empirical success of deep neural net-
works, there is limited theoretical understand-
ing of the learnability of these models with re-
spect to polynomial-time algorithms. In this
paper, we characterize the learnability of fully-
connected neural networks via both positive and
negative results. We focus on `1-regularized
networks, where the `1-norm of the incom-
ing weights of every neuron is assumed to be
bounded by a constant B > 0. Our first result
shows that such networks are properly learnable
in poly(n, d, exp(1/ε2)) time, where n and d are
the sample size and the input dimension, and ε >
0 is the gap to optimality. The bound is achieved
by repeatedly sampling over a low-dimensional
manifold so as to ensure approximate optimal-
ity, but avoids the exp(d) cost of exhaustively
searching over the parameter space. We also es-
tablish a hardness result showing that the expo-
nential dependence on 1/ε is unavoidable unless
RP = NP. Our second result shows that the ex-
ponential dependence on 1/ε can be avoided by
exploiting the underlying structure of the data
distribution. In particular, if the positive and
negative examples can be separated with margin
γ > 0 by an unknown neural network, then the
network can be learned in poly(n, d, 1/ε) time.
The bound is achieved by an ensemble method
which uses the first algorithm as a weak learner.
We further show that the separability assumption
can be weakened to tolerate noisy labels. Finally,
we show that the exponential dependence on 1/γ
is unimprovable under a certain cryptographic as-
sumption.

Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics (AISTATS) 2017, Fort Lauderdale,
Florida, USA. JMLR: W&CP volume 54. Copyright 2017 by
the author(s).

1 Introduction

Deep neural networks have been successful applied to var-
ious problems in machine learning, including image classi-
fication [12], speech recognition [8], natural language pro-
cessing [2] and reinforcement learning [19] problems. De-
spite this empirical success, the theoretical understanding
of learning neural networks remains relatively limited. It
is known that training a two-layer neural network on the
worst-case data distribution is NP-hard [5]. Real data, how-
ever, is rarely generated from the worst-case distribution.
It is thus natural to wonder whether there are conditions
under which an accurate neural network can be learned in
polynomial time.

This paper provides some theoretical analysis of the learn-
ability of neural networks. We focus on the problem of
binary classification, and study fully-connected neural net-
works with a constant number m of layers, and such that
the `1-norm of the incoming weights of every neuron is
bounded by a constant B > 0. This `1-regularization
scheme has been studied by many authors [see, e.g., 3, 11,
4, 21]. Under the same setting, Zhang et al. [28] proposed
a kernel-based method for improperly learning a classifier
that is competitive against the best possible neural network.
Our goal, in contrast, is to explicitly learn the neural net-
work and its parameters, in the proper learning regime.

The main challenge of learning neural networks comes
from the nonconvexity of the loss function. An exhaustive
search over the parameter space can be conducted to obtain
a global optimum, but its time complexity will be expo-
nential in the number of parameters. Existing learnability
results either assume a constant network scale [18], or as-
sume that every hidden node connects to a constant number
of input coordinates [16]. To the best of our knowledge, no
agnostic learning algorithm has been shown to learn fully-
connected neural networks with time complexity polyno-
mial in the number of network parameters.

Our first result is to exhibit an algorithm whose running
time is polynomial in the number of parameters to achieve
a constant optimality gap. Specifically, it is guaranteed to
achieve an empirical loss that is at most ε > 0 greater
than that of the best neural network with time complex-

On the Learnability of Fully-connected Neural Networks

ity poly(n, d, Cm,B,1/ε). Here the integers n and d are
the sample size and the input dimension, and the constant
Cm,B,1/ε only depends on the triplet (m,B, 1/ε), with this
dependence possibly being exponential. Thus, for a con-
stant optimality gap ε > 0, number of layers m and `1-
bound B, the method runs in polynomial time in the pair
(n, d). We refer to this method as the agnostic learning
algorithm, since it makes no assumption on the data distri-
bution. It is remarkably simple, using only multiple rounds
of random sampling followed by optimization rounds. The
insight is that although the network contains Ω(d) param-
eters, the empirical loss can be approximately minimized
by only considering parameters lying on a k-dimensional
manifold. Thus it suffices to optimize the loss over the
manifold. The dimension k is independent of scale of the
network, only relying on the target optimality gap ε.

Due to the exponential dependence on 1/ε, this first algo-
rithm is too expensive to achieve a diminishing excess risk
for large datasets. In our next result, we show how this
exponential dependence can be removed by exploiting the
underlying structure of the data distribution. In particular,
by assuming that the positive and the negative examples of
the dataset are separable by some unknown neural network
with a constant margin γ > 0, we propose an algorithm
that learns the network in polynomial time, and correctly
classifies all training points with margin Ω(γ). As a con-
sequence, it achieves a generalization error bounded by ε
with sample complexity n = poly(d, 1/ε) and time com-
plexity poly(n, d, 1/ε). Both complexities have a polyno-
mial dependence on 1/ε. We name it the BoostNet algo-
rithm because it uses the AdaBoost approach [7] to con-
struct a m-layer neural network, by incrementally ensem-
bling shallower (m− 1)-layer neural networks. Each shal-
low network is trained by the agnostic learning algorithm
presented earlier, focusing on instances that are not cor-
rectly addressed by existing shallow networks. Although
each shallow network only guarantees a constant optimal-
ity gap, such constant gaps can be boosted to a diminishing
error rate via a suitable ensembling procedure. We note that
for real-world data, the labels are often noisy so that the
separability assumption is unlikely to hold hold. A more
realistic assumption would be that the underlying “true la-
bels” are separable, but the observed labels are corrupted
by random noise and are not separable. For such noisy
data, we prove that the same poly(n, d, 1/ε)-time learnabil-
ity can be achieved by a variant of the BoostNet algorithm.

