Appendix: Tensor Decompositions via Two-Mode Higher-Order SVD
(HOSVD)

Miaoyan Wang' and Yun S. Song!-2

University of Pennsylvania
2University of California, Berkeley

A Characterization of Robust Eigenvectors

Proof of Theorem 3.2. The necessity is obvious. To prove the sufficiency, note that the tensor decomposition
T =3 Muf* implies the two-mode HOSVD:

Ta2)(3..6) = Z Ai Vec(ufw) Vec(u;g)(kﬂ))T7 (1)

i=1

where each \; > 0 and Vec(u1®2) is the ith left singular vector corresponding to \;. Now suppose Vec(a®?)
is the left singular vector of 7(12)s...x) corresponding to a non-zero singular value A € R\{0}. Then, by (1),
we must have

Vec(a®?) € Span{Vec(u®?): i € [r] for which \; = \}.

Hence, there exist coefficients {a;} such that Vec(a®?) = 3. «; Vec(u$?). In matrix form, this reads
i€[r]: A=A
a®2 = Z aiufm,
1E[r]: Ai=A

where {u;} is a set of orthonormal vectors. Notice that the matrix on the right-hand side has rank [{i €
[r]: Ai = A}| while the matrix on the left-hand side has rank 1. Since the rank of a matrix is unambiguously
determined, we must have |{i € [r]: A\; = A\}| = 1. Therefore, a®? = u{2* holds for some i* € [r]; that is, a
is a robust eigenvector of T. O

B Exact Recovery for SOD Tensors

B.1 Proof of Proposition 3.3

Proof of Proposition 3.3. Suppose M is a rank-1 matrix in £So = Span{u$’?, ..., u®?}, where each u; is a
robust eigenvector of 7. Thus, there exist coefficients {c; };c[, such that

M = o uf? + -+ a,u®?

Notice that {u;} is a set of orthonormal vectors and the rank of a matrix is unambiguously determined. We
must have |{i € [r]: o; # 0} = 1. Hence, M = a;~u$2? holds for some i* € [r]. O

B.2 Proof of Theorem 3.4

Proof of Theorem 3.4. Note that every matrix M € LSg can be written as M = alu?Q + o+ apu®?,
where {a;};c[y is a set of scalars in R. Thus, the optimization problem is equivalent to

®2 2| _—
max auy "+ apu = max max | |. 2
a2+ ta2=1 H 1% r Hg’ Q24 ta2=1ic|r] | 1| ( )

Let f(a) = max;ep,q |a;| denote the objective function in (2), where a = (a1,..., ;)" € §77!. Notice that
the objective is upper bounded by 1; i.e., f(a) < 1 for all &« € S"~1. Suppose a* = (af,...,a)T € 8771 is
a local maximizer of (2). We show below that f(a*) = 1.



Suppose f(a*) # 1. Then we must have max;e[, [aj| < 1. Without loss of generality, assume af is the
element with the largest magnitude in the set {a} };¢f,7. Since |of| < 1 and (af)? 4 --- + (a})? = 1, there
must also exist some j > 2 such that aj # 0. Without loss of generality again, assume a3 # 0. Now

construct another vector & = (aj,...,&,)7 € R", where
041(7’], 1= la
@i = ¢ sign(ag)/(a3)? — (2 — D(e])?, i=2,
af 1=3,...,1,

7

(1) + (a3)®

and n € Ry is any value in (1,
aq

] . It is easy to verify that & € S"~* for all such 1. Moreover,

|G — o3 = Y@ — a?)* = (@)(n — 1 + (03 — &)
< (a1)2(n = 1% + (a5)? + (@)? — 2(@2)* = 2(ai)*n(n — 1).

As we see in the right-hand side of the above inequality, the distance between e and a* can be arbitrarily
small as n — 1. However, f(a) = |ain| > f(a*), which contradicts the local optimality of a*. Hence, we
must have f(a*) =1, which completes the proof of (Al). As an aside, we have also proved that every local
maximizer of (2) is a global maximizer.

To see that there are exactly r pairs of maximizers in £Sy, just notice that ||M™*|_ /||M*| = 1 is equivalent
to saying M™ is a rank-1 matrix. Thus by Proposition 3.3, M* = :I:ul@2 for some ¢ € [r]. Conversely, every
matrix of the form i’u,;m is a maximizer in £Sq since Hu;@2HU = 1. The conclusions (A2) and (A3) then

follow from the property of {U;@Q}ie[r]- -

C Two-Mode HOSVD via Nearly Matrix Pursuit

C.1 Auxiliary Theorems

The following results pertain to standard perturbation theory for the singular value decomposition of ma-
trices. For any matrix X, we use X' to denote the Hermitian transpose of X. Given a diagonal matrix 3
of singular values, let i (32) and omax(X) denote, respectively, the minimum and the maximum singular
values in X. B

