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Abstract

Tensor decompositions have rich applications
in statistics and machine learning, and de-
veloping efficient, accurate algorithms for
the problem has received much attention re-
cently. Here, we present a new method built
on Kruskal’s uniqueness theorem to decom-
pose symmetric, nearly orthogonally decom-
posable tensors. Unlike the classical higher-
order singular value decomposition which un-
folds a tensor along a single mode, we con-
sider unfoldings along two modes and use
rank-1 constraints to characterize the under-
lying components. This tensor decomposi-
tion method provably handles a greater level
of noise compared to previous methods and
achieves a high estimation accuracy. Numer-
ical results demonstrate that our algorithm is
robust to various noise distributions and that
it performs especially favorably as the order
increases.

1 Introduction

Tensor decompositions have recently drawn increased
attention in statistical and machine learning applica-
tions. For example, tensor decompositions provide
powerful tools to estimate parameters in various la-
tent variable models via the method of moments [1–3]
and lead to the development of efficient denoising tech-
niques in independent component analysis [5, 6, 16].

Decomposition of higher-order tensors is fraught with
challenges, since in general most computational prob-
lems regarding tensors are NP-hard [7]. However, the
tensors considered in the aforementioned applications
possess special structures that facilitate computation.
A class of such tensors which we study in this paper
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are nearly orthogonal decomposable tensors of the fol-
lowing form:

T̃ =

r∑

i=1

λiu
⊗k
i + noise, (1)

where {ui}ri=1 is a set of orthonormal vectors in Rd, λi
are non-zero scalars in R, and the noise is assumed to
be symmetric and small (bounded by a positive con-
stant ε under some natural measurement). Our goal
is to estimate the factor pairs {(ui, λi) ∈ Rd × R}ri=1

from the noisy observation T̃ . Often the number r
of factors is also unknown and it needs to be deter-
mined from T̃ ; we consider this general case at the
end of the paper. In contrast to existing works that
have mostly focused on order-3 tensors (i.e., k = 3),
we here present a general framework applicable to an
arbitrary order k ≥ 3. Unless stated otherwise, we use
the term “tensor” to mean a tensor of order ≥ 3.

Current tensor decomposition methods vary in their
objective function, tolerance of the noise level ε, tar-
get range of r, and runtime. The robust tensor power
method (TPM) [2], which computes the fixed point of
a certain iterative function, is a natural generalization
of the matrix power method to the k = 3 case. TPM is
easy to implement, but its noise tolerance is restricted,
i.e., ε . O(d−1) with random initialization. A more
recent work [14] proposes using a hybrid of a square
unfolding and power iterations to improve the noise
tolerance. This technique is designed for single-spike
models (i.e., r = 1) with Gaussian noise, and the sensi-
tivity of the algorithm when some λi are close to each
other has not been explored. Another decomposition
method, orthogonal joint diagonalization (OJD) [11],
seeks all factors simultaneously by joint diagonaliza-
tion of a set of matrices from random contractions.
This approach reaches the full potential in the full rank
setting; however, applying OJD to low-rank tensors re-
quires further modifications.

In this paper we propose a new algorithm that re-
duces the orthogonal decomposition of tensors to that
of matrices. Specifically, we unfold the tensor along
two modes and demand the left singular vectors of the
resulting matrix to be close to a Kronecker square [8]
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(i.e., x⊗2 for some vector x). By viewing the length-d2

vectors as elements of Rd×d, this is equivalent to im-
posing a “nearly-rank-1” constraint in the two-mode
singular space. We show that the two-mode matrix
singular value decomposition (SVD), in conjunction
with the nearly-rank-1 constraint, provides an accu-
rate approximation of {u⊗2i }. We then estimate the
underlying factors {ui} using the dominant eigenvec-
tors of those nearly rank-1 matrices.

Our work is inspired by and built on Kruskal’s unique-
ness theorem [4,10,15]: when ε vanishes in (1), the set
of {ui} must be uniquely determined even in the case
of degenerate λis. This is in sharp contrast to the ma-
trix case, where imposing proper constraints on the
matrix SVD is needed to avoid the ambiguity caused
by degenerate singular values. In fact, the notion of
Kronecker-squared singular vector, denoted Vec(u⊗2i ),
is a necessary and sufficient condition for ui to be a de-
sired component in orthogonal tensor decomposition.
Our method ensures the exact recovery in the noise-
less case. Moreover, it achieves very good accuracy
at a higher noise level O(d−(k−2)/2) than TPM’s noise
tolerance of O(d−(k−1)/2) [14].

The remainder of the paper is organized as follows.
In Section 2, we introduce some tensor notation and
algebra. Section 3 describes the key observation that
characterizes the components of orthogonal decompos-
able tensors. Our main algorithm and perturbation
analysis are summarized in Section 4. In Section 5 we
demonstrate the accuracy and efficiency of our method
through simulations.