To provide some historical context, in earlier work, a num-
ber of practioners [13, 24] have reported good empirical
results using a neural network as a weak learner for Ad-
aBoost. However, to date, there has been a limited theo-
retical understanding of this approach. The fundamental
issue is that AdaBoost requires the classification error of
the weak learner to be bounded away from 0.5 for arbitrary
re-weighting of the data; such a strong condition is NP-hard

for a neural network learner to achieve. Our weak learner
avoids the hardness by assuming separability, and secures
the polynomial complexity by agnostic learning. It draws
a theoretical connection between neural network learning
and boosting.

With the aim of understanding the fundamental limits of
our learnability problem, we show that the time-complexity
guarantees for both algorithms are unimprovable under
their respective assumptions. Under the assumption that
RP 6= NP, we prove that the agnostic learning algo-
rithm’s exponential complexity in 1/ε cannot be avoided.
More precisely, we demonstrate that there is no algorithm
achieving arbitrary excess risk ε > 0 in poly(n, d, 1/ε)
time. On the other hand, we demonstrate that the BoostNet
algorithm’s exponential complexity in 1/γ is unimprovable
as well—in particular, by showing that a poly(d, 1/ε, 1/γ)
complexity is impossible for any algorithm under a certain
cryptographic assumption.

Finally, we report two empirical results on the BoostNet
algorithm. The first experiment is a classical problem in
computational learning theory, called learning parity func-
tions with noise. We show that BoostNet learns a two-layer
neural network that encodes the correct function, while
the performance of backpropagation is as poor as random
guessing. The second experiment is digit recognition on the
MNIST dataset, where we show that BoostNet consistently
outperforms backpropagation for training neural networks
with the same number of hidden nodes.

Other related work Several recent papers address the
challenge of establishing polynomial-time learnability for
neural networks [1, 25, 9, 28, 17]. Sedghi and Anandku-
mar [25] and Janzamin et al. [9] study the supervised learn-
ing of neural networks under the assumption that the score
function of the data distribution is known. They show that
by certain computations on the score function, the first net-
work layer can be learned by a polynomial-time algorithm.
In contrast, our algorithms does not requires knowledge of
the data distribution. Another approach to the problem is
via improper learning, in which case the goal is to find a
predictor that need not be a neural network, but performs
as well as the best possible neural network in terms of the
generalization error. Livni et al. [17] propose a polynomial-
time algorithm to learn networks whose activation function
is quadratic. Zhang et al. [28] propose an algorithm for the
improper learning of sigmoidal neural networks. The algo-
rithm is based on the kernel method, and so its output does
not characterize to the parameters of a neural network. In
contrast, our method learns the model parameters explic-
itly.

2 Problem set-up

LetD be a dataset containing n points {(xi, yi)}ni=1, where
xi ∈ X ⊂ Rd and yi ∈ {−1, 1}. The goal is to learn

Yuchen Zhang, Jason D. Lee, Martin J. Wainwright and Michael I. Jordan

a function f : X → R so that f(xi) is as close to yi as
possible. We may write the loss function as

`(f) :=

n∑
i=1

αih(−yif(xi)). (1)

where hi : R → R is a L-Lipschitz continuous function
that depends on yi, and {α1, . . . , αn} are non-negative im-
portance weights that sum to one. In this paper, we study
the minimization of the loss function in equation (1) when
f is a multi-layer neural network.

Next, we formalize the function class of multi-layer neural
networks. Given two numbers p ∈ (1, 2] and q ∈ [2,∞)
such that 1/p + 1/q = 1, we assume that the input vector
satisfies ‖xi‖q ≤ 1 for every i ∈ [n]. The class of m-layer
neural networks is recursively defined in the following way.
A one-layer neural network is a linear mapping from Rd to
R, and we consider the set of mappings:

N1 := {x→ 〈w, x〉 : ‖w‖p ≤ B}.
For m > 1, an m-layer neural network is a linear com-
bination of (m − 1)-layer neural networks activated by a
sigmoid function, and so we define:

Nm :=
{
x→

d∑
j=1

wjσ(fj(x)) : d <∞,

fj ∈ Nm−1, ‖w‖1 ≤ B
}
.

In this definition, the function σ : R → [−1, 1] is an
arbitrary 1-Lipschitz continuous function. At each hid-
den layer, we allow the number of neurons d to be ar-
bitrarily large, but the per-unit `1-norm must be bounded
by a constant B. This particular regularization scheme
has been studied a number of researchers in past work
(e.g., [3, 11, 4, 21]).

Assuming a constant `1-norm bound might be restric-
tive for some applications, but without this constraint, it
is known that the neural network class activated by any
sigmoid-like or ReLU-like function cannot be learned in
polynomial time [28]. On the other hand, `1-regularization
imposes sparsity on the neural network. It is observed in
practice that sparse neural networks such as convolutional
nets are capable of learning meaningful representations.
Moreover, it has been argued that sparse connectivity is a
natural constraint that can lead to improved performance in
practice [see, e.g., 27].