Theorem C.1 (Wedin [3]). Let B and B be two m x n (m > n) real or complex matrices with SVDs

;1 0 v
B=UxZVi=U,U,)| 0 %, ( Vlf > (3)
0O O 2
1 O =t
~ <~ ~ -~ ~ \%Z
B=UxV'= (Ul,Ug) 0o X ( ‘7% ) (4)
0 2
and ) )
21:d1ag(01, ..,O’k), Egidlag(0k+1;~-~agn)v (5)
ilzdiag(ﬁl,...,ﬁk), EQ:diag(ﬁkH,...,&n),
with 01 > 09 > --- > 0, and 61 > 09 > -+ > 0, in descending order. If there exist an a >0 and a § > 0
such that B
Umin(zl) =0 2> a+ 0 and Jmax(EQ) = 5k+1 < a, (6)
then

J} ) max{HEVl N g,

’1§TU1 N

sin©®(Vy, Vi) f'}.

max {

Sin@(Ul,fjl)H 5




Remark C.2. In the above theorem, Uq, U1 are d-by-k matrices and @(Ul,Ul) denotes the matrix of
canonical angles between the ranges of U; and U,. If we let £ (standing for “left” singular vectors) and L
sin©(U,, U1) H e yrpt

g
‘ o

denote the column spaces of U; and U1 respectively, then by definition,
__a"y

zeLl,yeLl Hmllzl‘y‘lz :

Proposition C.3. Let L1, L5 be two subspaces in RE. Then for any vector w, € Ly,

max When no confusion arises, we will simply use sin ©(L, E) to denote |[sin ©(Uy, (71)

sin © (ug, L£2) <sin® (Lq, Ls).

Proof. The conclusion follows readily from Remark C.2. O

Theorem C.4 (Weyl [4]). Let B and B be two matrices with SVDs (3), (4), and (5), Then,

|5i—U¢|SH§—BH foralli=1,...,n

In our proofs, we often make use of the following corollary based on Wedin’s and Weyl’s Theorems.
def

Corollary C.5. Let B and B be two matrices with SVDs (3), (4), and (5). Let E = B — B,

and L, R, L and R be the column spaces of Uy, Vi, U1 and Vi, respectively.  Define A =
min {omin(X1), Omin(B1) — Omax(B2)}. If A > ||E||g'7 then

~ - E
max {sin@(ﬁ,ﬁ%sin@(R, R)} < A[H”La (7)

Proof. By Weyl’s theorem, opmax(E2) —Omax(E2) > — | E||,. Combining this with the assumption o (1) —
Ulnax(EQ) > ||E||<77 we have

Omin(zl) - O-max(iZ) - Umin(zl) - Umax(22) + Urﬂax(22) - O-max(iQ) > ||E||o' - ||EH0— =

This implies that the spectrum of 3; is well-separated from that of ENJQ, and thus (6) holds with a =
max{0, omax(2)} > 0 and § = oppin(L1) — a > 0. By Wedin’s theorem, we get

{|Bvi-vizi] . - V%,

max {sin o(L, Z), sin O(R, 7%)} <

Then, noting

|Bvi-uiz)|| = |Bvi-BVi| - = |IEll, .
|Bivi-vizl|| <||B'Uu - BlUi| =BT -BY|| <|EI,,
and
0 = omin(B1) — max{070maX(22)} > Omin(21) — max{07‘7ma><(22)} - ||E||cr =A- HEHU’
we obtain (7). O

Lemma C.6 (Taylor Expansion). If e = o(1), then
o (1+e)*=1+ac+o(e), VaeR;

e sine = ¢+ o(e?);

1
e cose=1-— 552 + o(?).



C.2 Proof of Proposition 4.2 (Uniqueness of £5™)

Proof of Proposition 4.2. Let ’7{12)(3_@ = >, wia;bl be the two-mode HOSVD with {u;} in descending
order, and LS r) — Span{ai,...,a,} is the r-truncated two-mode singular space. In order to show that
£8M is uniquely determined, it suffices to show that pu, is strictly larger than pi,41.

Note that the tensor perturbation model T = Sy /\iu;@]C + &£ implies the matrix perturbation model

7~—(12)(3--16) = Z Ai Vee(u?) Vec(u?(kﬂ))T + Ea12)(3..k) (8)
i=1
where by [2]
1€az@.mll, <d®272|E], < a2 2. 9)

Now apply Corollary C.5 to (8) with B = :7:(12)(3...k)7 B =37 \i Vec(u?) Vec(u?(kfz))T, and B — B =
E(12)(3...k)- Considering the corresponding rth and (r + 1)th singular values of B and B, we obtain

e = Xl < |[€anGonll,» and |prpr — 0] < [|€anis.ml,

which implies
My — Ury1 = )\r + (,LLT - >\r) - (,Ufr+1 - O) Z )\r -2 Hg(12)(3k)||0 .
By (9) and Assumption 4.1,

Ar =2 ||€(12)(3..4k)HU > Amin — 2d*=2/2¢ > 0.