2 Preliminaries

We use T = JTi1...ikK ∈ Rd1×···×dk to denote an
order-k, (d1, . . . , dk)-dimensional tensor with entries
Ti1...ik ∈ R where 1 ≤ in ≤ dn for n = 1, . . . , k. A ten-
sor T ∈ Rd1×···×dk is called symmetric if d1 = · · · = dk
and Ti1...ik = Tπ(i1)...π(ik) for all permutations π of
{1, . . . , k}. We use [n] to denote the n-set {1, . . . , n}
for n ∈ N+ and Sd−1 = {x ∈ Rd : ‖x‖2 = 1} to denote
the (d− 1)-dimensional unit sphere.

A symmetric tensor T can be viewed as a multilinear
map [12]. For any x = (x1, . . . , xd)

T ∈ Rd, define

T (x, . . . ,x) =

d∑

i1=1

· · ·
d∑

ik=1

Ti1...ikxi1 · · ·xik .

The spectral norm, or the l2-norm, of T is defined as

‖T ‖σ = sup
x∈Sd−1

|T (x, . . . ,x)|.

Note that when k = 2, the tensor l2-norm reduces to
the classical matrix l2-norm. The Frobenius norm of

the tensor T is defined as

‖T ‖F =

( d∑

i1=1

· · ·
d∑

ik=1

T 2
i1···ik

)1/2

.

Given a symmetric order-k tensor T = JTi1...ikK ∈
Rd×···×d, we can map the indices from k-tuples
(i1, . . . , ik) to `-tuples, where 1 ≤ ` ≤ k, in various
ways to reshape the tensor into lower-order objects.
This operation is called tensor unfolding. For instance,
an order-3 symmetric tensor T can be unfolded into
a d-by-d2 matrix T(1)(23) by defining the (a, b)-element

of the matrix as
[
T(1)(23)

]
ab

= Ti1i2i3 , where a = i1
and b = i2 + (i3 − 1)d. The notation (j1 . . . jm) ap-
pearing in the subscript of an unfolded tensor denotes
that the modes j1, . . . , jm are combined into a single
mode. The following three unfoldings will be of par-
ticular interest to us:

(a) One-mode unfolding T(1)(2...k), which reshapes T
into a d× dk−1 matrix.

(b) Two-mode unfolding T(12)(3...k), which reshapes T
into a d2 × dk−2 matrix.

(c) Order-3 unfolding T(1)(2)(3...k), which reshapes T
into a d× d× dk−2 cube.

We now introduce the notion of two-mode singular
space which is central to our methods. Let T ∈
Rd×···×d be an order-k symmetric tensor and T(12)(3...k)
be its two-mode unfolding. We use

T(12)(3...k) =
∑

i

µiaib
T
i

to denote the two-mode higher-order SVD (HOSVD);
that is, µi ≥ 0 is the ith largest singular value of
the matrix T(12)(3...k), and ai ∈ Rd2 (respectively,

bi ∈ Rdk−2

) is the ith left (respectively, right) singular
vector corresponding to µi.

Definition 2.1 (Two-Mode Singular Space). The s-
truncated two-mode singular space of T is defined by

LS(s) = Span{a1, . . . ,as},

where ai is the ith left singular vector of T(12)(3...k).
Remark 2.2. Since Rd2 is isomorphic to Rd×d, we also
write LS(s) = Span{Mat(a1), . . . ,Mat(as)}, where
Mat(·) denotes the matricization operation that un-
stacks a length-d2 vector into a d-by-d matrix. Con-
versely, we use Vec(·) to denote the concatenation of
matrix columns into a vector. Throughout the paper,
we do not distinguish between these two representa-
tions of LS(s). It should be clear from the context
whether we are viewing the elements of the two-mode
singular space as length-d2 vectors or d× d matrices.
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Remark 2.3. If µs is strictly larger than µs+1, the s-
truncated space LS(s) is uniquely determined.

Tensors arising in applications (such as parameter es-
timation for latent variable models, independent com-
ponent analysis, etc) frequently possess special struc-
tures. In this paper, we consider a class of tensors
that are symmetric and (nearly) orthogonal decom-
posable. A tensor T is called symmetric and orthog-
onally decomposable (SOD, [13]) if T can be written
as T =

∑r
i=1 λiu

⊗k
i , where {ui}i∈[r] are orthonormal

vectors in Rd, {λi}i∈[r] are non-zero scalars in R, and
r is a positive integer. In this case, each ui is called a
factor and r the rank of the SOD tensor T .

Unlike in the matrix case where every symmetric ma-
trix has an eigen-decomposition, symmetric tensors
are not necessarily SOD. We are particularly inter-
ested in symmetric tensors within a small neighbor-
hood of SOD tensors; i.e., T̃ =

∑r
i=1 λiu

⊗k
i + E where

E ∈ Rd×···×d is a symmetric but otherwise arbitrary
tensor with ‖E‖σ ≤ ε. Here E represents the noise ten-
sor arising from, for example, sampling error, model
misspecification, finite sample size, etc. We refer to
this class of tensors as nearly-SOD tensors [13]. For
simplicity we will assume λi > 0 for all i ∈ [r] here-
inafter. The case where λis have arbitrary signs will
be discussed at the end of Section 4.