Throughout this paper, we use [n] to denote the set of in-
dices {1, 2, . . . , n}. For q ∈ [1,∞), let ‖x‖q denote the
`q-norm of vector x, given by ‖x‖q := (

∑d
j=1 x

q
j)

1/q . If
u ∈ Rd and σ : R→ R is a function, we use σ(u) as a con-
venient shorthand for the vector (σ(u1), . . . , σ(ud)) ∈ Rd.
Given a classF of real-valued functions, we define the new
function class σ ◦ F :=

{
σ ◦ f | f ∈ F

}
.

3 Positive results for learnability

In this section, we present two positive results for learning
fully-connected neural networks. The first result, apply-
ing to arbitrary data distribution, is achieved by an agnostic
learning algorithm. The second result makes a separabil-
ity assumption on the data distribution to achieve stronger
theoretical guarantees.

3.1 Agnostic learning

In the agnostic setting, our goal is to compute a neural net-
work f̂ ∈ Nm that minimizes the loss function over the
space of all given networks. Letting f∗ ∈ Nm be the net-
work that minimizes the empirical loss `, we now present
and analyze a method (see Algorithm 1) that computes a
network whose loss is at most ε worse that that of f∗. We
first state our main guarantee for this algorithm, before pro-
viding intuition. More precisely, for any ε, δ > 0, the fol-
lowing theorem applies to Algorithm 1 with the choices:

k := dq/ε2e, s := d1/ε2e, and

T :=
⌈
5(4/ε)k(s

m−1)/(s−1) log(1/δ)
⌉
. (3)

Theorem 1. For given B ≥ 1 and ε, δ > 0, with the
choices of (k, s, T) given above, Algorithm 1 outputs a pre-
dictor f̂ ∈ Nm such that

`(f̂) ≤ `(f∗) + (2m+ 9)εLBm, (4)

with probability at least 1−δ. The computational complex-
ity is bounded by poly(n, d, eq(1/ε

2)m log(1/ε), log(1/δ)).

We remark that if m = 1, then Nm is a class of linear
mappings. Thus, a special case of Algorithm 1 learns a
linear classifier under a (potentially) non-convex loss. For
the general case, as long as the number of layer m, the
Lipschitz constant L, the norm bound B and the target op-
timality gap ε are constants, the algorithm’s computation
complexity is polynomial in (n, d). This complexity bound
is non-trivial because even for linear classifiers, the num-
ber of parameter is proportional to the dimension d, thus
the probability that a random classifier succeeds is expo-
nentially small in dimension d.

Instead of initializing the model parameters uniformly at
random, Algorithm 1 generates a sequence of random vec-
tors u from a k-dimensional space (k � d). Then it maps
the vector u to the parameter space by solving a least-
squares problem. It can be shown that the probability of
getting a good enough initialization with this method only
depends on k, independent of the number of parameters.
Thus we are able to avoid the exponential dependence on
the input dimension.

Underlying intuition: Before presenting the proof of
Theorem 1, we describe the intuition underlying the algo-
rithm. Each iteration involves resampling k independent

On the Learnability of Fully-connected Neural Networks

Algorithm 1 The agnostic learning algorithm
Input: Feature-label pairs {(xi, yi)}ni=1; number of layers m; parameters k, s, T,B.

For t = 1, 2, . . . , T :
1. Sample k points {(x′j , y′j)}kj=1 from the dataset with respect to their importance weights.
2. Generate a neural network g ∈ Nm in the following recursive way:

• If m = 1, then draw a vector u uniformly from [−B,B]k. Let v := arg minw∈Rd:‖w‖p≤B
∑k
j=1(〈w, x′j〉 − uj)2

and return g : x→ 〈v, x〉.
• If m > 1, then generate the (m − 1)-layer networks g1, . . . , gs ∈ Nm−1 using this recursive program. Draw a

vector u uniformly from [−B,B]k. Let

v := arg min
w∈Rs:‖w‖1≤B

k∑
j=1

(s∑
l=1

wlσ(gl(x
′
j))− uj

)2
(2)

and return g : x→
∑s
l=1 vlσ(gl(x)).

3. Choose ft := g, or compute ft by a poly(n, d)-time algorithm such that ft ∈ Nm and `(ft) ≤ `(g).

Output: f̂ := arg minf∈{f1,...,fT } `(f).

points from the dataset. Rademacher complexity theory
implies that minimizing the loss function G(f)—an em-
pirical loss that only depends on the k random samples—
will approximately minimizes the original loss `(f) if the
sample size k = Ω(1/ε2). The value of G(f) is uniquely
determined by the vector ϕ(f) := (f(x′1), . . . , f(x′k)). As
a consequence, if we draw u ∈ [−B,B]k sufficiently close
to ϕ(f∗), then a nearly-optimal neural network will be ob-
tained by approximately solving ϕ(g) ≈ u, or equivalently
by solving ϕ(g) ≈ ϕ(f∗).