Therefore p, > pir41, which ensures the uniqueness of L8 O

C.3 Proof of Theorem 4.4 (Perturbation of £S)

Definition C.7 (Singular Space). Let 7~'(12)(3__k) € R¥*d""” 1o the two-mode unfolding of 7~', and

Ta2)z..k) = 2 pia;b? be the two-mode HOSVD with p; > pg > -+ > p, in descending order. We
define the r-truncated left (respectively, right) singular space by

£8") = Span {Mat(ai) e R™4: g, is the ith left singular vector of 7~'(12)(3_”k),i € [r]} ,
RS = Span {bi e R b; is the ith right singular vector of 7-(12)(3...k),i € [7’]} .
The noise-free version (¢ = 0) reduces to

LSo =Span{uf*:i€[r]}, and RS,=Span {Vec(ug)(k_m): i€ [r]} .

K2

Remark C.8. We make the convention that the elements in L8 (respectively, £Sy) are viewed as d-by-d
matrices, while the elements in RS™ (respectively, RSy) are viewed as length-d*=2 vectors. For g of
notation, we drop the subscript 7 from £S5 (respectively, RS (T)) and simply write LS (respectively, RS)
hereafter.

Definition C.9 (Inner-Product). For any two tensors A = [a;, . i ], B = [bi,...:,] € R4X*k of identical
order and dimensions, their inner product is defined as

<A, B> - Z ail...ikbil...ik7
1 yeeeslk

while the tensor Frobenius norm of A is defined as

Al = V(A A) =

both of which are analogues of standard definitions for vectors and matrices.



Lemma C.10. For every matric M € LS satisfying | M| = 1, there exists a unit vector by € RS such
that

M = cT(1y@)..00 L, I, bar), (10)

where c =1/ H7~'(1)(2)(3mk)(I, I, bM)HF is a normalizing constant.

Proof. Let ’7212)(3___;@ =", uia;b] denote the two-mode HOSVD. Following a similar line of argument as in
the proof of Proposition 4.2, we have p, > Apin — ||5(12)(3_“k) ||a > 0. By the property of matrix SVD,

1 ~
a; = ;7—(12)(3;@)171, for all i € [T‘],

which implies

1~ .
Mat(ai) = ; (1)(2)(3...k) (I,I7 bz), for all 7 € [T}
Recall that LS = Span{Mat(a;): i € [r]}. Thus, for any M € LS, there exist coefficients {c; };c[,] such that
M = a;Mat(a1) + - - - + a.Mat(a,)

a1 ~  ~
— M—iTa)(z)(g...k)(L I,by)+ -+ M—TT(U(Q)(SM,C)(I, I,b,)

~ o a,
- 7—(1)(2)(3k) (I7 Ia ;lbl + te + br) 5

1 Moy
where the last line follows from the multilinearity of 7(1)()(3...r). Now define b, = %bl R %bw The
conclusion (10) then follows by setting bas = b,/ ||yl € RS. O

Lemma C.11 (Perturbation of RSy). Under Assumption 4.1,

dk—Z
>1— ——
2~ ML

min

2+ o(e?).

min Hb
bERS,||b],=1 ‘RSO

where b’RSO denotes the vector projection of b € RS onto the space RSy.

Proof. As seen in the proof of Proposition 4.2, 7~—(12)(3...k) can be written as

7~E12)(3...k) = ZN VeC(U?Q)VeC(U?(k_m)T + &1 @.k), where  ||Enaysp, < dh=2/2¢, (11)
i=1

The noise-free version of (11) reduces to

Ta2)3..k) = Z A; Vec(u$?) Vec(u‘?(k—Q))T.
i—1

Following the notation of Corollary C.5, we set B = ’7~'(12)(3“_k), B = Taay3..k), 21 = diag{A1,..., A},
3, = diag{0,...,0}, and A = min{omin(X1), omin(B1) — Omax(X2)} = min;epy A, Then, ‘E - B

||€(12)(3__,k)H0. By Assumption 4.1, A = A\ > 2dF=2/2¢ > Hg(lg)(&”k)Hg. Hence the condition of Corol-
lary C.5 holds. Applying Corollary C.5 then yields

1
06 (RS0, RS) < — 20l _ [Eu2e.m0l, [1_ H5<12><3...k)“a]
Amin — [[Ea2) 3.0 |, Amin

>\min

(12)

€+ o(e).

dk=2)/2¢ [1 d(k—z)/ﬂl d(k=2)/2

)\min )\min )\min



Now let b € RS be a unit vector. Decompose b into
b= b|R50 + b|RSo*’

where b| RS0 and b’ Rrgl are vector projections of b onto the spaces RSy and RS&, respectively. By (12)
0
and Taylor expansion,

i} 2 1/2 d2 2
Hb’nson = 050 (b,RSo) = [1 —sin? O (b,RS)]/* >1 - Tz o),
Since the above holds for every unit vector b € RS, we conclude
i Hb| >1 dr e? 4+ o(e?)
min - — o(e?).
beERS, ||b]l,=1 Il 'RSollg = 222
O
Corollary C.12. Under Assumption 4.1,
min Hb| S G
beRS,|bll,=1 Il 'RSolla — (co—1)2’

which is > 0.98 for ¢y > 10.