3 Tensor vs. Matrix Decompositions

In this section, we restrict our attention to SOD ten-
sors and relate their decompositions to matrix de-
compositions. The special structure of SOD tensors
(T =

∑
i λiu

⊗k
i , where ui are orthonormal) allows us

to illustrate the main idea with a clean and simple
proof. We characterize the underlying factors {ui}
of T using rank-1 matrices in the two-mode singular
space of T . As we shall see later, this perspective plays
a key role in our algorithm.

3.1 Characterization of Robust Eigenvectors

Tensor decompositions possess an interesting unique-
ness property not present in matrix decompositions.
Consider an SOD tensor, T =

∑r
i=1 λiu

⊗k
i . Kruskal’s

theorem guarantees that the set of orthonormal vec-
tors {ui}ri=1 is unique up to signs even when some λis
are degenerate. A rank r > 1 matrix, on the other
hand, can be decomposed in multiple manners into a
sum of outer-product terms in the case of degenerate
λis. To make the distinction explicit, we refer to these
unique components {ui} as robust eigenvectors [2].

Definition 3.1 (Anandkumar et al [2]). A unit vec-
tor a ∈ Rd is called a robust eigenvector of T if
a ∈ {u1, . . . ,ur}.

Decomposing an SOD tensor amounts to finding all its
robust eigenvectors. Note that the tensor decomposi-
tion T =

∑r
i=1 λiu

⊗k
i implies a series of matrix SVDs,

such as T(1)(2...k) =
∑r
i=1 λi Vec(ui) Vec(u⊗k−1i )T ,

T(12)(3...k) =
∑r
i=1 λi Vec(u⊗2i ) Vec(u⊗k−2i )T , . . . , and

so on. This suggests a way to use matrix SVDs to re-
cover {ui}. Despite the seeming simplicity, however,
matrix SVDs may lead to spurious solutions because
they are not guaranteed to be unique. For example,
in the case of λ1 = λ2, u1 + u2 is a (unnormalized)
left singular vector of T(1)(2...k). Clearly, u1 + u2 is
non-parallel to any robust eigenvector of T . Similarly,
Vec(u⊗21 +u⊗22 ) is a (unnormalized) left singular vector
of T(12)(3...k) without being parallel to any Vec(u⊗2i ).

Fortunately, such spurious solutions can be ruled out
by enforcing a certain Kronecker-product constraint
on matrix singular vectors. Specifically, we have the
following characterization of robust eigenvectors:

Theorem 3.2. A unit vector a ∈ Rd is a robust eigen-
vector of T if and only if Vec(a⊗2) is a left singular
vector of T(12)(3...k) corresponding to a non-zero singu-
lar value.

A proof of Theorem 3.2 is provided in Appendix A.
Theorem 3.2 is closely related to the uniqueness prop-
erty and it provides a criterion for a unit vector a
to be a robust eigenvector of T . An earlier work [2]
has shown that robust eigenvectors can be character-
ized using local maximizers of the objective function
a 7→ T (a, . . . ,a)/ ‖a‖k2 . Our result provides a new
perspective that does not require checking the gradi-
ent and/or the Hessian of the objective function.

3.2 Exact Recovery for SOD Tensors

For an SOD tensor T =
∑r
i=1 λiu

⊗k
i , we define an

r-dimensional linear space LS0 def
= Span{u⊗2i : i ∈

[r]}. The elements of LS0 can be viewed as either
length-d2 vectors or d-by-d matrices. The space LS0 is
exactly recovered by LS(r), the r-truncated two-mode
left singular space of T , where r equals the rank of
T(12)(3...k). Similar to Theorem 3.2, imposing rank-1
constraints ensures the desired solutions in LS0:

Proposition 3.3. Every rank-1 matrix in LS0 is (up
to a scalar) the Kronecker square of some robust eigen-
vector of T .

Proposition 3.3 implies that rank-1 matrices in LS0 are
sufficient to find {ui}. Note that a matrix M ∈ Rd×d
being rank-1 is equivalent to ‖M‖σ / ‖M‖F = 1, since

‖M‖σ ≤ ‖M‖F ≤
√

rank M ‖M‖σ. Hence, Proposi-
tion 3.3 immediately suggests the following algorithm:

maximize
M∈Rd×d

‖M‖σ ,

subject to M ∈ LS0 and ‖M‖F = 1.
(2)
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Theorem 3.4 (Exact Recovery in the Noiseless Case).
The optimization problem (2) has exactly r pairs of
local maximizers {±M∗

i : i ∈ [r]}. Furthermore, they
satisfy the following three properties:

(A1) ‖M∗
i ‖σ = 1 for all i ∈ [r].