In general, directly solving the equation ϕ(g) ≈ u would
be difficult even if the vector u were known. In particu-
lar, since our class Nm is highly non-linear, solving this
equation cannot be reduced to solving a convex program
unless m = 1. To address this difficulty, suppose that
we can write f∗ as f∗(x) =

∑s
l=1 wlσ(f∗l (x)) for some

functions f∗l ∈ Nm. The problem becomes much eas-
ier if the quantities σ(f∗l (x′j)) are already known for every
(j, l) ∈ [k]× [d]. With this perspective in mind, we can ap-
proximately solve the equation ϕ(

∑s
l=1 wlσ(f∗l (x))) = u

by minimizing:

min
w∈Rd:‖w‖1≤B

k∑
j=1

(s∑
l=1

wlσ(f∗l (x′j))− uj
)2
. (5)

Accordingly, suppose that we draw vectors
a1, . . . , as ∈ [−B,B]k such that each aj is sufficiently
close to ϕ(f∗j)—any such draw is called “successful”—
then we may then recursively compute (m − 1)-layer
networks g1, . . . , gs by first solving the approximate
equation ϕ(gl) ≈ al (and, as a consequence, we have
ϕ(gl) ≈ ϕ(f∗j)). We then rewrite problem (5) as

min
w∈Rd:‖w‖1≤B

k∑
j=1

(s∑
l=1

wlσ(gl(x
′
j))− uj

)2
.

This `1-constrained least-squares problem matches step (2)
in the algorithm, and can be efficiently solved by con-
vex optimization. Note that the probability of a successful
draw {a1, . . . , as} depends on the dimension s. Although
there is no constraint on the dimension ofNm, the Maurey-
Barron-Jones lemma (see Appendix A.3) asserts that it suf-
fices to choose s = O(1/ε2), thus the probability of suc-
cess can be lower bounded.

It is important to note that in each iteration of the algorithm,
the network g is sampled from a low-dimensional manifold
whose dimension is characterized by the hyper-parameters
(k, s). Since we choose k = Θ(1/ε2) and s = Θ(1/ε2),
independent of the scale of the network, the iteration com-
plexity has a polynomial dependence on (n, d).

Proof of Theorem 1: Due to space constraints, we
present only the high-level logic of the proof, deferring
proofs of the technical lemmas to the appendix.

We start by defining the Rademacher complexity of a func-
tion class. Given the input dataset D = {(xi, yi)}ni=1, let
{(x′j , y′j)}kj=1 be a set of k i.i.d. samples drawn from D
such that the probability of drawing (xi, yi) is proportional
to αi. For function f : X → R, we define the subsample-
based loss function:

G(f) :=
1

k

k∑
j=1

h(−y′jf(x′j)). (6)

It is straightforward to verify that E[G(f)] = `(f). For a
given function class F , the Rademacher complexity of F
with respect to these k samples is defined as

Rk(F) := E
[

sup
f∈F

1

k

k∑
j=1

εjf(x′j)
]
, (7)

Yuchen Zhang, Jason D. Lee, Martin J. Wainwright and Michael I. Jordan

where the {εj} are independent Rademacher random vari-
ables.

Lemma 1. Given a loss that is L-Lipschitz and a function
class F that contains the constant zero function f(x) ≡ 0,
we have

E
[

sup
f∈F
|G(f)− `(f)|

]
≤ 4LRk(F).

This lemma is based on a slight sharpening of the
usual Ledoux-Talagrand contraction for Rademacher vari-
ables [15]; see Appendix A.1 for the proof.

Lemma 1 shows that the Rademacher complexity Rk(F)
controls the distance between G(f) and `(f). For the
neural network classes studied in this paper, we have
Rk(Nm) = O(1/

√
k). Thus, the function G(f) should be

a good approximation to `(f) as long as the sample size is
large enough. This intuition is formalized by the following
lemma:

Lemma 2. The Rademacher complexity ofNm is bounded
as Rk(Nm) ≤

√
q
k B

m.

See Appendix A.2 for the proof.

Given these preliminary results, let us now focus on a sin-
gle iteration of Algorithm 1, and study the random network
g ∈ Nm that it generates. Conditioning on the random
samples {(x′j , y′j)}, consider the empirical loss G(f) de-
fined in equation (6). Since the function h is L-Lipschitz,
we have

h(−y′jg(x′j))− h(−y′jf∗(x′j)) ≤ L|g(x′j)− f∗(x′j)|
for any j ∈ [k]. (8)

For any function f , we use ϕ(f) as a shorthand notation
for the vector (f(x′1), . . . , f(x′k)). Using this notation, we
have the equivalence

‖ϕ(g)− ϕ(f∗)‖2 = (

k∑
j=1

|g(x′j)− f∗(x′j)|2)1/2.

Inequality (8) and the Cauchy-Schwarz inequality imply
that

G(g)−G(f∗) ≤ L

k

k∑
j=1

|g(x′j)− f∗(x′j)|

≤ L√
k
‖ϕ(g)− ϕ(f∗)‖2.

Thus, in order to bound the distance between the empir-
ical loss with respect to functions g and f∗, it suffices
to bounded the `2-distance between two vectors ϕ(g) and
ϕ(f). Such a bound is provided by the following:

Lemma 3. For any fixed function f∗ ∈ Nm and any sam-
ple set {(x′j , y′j)}kj=1, the random network g satisfies

‖ϕ(g)− ϕ(f∗)‖2 ≤ (2m− 1)ε
√
kBm,

with probability at least pm := (ε4)k(s
m−1)/(s−1).

Lemma 3 is crucial to our analysis. It shows that with a
probability independent of (n, d), the algorithm generates a
random network g that approximates the best possible neu-
ral network f∗ . The proof uses the intuition about Algo-
rithm 1 that we described earlier, and exploits the recursive
definition of the neural network class. See Appendix A.3
for the proof.