Ea2) (... . . .
Proof. Note that W < é by Assumption 4.1. The right-hand side of (12) can be bounded as
follows,
laze.mll, 1

Amin = [|Ea2)s.m |, ~ -1

By a similar argument as in the proof of Lemma C.11, we obtain

1

. B 2 2
perin Hb|RSO , = c0sO(B,RSy) 2 cos’ O(b, RSy) 2 cos’ ORS,RS) 21 = (55, (13)
which is the desired result. O]

Proof of Theorem 4.4. To prove the upper bound in Theorem 4.4, it suffices to show that for every matrix
M € LS satisfying || M| = 1, there exist coefficients {o;; € R}7_; such that

(k=3)/2

. d
M =Y ouf®+E, where |E|, <

i=1

e+ o(e). (14)

min

Let M be a d-by-d matrix satisfying M € LS and |M||, = 1. By Lemma C.10, there exists bas € RS such
that

Tovy@)s...0) (I, I, bar)

M=
H7'(1)(2)(3..k)(1717bM)HF
T ®(k—2) (15)
_ Ai(Vec(u, ), bar) u®2 Eny@2)s..k) L, I, bar)
i1 )’721)(2)(3...1@)(1,17bM)HF H7-(1)(2)(3...k)(IvIabM)HF
We now claim that (15) is a desired decomposition that satisfies (14). Namely, we seek to prove
& I.1,b d(k=3)/2
lEm@e.m Lo, _ o). (16)

H7~—(1)(2)(3...k)(I7IabM)HF " Amin



Observe that by the triangle inequality,

Hff(m(z)(&..k) (I, 1, bM)H

Z Ai(Vee(uP ") bar)ul? + Emy@)s..e)(I, I, bar)
=1

F_

F
- B(k-2) 2 (17)
> 11> Aa(Vee(u? ), banud®| = [|€ay@) 6.0 (1 I ba)]| .
=t L Part 11
Part I
By the orthogonality of {w;};e[,], Part I has a lower bound,

> AilVee(u "), ban)u® || = Auiny | D (Vee(u? ), b)?

i=1 P i=1 (18)
= )\min bM|RSO 5 .

By the inequality between the Frobenius norm and the spectral norm for matrices, Part II has an upper
bound,

I€m@ s L ban) || o < Vd|Enyoys 0 (LI bm)||, < Vd|Eny@e.pll, <d* 2%, (19)
where we have used the inequality [2] that
lEn@e.pl, <d“D2 ), (20)
Combining (17), (18) and (19) gives

d(k2)/26]

H7E1)(2)(3...k)(1,1»bM)HF > Amin |:HbM|’RSO > A

(21)
By Corollary C.12 and Assumption 4.1 with ¢q > 10, bM|R80H2 — % > 0.98 — 0.1 > 0. So the

right-hand side of (21) is strictly positive. Taking the reciprocal of (21) and combining it with (20), we
obtain

€@ @.w L Lbar)|| | d*=3/2¢ g=2/2.771
7 < | |pmlrs, |, - S5
H7—(1)(2)(3...k)(1717 bM)HF min min )
dk=3)/2¢ dk=2)/2.171 g(k—3)/2
S)\_[lo(e))\‘] = e+ o(e),

where the second line follows from Lemma C.11. This completes the proof of (16) and therefore (14). Since
(14) holds for every M € LS that satisfies | M|, = 1, and "1_, oyu$? € LS, we immediately have

(k—3)/2

max min |[|M — M*|, <

e+ o(e).
MELS,|M| =1 M*ELS, Amin

Remark C.13. In addition to (14), M can also be decomposed into

9d(k—3)/2

S w— €+ o(e),

.
M = Zaiufm + E', where |E'|, <

=1

where E' satisfies
(E' uP?) =0 forallic[r]



To see this, rewrite (14) as

T T I8 T
M=) ou®+E=> au?®+> (Bu®)ui®+E-» (B u”)uf’
i=1 =1 =1 i=1

= XT: (O(i + <E,'U,S§2>) US§2+E - XT:<EauS§2>US§2 :
i=1

=1

€eLSy =:E’

By construction, E’ satisfies
.