(A2)
∣∣〈Vec(M∗

i ), Vec(M∗
j )〉
∣∣ = δij for all i, j ∈ [r],

where 〈·, ·〉 denotes the inner product.

(A3) There exists a permutation π on [r] such that
M∗

i = ±u⊗2π(i) for all i ∈ [r].

A proof is provided in Appendix B.2. Since ‖M‖σ ≤
‖M‖F in general and M is constrained to satisfy
‖M‖F = 1, property (A1) implies that every lo-
cal maximizer M∗

i is a global maximizer. Therefore,
any algorithm that ensures local optimality is able
to recover exactly the set of matrices {u⊗2i }. As a
by-product, the number r of factors is recovered by
the number of linearly independent solutions {M∗

i }.
In addition, property (A3) indicates {ui} can be ex-
tracted from the dominant eigenvectors of the optimal
solutions {M∗

i }.

4 Two-Mode HOSVD via Nearly
Rank-1 Matrix Pursuit

In most statistical and machine learning applications,
the observed SOD tensors are perturbed by noise.
In this section we extend the results in Section 3 to
nearly-SOD tensors, which take the form

T̃ =

r∑

i=1

λiu
⊗k
i + E , (3)

where the first part on the right hand side is SOD and
E ∈ Rd×···×d is a symmetric but otherwise arbitrary
noise tensor satisfying ‖E‖σ ≤ ε. Our goal is to esti-
mate the underlying pairs {(ui, λi) ∈ Rd×R}i∈[r] from

T̃ . We note that the number of factors r ∈ N+ is typ-
ically unknown and has to be determined empirically.
As in most previous works on tensor decomposition,
we assume that r is known in Sections 4.1 and 4.2. In
Section 4.3, we describe a rule of thumb for choosing r.

4.1 Algorithm

An orthogonal decomposition of a noisy tensor T̃ does
not necessarily exist, and therefore finding rank-1 ma-
trices in the two-mode singular space of T̃ may not be
possible. Nevertheless, the formulation shown in (2)
suggests a practical way to approximate {ui}. Specif-

ically, we seek to find a “nearly” rank-1 matrix M̂ via
the following optimization:

maximize
M∈Rd×d

‖M‖σ ,

subject to M ∈ LS(r) and ‖M‖F = 1,
(4)

and take the dominant eigenvector û =

arg maxx∈Sd−1 |xTM̂x| as an estimator of ui.

Recall that LS(r) = Span{a1, . . . ,ar}, where ai is
the ith left singular vector of the two-mode unfolding
T̃(12)(3...k). In principle, the r-truncated two-mode

singular space LS(r) might not be uniquely deter-
mined; for example, this occurs when the rth and
(r + 1)th singular values of T̃(12)(3...k) are equal. We
shall make the following assumption on the model (3)

to ensure the uniqueness of LS(r):
Assumption 4.1 (Signal-to-Noise Ratio). In the no-
tation of model (3), assume ε ≤ λmin/

[
c0d

(k−2)/2],
where λmin = mini∈[r] λi and c0 > 2 is a constant that
does not depend on d.

We refer to λmin/ε as the signal-to-noise ratio (SNR)

of T̃ , because λmin represents the minimum eigenvalue
of the signal tensor

∑r
i=1 λiu

⊗k
i , whereas ε represents

the maximum eigenvalue of the noise tensor E . In Ap-
pendix C.2, we prove the following result:

Proposition 4.2. Under Assumption 4.1, the two-
mode singular space LS(r) is uniquely determined.

Assumption 4.1 implies that the threshold SNR scales
as O(d(k−2)/2). Although it may appear stringent, this
assumption is prevailingly made by most computation-
ally tractable algorithms [14]. In fact, for order-3 ten-
sors, our scaling O(

√
d) is less stringent than the O(d)

required by the power iteration approach [2].

Algorithm 1 outlines our method, which we divide
into four parts for ease of reference. The algorithm
consists of r successive iterations. At each iteration,

we search for a nearly rank-1 matrix M̂ in the space

LS(r) and compute the top eigenvector of M̂ (or some

refined version of M̂). We then deflate the space

LS(r) and repeat the procedure until a full decompo-
sition is obtained. In the noiseless case, Algorithm 1
guarantees the exact recovery of {ui}. Further study
demonstrates that this approach also accurately ap-
proximates {ui} in the presence of noise satisfying As-
sumption 4.1. Here we discuss a few critical algorith-
mic aspects of the four steps in Algorithm 1 and defer
theoretical analyses to the next section.