We are now equipped to complete the proof of Theorem 1.
Lemma 1 implies that

E
[

sup
f∈Nm

∣∣`(f)−G(f)
∣∣] ≤ 4LRk(Nm).

By Markov’s inequality, we have supf∈Nm
∣∣`(f) −

G(f)
∣∣ ≤ 5LRk(Nm) with probability at least 1/5. This

event only depends on the choice of {(x′j , y′j)}. Whenever
this event holds, we are guaranteed that

`(g) ≤ G(g) + 5LRk(Nm)

= G(f∗) + (G(g)−G(f∗)) + 5LRk(Nm)

≤ `(f∗) +
L√
k
‖ϕ(g)− ϕ(f∗)‖2 + 10LRk(Nm).

By Lemma 2, we have Rk(Nm) ≤
√

q
k

∏m
l=1Bl. Thus,

setting k = q/ε2, substituting the bound into Lemma 3 and
simplifying yields

`(g) ≤ `(f∗) + (2m+ 9)εLBm,

with probability at least pm/5. If we repeat the procedure
for T = (5/pm) log(1/δ) times, then the desired bound
holds with probability at least 1 − δ. The time complexity
is obtained by plugging in the choices of (s, k, T). �

3.2 Learning with separable data

We turn to the case in which the data are separable with
a positive margin. Throughout this section, we assume
that the activation function of Nm is an odd function (i.e.,
σ(−x) = −σ(x)). We note that this assumption can be re-
moved by using a slightly different algorithm. We say that
a given data set {(xi, yi)}ni=1 is separable with margin γ, or
γ-separable for short, if there is a network f∗ ∈ Nm such
that yif∗(xi) ≥ γ for each i ∈ [n]. Given a distribution P
over the space X ×{−1, 1}, we say that it is γ-separable if
there is a network f∗ ∈ Nm such that yf∗(x) ≥ γ almost
surely (with respect to P).

Algorithm 2 learns a neural network on the separable data.
It uses the AdaBoost approach [7] to construct the network,
and we refer to it as the BoostNet algorithm. In each itera-
tion, it trains a shallower network ĝt ∈ Nm−1 with an error
rate slightly better than random guessing, then adds it to
the classifier to construct an m-layer network. The shal-
low network is trained by the agnostic learning algorithm
described in Section 3.1. It is worth noting that in each it-
eration, the network ĝt is trained on a reweighted version
of the data. The goal is to focus on instances that were not

On the Learnability of Fully-connected Neural Networks

Algorithm 2 The BoostNet algorithm for learning with separable data
Input: Feature-label pairs {(xi, yi)}ni=1; number of layers m ≥ 2; parameters δ, γ, T,B.

Initialize f0 = 0 and b0 = 0. For t = 1, 2, . . . , T :

1. Define Gt(g) :=
∑n
i=1 αt,iσ(−yig(xi)) where g ∈ Nm−1 and αt,i := e−yiσ(ft−1(xi))∑n

j=1 e
−yiσ(ft−1(xi))

.

2. Compute ĝt ∈ Nm−1 by Algorithm 1 such that

Gt(ĝt) ≤ inf
g∈Nm−1

Gt(g) +
γ

2B
(9)

with probability at least 1− δ/T ∗. Let µt := max{− 1
2 , Gt(ĝt)}.

3. Set ft = ft−1 + 1
2 log(1−µt

1+µt
)ĝt and bt = bt−1 + 1

2

∣∣∣log(1−µt
1+µt

)
∣∣∣.

Output: f̂ := B
bT
fT .

correctly handled by earlier networks.

The following theorem provides guarantees for its perfor-
mance when the algorithm is run for

T :=
⌈16B2 log(n+ 1)

γ2

⌉
iterations. The running time depends on a quantity
Cm,B,1/γ that is a constant for any choice of the triple
(m,B, 1/γ), but with exponential dependence on 1/γ.

Theorem 2. With the above choice of T , the algorithm
achieves:

(a) In-sample error: For any γ-separable dataset
{(xi, yi)}ni=1 Algorithm 2 outputs a neural network
f̂ ∈ Nm such that yif̂(xi) ≥ γ

16 for every i ∈ [n],
with probability at least 1 − δ. The time complexity is
bounded by poly(n, d, log(1/δ), Cm,B,1/γ).

(b) Generalization error: Given a data set consisting of
n = poly(1/ε, log(1/δ)) i.i.d. samples from any
γ-separable distribution P, Algorithm 2 outputs a net-
work f̂ ∈ Nm such that

P
[
sign(f̂(x)) 6= y

]
≤ ε (10)

with probability at least 1− 2δ. The time complexity is
bounded by poly(d, 1/ε, log(1/δ), Cm,B,1/γ).

The majority of the technical work is devoted to proving
part (a). The generalization bound in part (b) follows by
combining part (a) with bounds on the Rademacher com-
plexity of the network class, which then allows us to trans-
late the in-sample error bound to generalization error in the
usual way. It is worth comparing the BoostNet algorithm
with the agnostic learning algorithm. In order to bound the
generalization error by ε > 0, the time complexity of the
∗We may choose the hyper-parameters of Algorithm 1 by

equation (3), with the additive error ε defined by γ/((4m +
10)LBm). Theorem 1 guarantees that the error bound (9) holds
with high probability.

agnostic learning algorithm is exponential in 1/ε, while for
BoostNet we obtain the polynomial complexity.