(E’,u;@2> =(E - Z(Eau;@2>u;®27 uz®2>

j=1
= <E7uz®2> - Z<E7u;®2><u;®27 u;@2>
j=1
= <E,u1®2> — Z<E,u;®2>(5u
j=1
=0.
Moreover,
1B, < 1B, + || Y (B uf?)ui?
i=1 -
< ||, + max|(E, uf?)|
<2[|E[,
24(k—3)/2
= T
where the first line follows from the triangle inequality and the second lines follows from the orthogonality
of {w;}icp-
Corollary C.14. Under Assumption 4.1,
1.1
in_ (M - M, < 2

max min
MELS,| M| p=1 M*€LS,
which is < 0.12 for ¢y > 10.

Proof. By Corollary C.12, the right-hand side of (22) has the following upper bound,

dk=3)/2¢ d*=2/2e17 1 1170 113
—|||b - < 1-— - — < —<0.12.
Amin [H M‘RS" o Amin ] ~ Ve [ (co—1)2 ¢ ¢
The claim then follows from the same argument as in the proof of Theorem 4.4. O

Corollary C.15. Suppose ¢y > 10 in Assumption 4.1. In the notation of (14), we have

1.13
max |a;| <1+ — < 1.12.
i€[r] Co

Proof. By the triangle inequality and Corollary C.14,

" 1.13
maxogl < |7 Jaif? = [M — Bl < [ M|l + | B|lp <1+ = = 112

i€[r] P



C.4 Perturbation Bounds
C.4.1 Proof of Lemma 4.5

Proof of Lemma 4.5. We prove by construction. Define M; = u?Q € LSy for i € [r], and project M; onto
the space LS,
Mi:Mi‘LS+Mi|£SLa (23)

where Mi|£5 and Mi’LsL denote the projections of M; € LS, onto the vector space £S and LS, respec-
tively. We seek to show that the set of matrices {Mi|£$: i € [r]} satisfies
M, a0

W = )\7.5 + O(E), for all Z € [7"} (24)
ticslip min

Applying the subadditivity of spectral norm to (23) gives
1M s, = 1M, — (M ],
>1— || M| g, ||, =1 —sinO(M;, LS) || M| (25)
>1-—sinO(LSy, LS),

where the second line comes from || M;||, = || M;| =1, Mi‘z:SL HJ < HMi‘z:sL HF, and the last line comes
from Proposition C.3. By following the same line of argument in Lemma C.11, we have

Hg(12)(3...k)HJ < dk—2)/2
min "5(12)(3...1@)”0 ~ Amin

sin© (LS, LS) < 3 e+ o(e). (26)

Combining (25) and (26) leads to

(k—2)/2
Mg, 21~ S—c + (o)

By construction, ||M¢’£S||F < ||M;|| = 1, and therefore (24) is proved. Note that Mi}ﬁS € LS for all
i € [r]. Hence,

I, _ 1M gl dtk-2/2
nax 1M, > HMi’LSHF >1- ma + o(e). (27)

The conclusion then follows by the equivalence

M|,
MeLS |[M||p  MeLs,|M| =1

[z

O

Remark C.16. The above proof reveals that there are at least r elements M ’ s 1 LS that satisfy the right-
hand side of (27). These r elements are linearly independent, and in fact, {MZ| 2 S}ie[r] are approximately
orthogonal to each other. To see this, we bound cos Q(Mi’Ls’ Mj}ﬁs) for all 4,5 € [r], with ¢ # j. Recall

that {M def u?Q}ie[r] is a set of mutually orthogonal vectors in £Sy. Then for all 7 # j,

0= (M;,M;) = <Mi|Ls +Mi’£suM-ﬂ"cs "'MJ"zzsL>
= (M| 6 M| 6) + (M| g M| g0,

which implies <Mi|LS7Mj{[,S> = _<Mi|£8J"M‘j|LSJ‘>. Hence,

(28)

’<Mi’£s’MJ"L5>|
M| gl 1M ]

‘COS@(Mi‘cs’Mﬂ‘lcs)‘ =



_ ’<Mi‘cstJ"csi>‘
M sl M s
HMi’csLHF % HMJ|£$LHF
||M7|£3HF HMJ'|LS||F
< tan® ©(LSy, LS),

where the second line comes from (28), the third line comes from Cauchy-Schwarz inequality and the last
line uses the fact that M;, M; € LSy. Following the similar argument as in Corollary C.12 (in particular,
the last inequality in (13)), we have |sin ©(LSo, LS)| < ——5 < 0.12 under the assumption ¢y > 10. Thus,

[cos O(M;] .5, M| )| < tan® ©(LSy, LS) < 0.015.
This implies 89.2° < @(Mi‘ﬁs’ M; |£5) < 90.8°; that is, {Mi|£$}i€[r] are approximately orthogonal to each

other.
Corollary C.17. Suppose cg > 10 in Assumption 4.1. Then

1M, >

1
max > (.88.
MecLS,| M| =1 -1

Proof. As seen in Corollary C.12,

leazne.mll, 1

in ©(LSy, LS) < = '
sin ©(LS ) n — Hé’(lg)(g...k)Hg co—1

Combining this with (25) and (26) gives

. 1
[ M| sl =1 —sinO(LSp, LS) > 1 - o > 0.88.