Two-Mode HOSVD. We perform the r-truncated
SVD on the two-mode unfolded matrix T̃(12)(3...k) ∈
Rd2×dk−2

. This step typically requires O(dkr) floating-

point operations (flops). When T̃(12)(3...k) is a “fat”
matrix, the computational cost can be reduced by
finding the r-truncated eigen decomposition of the d2-
by-d2 matrix [T̃(12)(3...k)][T̃(12)(3...k)]T . The latter ap-

proach involves O(dk) flops for matrix multiplication
and O(d4r) flops for eigen decomposition. Hence, the
total cost of this component is O(dkr) for k = 3, 4 and
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Algorithm 1 Two-mode HOSVD

Input: Noisy tensor T̃ where T̃ =
∑r
i=1 λiu

⊗k
i + E , number of factors r.

Output: r pairs of estimators (ûi, λ̂i).

1: Reshape the tensor T̃ into a d2-by-dk−2 matrix T̃(12)(3...k);
2: Find the top r left singular vectors of T̃(12)(3...k), denoted {a1, . . . ,ar};
3: Initialize LS(r) = Span{ai : i ∈ [r]};
4: for i=1 to r do
5: Solve M̂i = argmax

M∈LS(r),‖M‖F=1

‖M‖σ and ûi = argmax
u∈Sd−1

|uTM̂iu|;

6: Update M̂i ← T̃(1)(2)(3...k)(I, I,Vec(û⊗(k−2)i )) and ûi ← argmax
u∈Sd−1

|uTM̂iu|;

7: Return (ûi, λ̂i)← (ûi, T̂ (ûi, . . . , ûi));
8: Set LS(r) ← LS(r) ∩

[
Vec(û⊗2i )

]⊥
;

9: end for

Two-Mode HOSVD

Nearly Rank-1 Matrix

Post-Processing

Deflation

1O(dk) for k ≥ 5.

Nearly Rank-1 Matrix. This step of the al-
gorithm requires optimization, and the computa-
tional cost depends on the choice of the optimiza-
tion subroutine. For r = 1 (i.e., single-spike

model), no actual optimization is needed since M̂1
def
=

arg maxM∈LS(1),‖M‖F=1 ‖M‖σ is simply Mat(a1). For
r ≥ 2, there exist various subroutines for op-
timizing ‖M‖σ. Here we choose to use coordi-

nate ascent with initialization M̂
(0)
i = Mat(ai)

at the ith iteration. Briefly, we introduce two
decision variables x ∈ Sd−1 and α ∈ Sr−1,
and rewrite (4) as maxx∈Sd−1,α∈Sr−1 H(x,α), where

H(x,α)
def
= xT [α1Mat(ai) + · · ·+ αrMat(ar)]x. Since

both maxx∈Sd−1 H(x, ·) and maxα∈Sr−1 H(·,α) have
closed-form solutions, we update x and α alterna-
tively until convergence. The computational cost is

O(d2)+O(d2r) for each update. Upon finding M̂i, we

set ûi = arg maxu∈Sd−1 |uTM̂iu|.
Although the above procedure finds only a local max-
imum, in practice we found that the converged points
generally have nearly optimal objective values. In fact,
local optimality itself is not a severe issue in our con-
text, because we seek a total of top r maximizers in
LS(r) but the order in which they are found is unim-
portant. When the noise is small enough, at some iter-
ations there could be multiple close-to-optimal choices

of M̂i, with negligible difference between their objec-
tive values. In that case, any of these choices performs
equally well in estimating ui and it is thus of little
interest to identify a true global optimum.

Post-Processing. In this step we update M̂i ←
T̃(1)(2)(3...k)(I, I,Vec(û

⊗(k−2)
i )) and take its top eigen-

vector as an estimator of ui. Here, I denotes the d-by-

d identity matrix. This step requires O(dk) flops. The

updated matrix M̂i is arguably still close to rank-1
and provides a better estimation of ui. This post-
processing is intended to make the algorithm more ro-
bust to higher-order noise. Intuitively, merging modes
(3, . . . , k) in the earlier stage of the algorithm amplifies
the noise (measured by spectral norm) because of the
corresponding loss in multilinear structure [17]. The

updated matrix M̂i = T̃ (I, I, ûi, . . . , ûi) helps to al-
leviate such an effect because it essentially decouples
the combined modes. The theoretical analysis in the
next section confirms this intuition.

Deflation. Our deflation strategy is to update the
search space using the orthogonal complement of
Vec(û⊗2i ) in LS(r), where ûi is the estimator in the
current iteration. This can be done by setting the ba-
sis vector aj ← aj − 〈Vec(û⊗2i ),aj〉Vec(û⊗2i ) for all
j ∈ [r], followed by normalizing {aj}j∈[r]. The com-
plexity involved is O(d2r). An alternative deflation

strategy is to update the tensor T̃ ← T̃ − λ̂iû⊗ki and
then repeat lines 1–7 of Algorithm 1. A careful anal-
ysis reveals that both approaches effectively control
the accumulated error. We adopt the former strat-
egy because it allows us to avoid recalculating of the
two-mode HOSVD.