A key step for proving part (a) is to use the equivalence
between separability and weak learnability [26]. More
precisely, if the dataset is γ-separable, then with any αt-
reweighting on the data, there exists a (m − 1)-layer net-
work g∗ such that the classification loss of σ ◦ g∗ is upper
bounded by:

n∑
i=1

αt,i(−yi)(σ ◦ g∗(xi)) ≤ −
γ

B
. (11)

The inequality (9) in Algorithm 2 implies that the loss of
σ ◦ ĝt is at most γ

2B worse than that of σ ◦ g∗. Combin-
ing with inequality (11), it implies that the classifier σ ◦ ĝt
outperforms random guessing by a constant margin, which
is good enough for AbaBoost to establish part (a). For the
computation complexity, since the target optimality gap γ

2B
is a constant, Theorem 1 shows that ĝt can be computed in
poly(n, d, log(1/δ)) time. See Appendix B for a complete
proof.

In practice, real data are often noisy so that the separability
assumption is not likely to hold. A more realistic assump-
tion would be that the “true labels” are separable, but the
observed labels are corrupted by a random noise, hence not
separable. We show that the learnability results of Theo-
rem 2 still hold for such noisy data.

Formally, for every pair (x, y) sampled from a γ-separable
distribution, suppose that the learning algorithm actually
receives the corrupted pair (x, ỹ), where

ỹ =

{
y with probability 1− η,
−y with probability η.

Here the parameter η ∈ [0, 12) corresponds to the noise
level. Since the labels are flipped, the BoostNet algorithm
cannot be directly applied. However, we can use the im-
proper learning algorithm of [28] to learn an improper clas-
sifier ĥ such that ĥ(x) = y with high probability, and then

Yuchen Zhang, Jason D. Lee, Martin J. Wainwright and Michael I. Jordan

apply the BoostNet algorithm taking (x, ĥ(x)) as input.
Doing so yields the following guarantee:

Corollary 1. Assume that q = 2 and η < 1/2. For any
constant (m,B), consider the neural network class Nm
activated by σ(x) := erf(x)†. Given a random dataset of
size n = poly(1/ε, 1/δ) for any γ-separable distribution,
there is a poly(d, 1/ε, 1/δ)-time algorithm that outputs a
network f̂ ∈ Nm such that

P(sign(f̂(x)) 6= y) ≤ ε,
with probability at least 1− δ.

See Appendix C for the proof.

4 Hardness results

Given the agnostic learning algorithm’s exponential depen-
dence on 1/ε, and the BoostNet algorithm’s exponential de-
pendence on 1/γ, it is natural to wonder if we can find bet-
ter algorithms that avoid these exponential dependences. In
this section, we present two hardness results demonstrating
that it is impossible given classical hardness assumptions.

4.1 Hardness of agnostic learning

Since our interest is to prove a lower bound, it suffices
to study a special case of the general minimization prob-
lem (1) —namely training a two-layer neural network
with one hidden neuron activated by the ReLU function.
In that case, the function f can be written as f(x) =
max{0, 〈w, x〉} for some vector w ∈ Rd. If we optimize
the linear loss h(x) := −x, then the loss function can be
written as

`(w) :=

n∑
i=1

αiyi max{0, 〈w, xi〉)}. (12)

We study the case where ‖w∗‖2 ≤ 1 and ‖xi‖2 ≤ 1,
yi = −1, and αi = 1/n for any i ∈ [n]. The following
proposition shows that approximately minimizing the loss
function is hard.

Proposition 1. Unless RP = NP‡, there is no random-
ized poly(n, d, 1/ε)-time algorithm computing a vector ŵ
which satisfies ‖ŵ‖2 ≤ 1 and `(ŵ) ≤ `(w∗) + ε with prob-
ability at least 1/2.

Proposition 1 provides a strong evidence that training neu-
ral networks with respect to a non-convex loss cannot be
done in poly(n, d, 1/ε) time. The proposition is proved
by reducing to the NP-hardness of the MAX-2-SAT prob-
lem [23]. See Appendix D for the proof.

†The erf function can be replaced by any function σ sat-
isfying polynomial expansion σ(x) =

∑∞
j=0 βjx

j , such that∑∞
j=0 2

jβ2
jλ

2j < +∞ for any finite λ ∈ R+.
‡The class RP refers to all randomized polynomial-time al-

gorithms.

4.2 Hardness of γ-separable problems

We prove the hardness of γ-separable problems by reduc-
ing to the hardness of the standard PAC learning of the in-
tersection of halfspaces given in Klivans et al. [10]. More
precisely, consider the family of halfspace indicator func-
tions mapping X = {−1, 1}d to {−1, 1} given by

H = {x→sign(wTx− b− 1/2) : x ∈ {−1, 1}d,
b ∈ N, w ∈ Nd, |b|+ ‖w‖1 ≤ poly(d)}.