Co —

The remaining argument is exactly the same as the above proof of Lemma 4.5. O

C.4.2 Proof of Lemma 4.6

Proof of Lemma 4 6. Because of the symmetry of T and Lemma C.10, M1 must be a symmetric matrix.
Now let M1 = ZZ 1 VT zc denote the eigen-decomposition of Ml, where ~y; is sorted in decreasing order
and x; € R? is the eigenvector corresponding to «y; for all i € [d]. Without loss of generality, we assume
v > 0. By construction, M; = arg maxXpsers, =1 M|, By Lemma 4.5,

_ dk=2)/2
Y1 = HM1H >1- 75+0(€).

Since Y, 72 = HM1H =1, |y <(1- )1/2 < f\d/gﬂ\f—i—o(\/g). Define A := min{~;,v1 —v2}. Then,

(k—2)/4
\/E\C/i)\—\@ +o(Ve).

Under the assumption ¢y > 10, 77 > 0.88 by Corollary C.17. Hence, A > 1 — |y2| > 0.88 — v/1 — 0.882 =
0.41 > 0.

By Theorem 4.4, there exists M* =>""_, o;u 2 € LS, such that

A>y—|yl>1-

d(k—3)/2
< —e+o(e).

o )\min

Hﬁl M




Without loss of generahty, suppose the domlnant eigenvector of M is u;. Following the notation of Corol-
lary C.5, we set B = Ml, B= M* E = M1 M*, 3 ={v} and 3y = diag{vs,...,v4}. From Corol-
lary C.14, ||E||, < 0.12. Combining thls with earlier calculation, we have A—||E||, > 0.41-0.12 = 0.29 > 0.
Hence, the condition in Corollary C.5 holds.

Applying Corollary C.5 to the specified setting yields

-1

E (h=3)/2 5q(k—2)/4 (k-3)/2
|sin © (w1, uy)| < X [ |||EG||J < d)\min e|l— %ﬁ—k o(\/e) = d)\TE + o(e). (29)

To bound Loss(w1,u1), we notice that

1/2
Loss(tiy, 1) = [2 — 2 |cos ©(Ty, u1)[]V/* = {22\/1sin2@(ﬁl,u1)} .

By Taylor expansion and (29), we conclude

dk=3)/2
— e+ o(e).

Loss(t1,uq) <
)\min
Corollary C.18. Under Assumption 4.1,

~ 5
Loss(uy,u1) < —,
Co

which is < 0.5 for cg > 10.

Proof. In the proof of Lemma 4.6, we have shown that A—||E||, > 0.29. By Corollary C.14, || E||_, < 1.13/co.
Therefore, (29) has the following upper bound,

S 1El, 4
|sin ©(uy,uy)| < < —_—Z <

’ - El,
Following the same argument as in the proof of Lemma 4.6, we obtain

REE
<3

Loss(u1,u1) = [2 — 2| cos O(uy,uq) <0.5.

C.4.3 Proof of Lemma 4.7

Proof of Lemma 4.7. For clarity, we use ]\//.71 and u; to denote the estimators in line 5 of Algorithm 1, and
use M and uj to denote the estimators in line 6 of Algorithm 1. Namely,

M; =T(I,I,4y,...,4,), and u} =argmax |z’ M;x|.
wGSdil

By construction, the perturbation model of T implies the perturbation model of ﬁl*,

Z)\ ’LLl (k 2) ®2+(€(II’U,1,...,A1),

where [|E(L, 1,4y, ..., u1)], < ||g||o

Without loss of generality, assume @, is the estimator of w; and (u;,u;) > 0; otherwise, we take —u; to
be the estimator. Let 7; := A\;(t1,u;)*~2 for all i € [r]. In the context of Corollary C.5, we set B =



Zie[r} 771-u1®2, B = M\*, E=B- B, 3 = {m}, ¥y = diag{m2,...,nr}, and A = min{n,n — max;«1 7;}.
Then,

A Z oy — ma ] = Ao (@, u) 7 —max (@ w72, (30)
Note that ||E||, < ||€]|, < e. In order to apply Corollary C.5, we seek to show A > e.
By Definition 4.3, we have

1
(U1,u1) =cosO(ur,u) =1— 3 Loss® (U, u1), (31)

and by the orthogonality of {w; }ic[,
- ~ - - - 1 -
(W, w)|” < Z |(@i1,u;)]> < 1— cos? ©(Ty, u1) = Loss® (@1, uy) |1 — I Loss®(ty,u1)| , (32)
=2

foralli=2,...,r.