The total cost of our algorithm is O(dk) per itera-
tion. This is comparable to or even lower than that of
competing methods. For order k = 3, TPM has com-
plexity O(d3M) per iteration (where M is the num-
ber of restarts), and OJD has complexity O(d3L) per
iteration (where L is the number of matrices). Fur-
thermore, we have provided theoretical results for an
arbitrary order k, while neither the TPM nor the OJD
method provided a theoretical analysis for higher-
order cases.
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4.2 Theoretical Analysis

In this section we theoretically analyze the accuracy
of the estimators {(ûi, λ̂i) ∈ Rd×R}i∈[r] produced by
our algorithm. We first consider extracting one pair
(û1, λ̂1) by Algorithm 1 and provide the correspond-
ing error bounds. We then show that the accumulated
error caused by deflation has only a higher-order ef-
fect and is thus negligible. The stability for the full
decomposition is rendered through a combination of
these two results.

We develop a series of algebraic techniques based on
multilinear functional analysis, Weyl’s and Wedin’s
perturbation theorems [18, 19], some of which may be
of independent interest. Here we only state the key
theorems and lemmas. All proofs are deferred to Ap-
pendix C.3–C.4.

Following [14], we use a loss function that allows the
sign-flip error.

Definition 4.3. Let a, b ∈ Rd be two unit vectors,
and define

Loss(a, b) = min (‖a− b‖2 , ‖a+ b‖2) .

If a, b are two scalars in R, we define Loss(a, b) =
min (|a− b|, |a+ b|) .

The following lemma describes the deviation of the
perturbed space LS(r) from the true space LS0 under
small noise. The result can be viewed as an analogue
of Wedin’s perturbation in the context of two-mode
HOSVD.

Theorem 4.4 (Perturbation of LS0). Suppose c0 ≥
10 in Assumption 4.1. Then,

max
M∈LS(r),
‖M‖F=1

min
M∗∈LS0

‖M −M∗‖σ ≤
d

k−3
2 ε

λmin
+ o(ε).

We choose to use the matrix spectral norm to mea-
sure the closeness of LS(r) and LS0. Although the
Frobenius norm may seem an easier choice, it poorly
reflects the multilinear nature of the tensor and leads
to suboptimal results. Note that the dimension factor
vanishes when k = 3 (i.e., order-3 tensors).

The following lemma guarantees the existence of a
nearly rank-1 matrix in the perturbed space LS(r).
Lemma 4.5 (Nearly Rank-1 Matrix). Under Assump-
tion 4.1, we have

max
M∈LS(r),
‖M‖F=1

‖M‖σ ≥ 1− d
k−2
2

λmin
ε+ o(ε).

In fact, we can show that there exist at least r linearly
independent matrices (here we view matrices as ele-

ments of Rd2) that satisfy the above inequality. More
generally, at ith iteration of Algorithm 1, there are
at least r − i + 1 linearly independent nearly rank-1
matrices in the search space.

The following lemma provides an error bound for the
estimator ûi extracted from a nearly rank-1 matrix in
LS(r).
Lemma 4.6 (Error Bound for the First Component).

Let M̂1 and û1 respectively be the matrix and the vec-
tor defined in line 5 of Algorithm 1. Suppose c0 ≥ 10
in Assumption 4.1. Then, there exists i∗ ∈ [r] such
that

Loss(û1,ui∗) ≤ d
k−3
2 ε

λmin
+ o(ε).

We note that in Lemma 4.6, the perturbation bound
for the estimator does not depend on the eigen-gaps
(i.e., |λi − λj |). This feature fundamentally distin-
guishes tensor decompositions from matrix decompo-
sitions. Also, note that an amplification of the error
(by a polynomial factor of d) is observed in the bound.
The following lemma suggests a simple post-processing
step which improves the error bound.

Lemma 4.7 (Post-Processing). Let M̂1 and û1 re-
spectively be the matrix and the vector defined in line 6
of Algorithm 4.1. Further, define λ̂1 = T̃ (û1, . . . , û1)
and let i∗ ∈ [r] be the index that appears in Lemma

4.6. Suppose c0 ≥ max
{

10, 3(k−2)2 + 6λmax

λmin

}
in As-

sumption 4.1. Then,

Loss(û1,ui∗) ≤ ε

λi∗
+ o(ε), Loss(λ̂1, λi∗) ≤ ε+ o(ε).