Given a T -tuple of functions {h1, . . . , hT } belonging toH ,
we define the intersection function

h(x) =

{
1 if h1(x) = · · · = hT (x) = 1,

−1 otherwise,

which represents the intersection of T half-spaces. Let-
ting HT denote the set of all such functions, for any dis-
tribution on X , we want an algorithm taking a sequence
of (x, h∗(x)) as input where x is a sample from X and
h∗ ∈ HT . It should output a function ĥ such that P(ĥ(x) 6=
h∗(x)) ≤ ε with probability at least 1 − δ. If there is
such an algorithm whose sample complexity and time com-
plexity scale as poly(d, 1/ε, 1/δ), then we say that HT

is efficiently learnable. Klivans et al. [10] show that if
T = Θ(dρ), then the class HT is not efficiently learnable
under a certain cryptographic assumption. This hardness
statement implies the hardness of learning a certain class
of neural networks with a separable data. In particular,
the following proposition applies to the class of two-layer
neural networks N2 activated by the piecewise linear func-
tion σ(x) := min{1,max{−1, x}} or the ReLU function
σ(x) := max{0, x}, and with the norm constraint B = 2.

Proposition 2. Consider the above function class, and as-
sume that HT is not efficiently learnable for T = Θ(dρ).
Consider any algorithm such that when applied to any
γ-separable data distribution, it is guaranteed to output
a neural network f̂ satisfying P(sign(f̂(x)) 6= y) ≤ ε
with probability at least 1− δ. Then it cannot terminate in
poly(d, 1/ε, 1/δ, 1/γ)-time.

See Appendix E for the proof.

5 Experiments

In this section, we compare BoostNet with the backpropa-
gation approach for training two-layer neural networks.

Learning parity function with noise The learning of
parity functions is a classical problem in computational
learning theory [see, e.g., 6]. We construct an instance of
this problem based on a dataset with n = 50, 000 points.
Each point (x, y) is generated as follows: first, the vector x
is uniformly drawn from {−1, 1}d and concatenated with a
constant 1 as the (d + 1)-th coordinate. The label is gen-
erated as follows: for some unknown subset of p indices

On the Learnability of Fully-connected Neural Networks

number of hidden nodes

0 5 10 15 20

p
re
d
ic
ti
o
n
e
rr
o
r

0.1

0.2

0.3

0.4

0.5 BoostNet

BackProp

number of hidden nodes

0 50 100

p
re
d
ic
ti
o
n
e
rr
o
r

0.1

0.2

0.3

0.4

0.5 BoostNet

BackProp

number of hidden nodes

100 200 300 400 500

cl
as

si
fi

ca
ti

o
n
 e

rr
o
r

(%
)

1.5

2

2.5

3

3.5
BoostNet

Backprop

(a) parity function (p = 2) (b) parity function (p = 5) (c) MNIST digit recognition

Figure 1. Performance of BoostNet and backpropagation for training two-layer neural networks. The testing errors are plotted
as a function of the number of hidden nodes.

1 ≤ i1 < · · · < ip ≤ d, we set

y =

{
xi1xi2 . . . xip with probability 0.9 ,
−xi1xi2 . . . xip with probability 0.1 .

The goal is to learn a function f : Rd+1 → R such that
sign(f(x)) predicts the value of y. The optimal rate is
achieved by the parity function f(x) = xi1xi2 . . . xip , in
which case the prediction error is 0.1. For parity degrees
p > 1, it is easy to verify that the optimal rate can be
achieved by a two-layer neural network, but it is impossible
to achieve using any linear classifier.

We performed experiments in dimension d = 50,
with parities p ∈ {2, 5}, and the activation function
σ(x) := tanh(x). The training set, the validation set and
the test set contain respectively 25K, 5K and 20K points.
In order to train a two-layer BoostNet, we choose the
hyper-parameter B = 10, and use Algorithm 1 as the sub-
routine to train shallow networks with hyper-parameters
(k, T) = (10, 1). In order to train a classical two-layer
neural network, we use the random initialization scheme
of Nguyen and Widrow [22] and the backpropagation al-
gorithm of Møller [20]. We execute the algorithms for ten
independent rounds to select the best solution.

Figure 4.1 (a)–(b) compares the prediction errors of Boost-
Net and backpropagation. It shows that both algorithms
correctly learn the degree-2 parity function with a few hid-
den nodes. In contrast, BoostNet learns the degree-5 parity
function with less than 50 hidden nodes, while the perfor-
mance of backpropagation is no better than random guess-
ing. This suggests that the BoostNet algorithm is less likely
to be trapped in a bad local optimum.

Hand-written digit recognition In our second experi-
ment, we train a two-layer neural network for hand-written
digit recognition on the MNIST dataset [14]. We take 60k
images for training and 10k images for testing. For the
BoostNet algorithm, we train one-versus-all classifiers for
the ten classes with hyper-parameter B = 20. The subrou-
tine Algorithm 1 takes hyper-parameters (k, T) = (100, 1)
and uses mini-batch SGD for optimization. For the back-
propagation approach, we train a ten-class classifier that

minimizes the cross-entropy loss. Figure 4.1 (c) plots the
testing error as a function of the number of hidden nodes
included. It is observed that with the same number of hid-
den nodes, BoostNet consistently outperforms backprop-
agation. In particular, with 500 hidden nodes, BoostNet
achieves an error rate of 1.53%, while backpropagation
achieves an error rate of 1.95%. It shows that for this prob-
lem, the BoostNet algorithm learns a better model on the
same neural network architecture.

6 Conclusion

In this paper, we have presented two learnability results
for learning neural networks with non-convex loss func-
tions. For agnostic learning, we demonstrated that the time
complexity is polynomial in the input dimension and in the
sample size but exponential in the excess risk. Under the
separability condition, we show that the exponential depen-
dence on the excess risk can be removed. We also show
that these complexity bounds are unimprovable under their
respective assumptions. We hope that these results im-
prove the understanding of learnability for deep learning
networks, and shed light on the usage of sampling and en-
semble methods in deep learning.