Combining (31), (32), 0 < Loss(t1,u;) < 1/2 (by Corollary C.18), and the fact that (1—2)*=2) > 1—(k—2)x
for all 0 < x <1 and k& > 3, we further have

(k=2)
. 1 - k—2 N k—2 ~
(g, uy) =2 = [1 -5 Loss2(u1,u1)} >1- 5 Loss® (W1, uy) > 1 — T Loss(ui,u1),  (33)

and

-2

(T, )| P2 < [Loss® (@1, uq = Loss" %(t1, 1) < Loss(Ty, u1), (34)

for all t = 2,...,r. Putting (33) and (34) back in (30), we obtain

k—2 N ~
A> )\ [1 e Loss(ul,ul)} — Amax Loss(t1,uy)

k—2  Amax A
>\ [1 - ( + ) Loss(ul,ul)] .

4 )\min

By Corollary C.18, Loss(u1,u1) < 5/¢cy. Write ¢ := % + i"‘%”‘. Under the assumption ¢y > max {10, 6¢},
we have A > \;/6 and hence

A — e > )\1 )\min A1 _ )\min

2L cmin o 2l Zmin g
26 cod® 2727 6 10

This implies that the condition in Corollary C.5 holds. Now applying Corollary C.5 to the specified setting
gives

. ~ €
|Sln@(’U,1,U1)| S A_ -
1

€ N €
< N [1 — cLoss(ty,uy) — )\1]

€ cdk=3)/2¢ ¢ e
< h-="°=_ = ——
M [ Amin A +O(E)} A +ole),

where the third line follows from Lemma 4.6. Using the fact that Loss(u1, u1) = [2 — 2| cos O(uy, 'u,1)|]1/2 =

1/2
[2 — 2\/1 — sin® O (1, ul)} and Taylor expansion, we conclude

Loss(u1,u1) < )\i + o(e).
1



To obtain Loss(A1, A1), recall that under the assumption (21, u1) > 0, Loss(A1, A1) = [A; — Aq|. (Otherwise,
we need to consider |A; + A1] instead). Observe that by the triangle inequality,

A=Al = [T @, @) = M| = | Nl u)k + E@r, ..., @) — M
i=1

<[ = (@, w) [ 4+ YA (@, )| + (€@ )]
i=2
Using similar techniques as in (31), (32), (33) and (34), as well as the fact (1 —2)* > 1—kzforall0 <z <1
and k > 3, we conclude

~ Mk N ~
(A1 — M| < %LOSSQ(ul,ul) + Amax Lossz(ul,ul) +e

Mk £ 2
< | =2 —
_< 5 +Amax> [Aﬁo(s)} +e

=¢e+o(e).

C.4.4 Proof of Lemma 4.8

def

Proof of Lemma 4.8. Let M be a d-by-d matrix in the space £L5(X) = LS N Span{u? : i € X} and
suppose M satisfies || M|, = 1. Since LS(X) C LS, from Remark C.13, M can be decomposed into

T
M=) ou?+E, (35)
=1
where

2d(k73)/2€

(B,uf?) =0 forallic[r], and |E|, < + o(e). (36)

>\min

By definition, every element in £S(X) is orthogonal to Vec(@{?) for all i € X. We claim that under this
condition, one must have «; = o(¢) for all i € X. To show this, we project 4; onto the space Span{u;} and
write

U; = i + niug,

where €2 +n? = 1 and ui- € S9! denotes the normalized (i.e., unit) vector projection of %; onto the space
Span{u;}*. Then for all i € X,

0= (M,a%?) (37)

) < > ou® + B, (g +ni“#)®2>

j€lr]

—

au+ Y aul® + B, Gu® 4 26w @ uit + 771'2("?)®2>
J#i, j€[r]
= &l + 2§i77i<E,’U»i ® ’u’zL> + 7712< > auf?+E, (uil)®2>7
3#1, 5E[r]

where the last line uses the fact that (E, u$?) = 0, (u;, ui) = 0 and (u;, u;) = 0 for all j # i. By assumption,
Loss(@;, w;) < 2¢/\; + o(¢). This implies |n;] = |(Us, u)| = [1 — cos? O(t;, w;)]Y/? < Loss(s, u;)[1 —
1 Loss®(t;, u;)]Y/? < Loss(U;, u;) = O(e), and |&] = (1 — n2)1/2 > 1 — O(e). It then follows from (37) that

& il = ‘25i77i<Ean ®U1J_> +771'2< Z ajui” + B, (“il)®2>‘
]

J#i, JE[r



< 2|l

<E,ui®uf>\+n3 3

J#i, jE[r]

<26l |Ell, +n7 | D oyl +E],
J#i, jE[r]
(k—3)/2

M}\is + 0(5)) =o(e),

min

2d(k73)/2
S 0(5) ()\5 + O(E)) =+ 0(52) <1127‘ +

where the last line follows from |7;| < O(e), |&] < 1, || E|, < 2d(f\fﬁ—i-o(s) (cf.(36)) and max;e, || < 1.12

min

(cf. Corollary C.15). Therefore, since |£;| > 1 — O(e), we conclude that |a;| = o(e) for all i € X.
Now write (35) as

M = Z aiul@ + Z aiu?z + FE,
i€[r\X i€X

Note that ;1\ x auP? € LSo(X) &of Span{u$?: i € [r]\X}. Hence,

Qd(k73)/2
min | M — M*||, < 1 o(e).
M*EL‘,S(](X)

Z aiufﬁ + E
icX

- i€a§(|051| H HU - Amin
e

Since the above holds for all M € LS(X) that satisfies | M| = 1, taking maximum over M yields the
desired result. O

C.4.5 Proof of Theorem 4.9

We use the following lemma [1] in our proof of Theorem 4.9.