Compared to Lemma 4.6, the leading terms in the
above error bounds no longer scale with d. Finally,
a careful analysis shows that the estimation error does
not amplify through deflation:

Lemma 4.8 (Deflation of the Singular Space). Sup-

pose c0 ≥ max{10, 3(k−2)2 + 6λmax

λmin
} in Assumption 4.1,

and for a fixed subset X ⊂ [r], suppose there exists a
set {ûi}i∈X of unit vectors satisfying

Loss(ûi,uπ(i)) ≤
2ε

λπ(i)
+ o(ε), for all i ∈ X,

where π is a permutation on [r]. Then,

max
M∈LS(r)(X),
‖M‖F=1

min
M∗∈LS0(X)

‖M −M∗‖σ ≤
2d

k−3
2 ε

λmin
+o(ε),

where LS(r)(X) and LS0(X) are residual spaces de-

fined as LS(r)(X)
def
= LS(r) ∩Span{û⊗2i : i ∈ X}⊥ and

LS0(X)
def
= Span{u⊗2π(i) : i ∈ [r]\X}.
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The above result demonstrates that the error due to
deflation is bounded by a factor that does not depend
on the iteration number. This implies that our pro-
posed deflation strategy is numerically stable when ex-
tracting the subsequent components. Similarly, if we

define the residual tensor, T̃ (X)
def
= T̃ −∑i∈X λ̂iû

⊗k
i ,

one can show [13] that
∥∥∥T̃ (X)−∑i∈[r]\X λiu

⊗k
i

∥∥∥
σ
≤

cε + o(ε), where c > 0 is a constant that dose not
depend on the iteration number. The above obser-
vations immediately suggest two possible ways to find
the subsequent factors, by deflating either the singular
space or the original tensor. Note that the deflation
results for tensors are non-trivial since the analogous
statement for matrices is not necessarily true [2, 13].

Applying Lemmas 4.5–4.8 successively, we obtain the
main result of this section as follows.

Theorem 4.9. Let T̃ =
∑r
i=1 λiu

⊗k
i + E ∈ Rd×···×d,

where {ui}i∈[r] is a set of orthonormal vectors in Rd,
λi > 0 for all i ∈ [r], and E is a symmetric tensor
satisfying ‖E‖σ ≤ ε. Suppose ε ≤ λmin/

[
c0d

(k−2)/2],
where c0 > 0 is a sufficiently large constant that does
not depend on d. Let {(ûi, λ̂i) ∈ Rd × R}i∈[r] be the

output of Algorithm 1 for inputs T̃ and r. Then, there
exists a permutation π on [r] such that for all i ∈ [r],

Loss(ûi,uπ(i)) ≤
2ε

λπ(i)
+ o(ε),

Loss(λ̂i, λπ(i)) ≤ 2ε+ o(ε),

and ∥∥∥∥T̃ −
r∑

i=1

λ̂iû
⊗k
i

∥∥∥∥
σ

≤ Cε+ o(ε),

where C = C(k) > 0 is a constant that only depends
on k.

Remark 4.10. With little modification, our results also
apply to the case when not all λi are positive. In
that case, Assumption 4.1 needs to be modified to ε ≤
|λ|min/

[
c0d

(k−2)/2] where |λ|min = mini∈[r] |λi|.

4.3 Determining the Number of Factors

Determining the rank of a general tensor is intrinsi-
cally difficult [7]. For nearly-SOD tensors, however, r
can be approximated in various ways. When the num-
ber of factors r is unknown, we relax the search space
LS(r) to LS(n) where n = min{Rank(T̃(12)(3...k)), d}.
Note that we always have LS(n) ⊃ LS(r) under As-
sumption 4.1. Algorithm 2 describes a rule of thumb
for choosing r.

Although Algorithm 2 is heuristic, our simulation re-
sults suggest that it provides a good approximation
in most cases encountered. The use of λ̂2i as a guid-
ing criterion is justified by the following observation:

Algorithm 2 Determining the Number of Factors

Input: Noisy tensor T̃ where T̃ =
∑r
i=1 λiu

⊗k
i + E ;

Output: The number of factors r̂.
1: Run Algorithm 1 with n iterations. Let

(M̂i, ûi, λ̂i) ∈ Rd×d × Rd × R denote the output
from the ith iteration where i ∈ [n];

2: Choose the subset S ⊂ [n] for which
∥∥M̂i

∥∥
σ

(i.e.,
the objective value) is close to 1;

3: Sort {λ̂2i : i ∈ S} in decreasing order.
Pick r by the “elbow” method of the scree plot

(similarly as in matrix PCA).

∥∥T̃ −∑i λ̂iû
⊗k
i

∥∥2
F
≈
∥∥T̃
∥∥2
F
−∑i λ̂

2
i , provided that

{ûi} are approximately orthogonal to each other.

5 Numerical Experiments

We assessed the performance of our algorithm by sim-
ulating tensors of order k = 3, 4, and 5. We generated
nearly-SOD tensors T̃ =

∑r
i=1 λie

⊗k
i + E ∈ Rd×···×d,

where ei is the ith canonical basis vector and λis are
i.i.d. draws from Unif[0.8, 1.2]. The noise tensor E was
generated with noise level σ under one of the following
three random models:

(a) (Gaussian) For i1 ≤ · · · ≤ ik, draw independent
entries Ei1...ik ∼ N (0, σ2) uniformly at random.