Acknowledgements

MW and YZ were partially supported by NSF grant
CIF-31712-23800 from the National Science Foundation,
AFOSR-FA9550-14-1-0016 grant from the Air Force Of-
fice of Scientific Research, ONR MURI grant N00014-11-
1-0688 from the Office of Naval Research. MJ was sup-
ported by the Office of Naval Research under grant number
N00014-15-1-2670. We thank Sivaraman Balakrishnan for
helpful comments.

References
[1] S. Arora, A. Bhaskara, R. Ge, and T. Ma. Provable

bounds for learning some deep representations. In
ICML, pages 584–592, 2014.

Yuchen Zhang, Jason D. Lee, Martin J. Wainwright and Michael I. Jordan

[2] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine
translation by jointly learning to align and translate.
ICLR, 2015.

[3] P. L. Bartlett. The sample complexity of pattern
classification with neural networks: the size of the
weights is more important than the size of the net-
work. Information Theory, IEEE Transactions on, 44
(2):525–536, 1998.

[4] P. L. Bartlett and S. Mendelson. Rademacher and
Gaussian complexities: Risk bounds and structural
results. The Journal of Machine Learning Research,
3:463–482, 2003.

[5] A. Blum and R. L. Rivest. Training a 3-node neural
network is NP-complete. Neural Networks, 5(1):117–
127, 1992.

[6] A. Blum, A. Kalai, and H. Wasserman. Noise-tolerant
learning, the parity problem, and the statistical query
model. Journal of the ACM, 50(4):506–519, 2003.

[7] Y. Freund and R. E. Schapire. A decision-theoretic
generalization of on-line learning and an application
to boosting. Journal of Computer and System Sci-
ences, 55(1):119–139, 1997.

[8] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mo-
hamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen,
T. N. Sainath, et al. Deep neural networks for acoustic
modeling in speech recognition: The shared views of
four research groups. IEEE Signal Processing Maga-
zine, 29(6):82–97, 2012.

[9] M. Janzamin, H. Sedghi, and A. Anandkumar. Gen-
eralization bounds for neural networks through tensor
factorization. arXiv:1506.08473, 2015.

[10] A. R. Klivans, A. Sherstov, et al. Cryptographic hard-
ness for learning intersections of halfspaces. In 47th
Annual IEEE Symposium on Foundations of Com-
puter Science, pages 553–562. IEEE, 2006.

[11] V. Koltchinskii and D. Panchenko. Empirical margin
distributions and bounding the generalization error of
combined classifiers. Annals of Statistics, pages 1–50,
2002.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Im-
agenet classification with deep convolutional neural
networks. In Advances in Neural Information Pro-
cessing Systems, volume 24, pages 1097–1105, 2012.

[13] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[14] Y. LeCun, C. Cortes, and C. J. Burges. The MNIST
database of handwritten digits, 1998.

[15] M. Ledoux and M. Talagrand. Probability in Banach
Spaces: Isoperimetry and Processes, volume 23.
Springer Science & Business Media, 2013.

[16] W. S. Lee, P. L. Bartlett, and R. C. Williamson.
Efficient agnostic learning of neural networks with
bounded fan-in. IEEE Transactions on Information
Theory, 42(6):2118–2132, 1996.

[17] R. Livni, S. Shalev-Shwartz, and O. Shamir. On the
computational efficiency of training neural networks.
In Advances in Neural Information Processing Sys-
tems, volume 26, pages 855–863, 2014.

[18] W. Maass. Agnostic PAC learning of functions on
analog neural nets. Neural Computation, 7(5):1054–
1078, 1995.

[19] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu,
J. Veness, M. G. Bellemare, A. Graves, M. Ried-
miller, A. K. Fidjeland, G. Ostrovski, et al. Human-
level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.

[20] M. F. Møller. A scaled conjugate gradient algorithm
for fast supervised learning. Neural Networks, 6(4):
525–533, 1993.

[21] B. Neyshabur, R. Tomioka, and N. Srebro. Norm-
based capacity control in neural networks. In COLT,
pages 1376–1401, 2015.

[22] D. Nguyen and B. Widrow. Improving the learning
speed of 2-layer neural networks by choosing initial
values of the adaptive weights. In International Joint
Conference on Neural Networks, pages 21–26, 1990.

[23] C. H. Papadimitriou and M. Yannakakis. Optimiza-
tion, approximation, and complexity classes. Journal
of Computer and System Sciences, 43(3):425–440,
1991.

[24] H. Schwenk and Y. Bengio. Boosting neural net-
works. Neural Computation, 12(8):1869–1887, 2000.

[25] H. Sedghi and A. Anandkumar. Provable methods
for training neural networks with sparse connectivity.
arXiv:1412.2693, 2014.

[26] S. Shalev-Shwartz and Y. Singer. On the equivalence
of weak learnability and linear separability: New re-
laxations and efficient boosting algorithms. Machine
Learning, 80(2-3):141–163, 2010.

[27] M. Thom and G. Palm. Sparse activity and sparse
connectivity in supervised learning. The Journal of
Machine Learning Research, 14(1):1091–1143, 2013.

[28] Y. Zhang, J. D. Lee, and M. I. Jordan. l1-regularized
neural networks are improperly learnable in polyno-
mial time. ICML, 2016.