Lemma C.19. Fiz a subset X C [r] and assume that 0 < e < \;/2 for eachi € X. Choose any {ﬁi,xi}iex C
R% x R such that N
|)\z - )\z| S g, ||’l/l:lH2 = 1, and <’U/Z‘,’l/ii> Z 1-— 2(8//\1‘)2 > 0,

and define tensor A; = )\iu?k — Xﬁl@k for i € X. Pick any unit vector a = Z?:l a;w;. Then, there exist
positive constants C1,Cy > 0, depending only on k, such that

k—1
Z Aia®k_1 S Cl (Z ai|k_1€> + 02 <|X <>\E ) ) ) (38)
o ZGX min

i€X
where A;a®*~ ! := Ay(a,...,a,I) € R,

Proof of Theorem 4.9. We prove the conclusion

2 ~
‘4 o(g), Loss(Ai, \r(iy) < 2e + o(e), (39)

Loss(t;, Ur(i)) <
| ®) An(i)

by induction on i. For i = 1, the error bound of {(u, Xl) € R4 x R} follows readily from Lemmas 4.5-4.7.
Now suppose (39) holds for i < s. Taking X = [s] in Lemma 4.8 yields the deviation of LS(X) from LSo(X),

2d(k_3)/25
max min _ |M - M*||, < —— +o(e). (40)
MeLS(X),[|M||p=1 M*€LSo(X) Amin

Applying Theorem 4.4 and Lemmas 4.5-4.7 to i = s + 1 with ¢ replaced by 2¢ (because of the additional
factor “2” in (40) compared to Theorem 4.4), we obtain

2 ~
R o(g), Loss(Ast1, Ar(st1)) < 26+ 0(e).

Loss(ﬁerl»uﬂ' s+1 ) S
(e+1) Ar(s+1)



So (39) also holds for i = s + 1.

It remains to bound the residual tensor AT & T — >iel /\iﬁl@k. Note that Loss(t;, ur(;)) < 26/ Ar(i) +o(€)

implies (U;, Ur(;y) = 1 — §LOSS (Ti, ur(i)) = 1 —2(e/Ars))? + 0(e?). When ¢ is sufficiently large (i.c., e
is sufficiently small), u; is approximately parallel to w,(; and orthogonal to u; for all j # 7(i). For ease
of notation, we renumber the indices and assume 7 (i) = i for all ¢ € [r]. Following the definition of A; in
Lemma C.19,

Now taking X = [r] in (38) gives

=13 hudF e Z)\Am =(> Aai+¢

€[] i€[r] i€(r]

g o

HA’?

o acSd-1

< max ZAia‘@(k_l) +e
€]

o

k—1
€
< max C a;|F e + Cor +e
T aesd-1 ! Z | Z‘ 2 >\min

i€[r]
2
) +e€

< max Cie Z |a;|* + Cor (
where the third line comes from the fact that k > 3, |a;| < 1, and £/Apin < 1 from Assumption 4.1. O

acSd-1
i€[r]



D Supplementary Figures and Table

Order—3 Tensors with Bernoulli Noise
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Order-3 Tensors with t-distributed Noise
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Supplementary Figure S1: Average [? Loss for decomposing order-3 nearly SOD tensors with Bernoulli/T-
distributed noise, d = 25.
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Supplementary Figure S2: Average [? Loss for decomposing order-5 nearly SOD tensors with Gaussian noise,
d = 25.



Supplementary Table S1: Runtime for decomposing nearly-SOD tensors with Gaussian noise, d = 25.

. Time (sec.)

Order | Rank | Noise Level (o) TNLEOSVD | TPM T 0FD
3 2 5x 1072 0.08 0.01 | 0.13
3 10 5x 1072 0.20 0.03 | 0.80
3 25 5x 1072 0.47 0.07 | 0.92
4 2 1.5 x 1072 0.13 0.06 | 0.12
4 10 1.5 x 1072 0.29 0.14 | 1.06
4 25 1.5 x 1072 0.57 0.25 | 1.58
5 2 5.5 % 1073 0.25 0.51 | 0.14
5 10 5.5 x 1073 0.45 1.98 | 1.01
5 25 5.5 x 1073 0.87 4.27 | 2.66
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