(b) (Bernoulli) For i1 ≤ · · · ≤ ik, draw independent
entries Ei1...ik = ±σ with probability 1/2 for each.

(c) (Student’s t-distribution) For i1 ≤ · · · ≤ ik, draw
independent entries Ei1···ik ∼ σt(5). We use t-
distribution with 5 degrees of freedom to mimic
heavy-tailed data in real-world applications.

Condition on the i.i.d. entries {Ei1...ik}i1≤···≤ik , we
generated the remaining entries by imposing the
symmetry condition Ei1...ik = Eπ(i1)...π(ik), where

(i1, . . . , ik) ∈ [d]k and π is a permutation of [k]. We
set the dimension d ∈ {25, 50} and the number of
factors r ∈ {2, 10, 25}, and varied σ. For each sce-
nario, we generated 50 trials and applied Algorithm 1
to obtain the estimators {ûi, λ̂i}i∈[r]. The estima-
tion accuracy was assessed by the average l2 loss
1
r

∑r
i=1 Loss(ûi,uπ(i)) across the 50 trials. We com-

pared the two-mode HOSVD (TM-HOSVD) with the
orthogonal joint diagonalization (OJD) method [11]
and the tensor power method (TPM) [2] with ran-
dom initialization. The software packages for TPM
and OJD were originally designated for k = 3, so we
extended them to k ≥ 4. Since both TPM and OJD
require users to specify the number of factors, we pro-
vided them with the ground-truth r.

Figures 1 and 2, and Supplementary Figure S1 (Ap-
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Figure 1: Average l2 loss for decomposing order-3
nearly SOD tensors with Gaussian noise.

pendix D) demonstrate the robustness of TM-HOSVD
to various types of error distributions. For k = 3, TM-
HOSVD outperformed TPM and OJD when the rank
is low to moderate. For k = 4 and 5, TM-HOSVD
consistently achieved a higher accuracy across the full
range of the rank (Figure 3 and Supplementary Fig-
ure S2, Appendix D). The empirical runtime is pro-
vided in Supplementary Table S1 (Appendix D).

We compared the l2 loss distribution of the three meth-
ods at the highest noise level (σ = 5×10−2 for order-3
tensors and σ = 1.5 × 10−2 for order-4 tensors). The
results confirm our earlier conclusion: TM-HOSVD is
able to tolerate a greater level of noise. In several sce-
narios, the loss distribution displayed a bimodal pat-
tern, suggesting a mixture of estimates with good/bad
convergence performance. This feature is particularly
noticeable in Figure 2a and Figure 3d–f. Further in-
vestigation revealed that the poor convergence (e.g.,
oscillation or local-optimum) occurred less frequently
in TM-HOSVD. This is potentially due to the fact that
TM-HOSVD starts with the more informative search
space LS(r) with a lower dimension r ≤ d, whereas
TPM/OJD starts with a random direction in a d-
dimensional space.

We also noticed that in the full-rank case for k = 3,
OJD occasionally achieved the best accuracy among
all three methods (Figure 1c and Figure 2c). We hy-
pothesize that in the full-rank case the best rank-r
approximation of tensors may not be achieved by suc-
cessive rank-1 approximations. Both TPM and TM-
HOSVD methods take a greedy approach, so the first
several estimated factors tend to explain the most sig-
nal. In contrast, OJD optimizes the objective using all
d factors simultaneously. Thus, the set of d estimators
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Figure 2: Empirical l2 loss distribution (plotted on
a log scale for better visualization) for decomposing
order-3 nearly SOD tensors with Gaussian noise, d =
25 and σ = 5× 10−2.
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Figure 3: Top Figure: Average l2 loss for decompos-
ing order-4 SOD tensors with Gaussian noise, d = 25;
Bottom Figure: Empirical distribution of l2 loss (on a
log scale) for decomposing order-4 nearly SOD tensors
with Gaussian noise, d = 25 and σ = 1.5× 10−2.

may explain more signal overall while the first several
factors explain less. This phenomenon also explains
why OJD works better for full-rank tensors than for
low- and moderate-rank tensors.

6 Conclusion

We have proposed a new method for tensor decompo-
sitions based on the two-mode HOSVD. This method
tolerates a higher level of noise and achieves accuracy
bounds comparable to that of existing methods while
displaying empirically favorable performance. Our ap-
proach extends naturally to asymmetric tensors, e.g.,
by using the matrix SVD in place of the eigendecompo-
sition in lines 5–6 of Algorithm 1. In addition, recent
works have shown that some non-orthogonal tensors
can be converted to orthogonal tensors by an addi-
tional whitening step [2, 9]. Therefore, the two-mode
HOSVD is applicable to a broad class of structured
tensors. In particular, our proposed algorithm shows
stable convergence and exhibits pronounced advantage
especially as the order of the tensor increases.
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