Efficient Online Multiclass Prediction on Graphs via Surrogate Losses

A Proof of Admissibility

Proof of Lemma 1. Define functions Rel,, : U;[k]" — R as
Reln(yla s 7yn) = _¢(y17 s 7yn)

and

1 1
Rel,(y1,. -, yt-1) = Ey, ~unitp Reln(y1, - - -, ue) + - (1 - k> ) (3D

with Rel,, () being a constant. We desire to prove that there is an algorithm such that

vy e[, E [;Zl{a . yt}] Oy ) =0,

Consider the last time step n and write the above expression as

n—1
1 1
E |- 1 {y —1{Y, nt+Rel,(y1, -, Yn)| - 32
[”; {0 # ) + ~1{Gn # yn} + Relu(un y)] (32)
Let E,,_; denote the conditional expectation given ¥1,...,%,_1. We shall prove that there exists a randomized strategy

for the last step such that for any y,, € [k],

1.
E,_1 [nl {Un # yn}} +Rel, (y1,...,yn) = Rel,(y1,. .., Yn—1). (33)

This last statement is translated as

. 1.
min max] {Enl [nl {Yn # yn}} + Rel,, (y1, ... ,yn)} =Rel,(y1,-.-,Yn-1)- (34)

an €A yn €[k

Writing 1 {§ # yn} = 1 — € ey, , the left-hand side of (34) is

1

— min max {1 —qle, +nRel,(y1,...,yn)}. 35

o n max {1 - grey, (Y1s- - m)} (35)
The stability condition means that we can choose g, to equalize the choices of y,,. Let (1), ..., (k) be the sorted values
of

nRel,(y1,. -, yn—1,1),...,nRel (y1,...,Yn—1,k),
in non-increasing order. In view of the stability condition,

Hence, ¢,, can be chosen so that all ¢(i) — ¢,,(¢) have the same value. One can check that this is the minimizing choice for
gn- Let ¢, denote this optimal choice. The common value of ¢ (i) — ¢ (7) can then be written as

1 k 1< 1
o) - (1 -l - w(k») = 3w -
=1

i=1

and hence (35) is equal to

1 1\ 1<
- (1_k) —ﬁ—E;Reln(yl,...,yn,l,z). (36)

This value is precisely Rel,, (y1, - ..,¥Yn—1), as per Eq. (31), thus verifying (34). Repeating the argument for t = n — 1
until ¢ = 0, we find that

Rel,(0) = —Eo + (1 - ]16) 0,

thus ensuring existence of an algorithm with (32) equal to zero. The other direction of the statement is proved by taking
sequences y uniformly at random from [k]™, concluding the proof. O



Alexander Rakhlin, Karthik Sridharan

Proof of Lemma 5. Recall that
= [Vl,...,Vt,O,...,O}T.

We can write

k

Rel,(V1,...,Vy) = | Y (V/)’MY{ + D> > M][j,j

i=1 j=t+1
k n

= Z(Yi_l)TMW_ﬁ?Vt[i]M[L Y, + Vi M]t, t] + D? Z M
i=1 j=t+1
k n

<\ DDV )TMY | 4 2V [ Mt Y ) + D2Mt ) 4+ D2 > MG, ]
=1 j=t+1

since ||V¢||3 < D?. Hence,

inf  sup {V/¢y +Rel,(Vy,...,Vi)}
P €RF ||V ||<D

k n
< inf sup Vi | > ((VL)TMYL, + 2V [l M )Y ) + D2 MG, g
Y ERF || V[|<D Py o

Now the claim is that
M[t7 Z]S/%,l

k i i n P
\/Zi:1(Kt—1)TMYt—1 + D? Zj:t M[j, 5]

is the solution to the above minimization problem. To see this, note that for the given v;, the gradient with respect to V is
0 and hence this V; is the maximizer. Plugging in this solution we get an upper bound on the value

o=~

k n
sup ¢ Vit + Z (Vi) TMY | + 2V [i] M, ]Ytif1)+DQZM[j7j]

IVel|<D = =
k n
<\ DoV )TMY ) + D> MG, 5]
i=1 Jj=t

= Reln(Vl, Cee, Vt_l).

The bound at the end is given by
Rel,,(0) = D+/trace(M).

Now once the matrix M is pre-computed, the time complexity per round is O(t). [



