
Global shrinkage in the horseshoe prior

SUPPLEMENTARY MATERIAL

Non-Gaussian Likelihood

Posterior approximation Using the second order Tay-
lor expansion for the log likelihood terms Li(fi,φ)
(where fi = βTxi and φ denotes a possible disper-
sion parameter), we can approximate the posterior as
(ch. 16.2, Gelman et al., 2013)

log p(β |Λ, τ,φ,D)

≈ log p(β |Λ, τ,φ)−
n�

i=1

1

2σ̃2
i

(z̃i − fi)
2 + const.,

where

z̃i = fi −
L�
i(fi,φ)

L��
i (fi,φ)

, σ̃2
i = − 1

L��
i (fi,φ)

,

denote the location and variance of the Gaussian
pseudo-observations. The derivatives are calculated

w.r.t. fi at the posterior mode f̄i = β̄
T
xi. Using these,

the posterior (given the hyperparameters) is approxi-
mately

p(β |Λ, τ,φ,D) ≈ N
�
β | β̄,Σ

�
,

β̄ = τ2Λ
�
τ2Λ+ (XTΣ̃

−1
X)−1

�−1

β̂,

Σ = (τ−2Λ−1 +XTΣ̃
−1

X)−1,

where z̃ = (z̃1, . . . , z̃n), Σ̃ = diag(σ̃2
1 , . . . , σ̃

2
n) and

β̂ = (XTΣ̃
−1

X)−1XTΣ̃
−1

z̃ (assuming the first inverse
exists).

Logistic regression Consider the logistic regression
model

p(yi = 1 | fi) = s(fi) =
1

1 + exp(−fi)
.

The second derivative for the ith log-likelihood term is
given by

L��
i (fi) =

�
yi

s(fi)
− 1− yi

1− s(fi)

�
s��(fi)

−
�

yi
s(fi)2

+
1− yi

(1− s(fi))2

�
(s�(fi))

2.

If we now plug in the derivatives

s�(fi) = s(fi)(1− s(fi)),

s��(fi) = s�(fi)(1− 2s(fi)),

after a few lines of straightforward algebra, we are left
with

L��
i (fi) = s(fi)(s(fi)− 1).

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

A

p∗ = 20

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

A

p∗ = 40

τ = τ0

τ ∼ C+(0, 1)

Figure 6: Synthetic example : Mean squared error
(MSE) between the estimated and the true coefficient
vector of length n = 400 on average over 100 different
data realizations. The true coefficient vector has either
p∗ = 20 or p∗ = 40 elements with a nonzero value equal
to A and the rest of the coefficients are set to zero.

This is a strictly negative function with minimum at
s(fi) = 1

2 , which occurs when fi = 0. Thus also
σ̃2
i = −1/L��

i (fi) is minimized at fi = 0. In other words,
those points that lie on the classification boundary are
the most informative ones, and the pseudo-variance for
these points is

σ̃2
i = − 1

1
2

�
− 1

2

� = 4.

This result serves as a useful reference value as discussed
in Section 3.4.

Additional experiments

We present here an additional synthetic experiment
that could not fit to the main content of the paper.
The example is taken from van der Pas et al. (2014).
Consider model (9), where each yi is generated by
adding Gaussian noise with σ2 = 1 to the corresponding
signal βi. We generated 100 data realizations with n =
400 and the true β∗ having either p∗ = 20 or p∗ = 40
nonzero entries equal to A = 1, 2, . . . , 10 with the rest
of the entries being zeros. We then computed the mean
squared error (MSE) between the estimated posterior
mean β̄ and the true β∗ for the prior τ ∼ C+(0, 1) and
for τ = τ0, where τ0 is computed from Equation (17)
with the oracle prior guess p0 = p∗. The purpose of
this setup is to further demonstrate how one could
benefit from the prior knowledge about the sparsity of
β using our framework, provided such prior knowledge
exists. Notice though, that also in the latter case τ has
a distribution because it depends on σ which is treated
as an unknown parameter.

Figure 6 shows the MSE for the two priors for the
different values of p∗ and A. For both priors the error



Juho Piironen, Aki Vehtari

0 100 200 300 400
−4

−2

0

2

4

6

A = 4

τ ∼ C+(0, 1)

0 100 200 300 400
−4

−2

0

2

4

6

τ = τ0

0 100 200 300 400

0

5

A = 6

0 100 200 300 400

0

5

Figure 7: Synthetic example : An example data realization y (crosses), posterior mean β̄ (dots) and the true
signal β∗ (red lines) for A = 4 and A = 6 when p∗ = 20. In both cases the oracle value for τ helps to shrink the
zero components in β but also overshrinks the actual signals in the case A = 4.

is largest around A ≈ 3.5, which is called the “universal
threshold” by van der Pas et al. (2014). Below this
threshold the nonzero components in β are too small
to be detected and are thus shrunk too heavily towards
zero which introduces error. For A = 4 the oracle prior
actually yields worse results due to this overshrinkage
(see discussion below), but gives clearly superior results
for larger A.

Figure 7 illustrates the data y and the estimated co-
efficients β̄ for one particular data realization when
A = 4 and A = 6. In both cases the oracle choice of
τ helps to shrink the zero components in β towards
zero, but for A = 4 also overshrinks the nonzero com-
ponents. The reason for the overshrinkage is that some
observations yi that correspond to zero signal (βi = 0)
happen to have similar magnitude to the observations
coming from an actual signal (βi = A), and thus these
irrelevant components “steal” from the limited bud-
get for meff. For this particular value of A (and p∗)
the overshrinkage of the actual signals happens to be
worse in terms of MSE than undershrinkage of the zero
components, and thus one would get better results by
setting p0 to be slightly above the true p∗ (results not
shown). For A = 6 the actual signals are large enough
to be distinguished from zero, and the oracle selection
of τ yields substantially better estimate for β.



Global shrinkage in the horseshoe prior

Stan codes

The following shows the Stan code for the linear Gaussian model. We use the parametrization proposed by
Peltola et al. (2014) (codes at https://github.com/to-mi/stan-survival-shrinkage) as it is more robust for
sampling than the literal (3). Even with this parametrization we usually set adapt delta = 0.99 when calling
Stan, as this can sometimes reduce the number of divergent transitions which can be an issue for the horseshoe
prior (see Piironen and Vehtari, 2015).

In the code, both τ and λj are given half-t priors with the degrees of freedom and the scale defined by the user
(the scale can be adjusted only for τ , the local parameters λj have unit scale). Setting nu local = 1 corresponds
to the horseshoe. nu global = 1 gives τ a half-Cauchy prior, whereas fixing nu global to some large value (say
100) would give τ practically a half-normal prior. The scale for τ is scale global*sigma, so if we want to set
this to be τ0 = p0

D−p0

σ√
n
(Eq. (16)), we should set scale global = p0

(D−p0)
√
n
.

data {
int <lower=0> n; // number of observations
int <lower=0> d; // number of predictors
vector[n] y; // outputs
matrix[n,d] x; // inputs
real <lower=0> scale_icept; // prior std for the intercept
real <lower=0> scale_global; // scale for the half -t prior for tau

// (tau0 = scale_global *sigma)
real <lower=1> nu_global; // degrees of freedom for the half -t prior for tau
real <lower=1> nu_local; // degrees of freedom for the half -t priors for lambdas

// (nu_local = 1 corresponds to the horseshoe )
}

parameters {
real beta0; // intercept
real logsigma; // log of noise std

// auxiliary variables that define the global and local parameters
vector[d] z;
real <lower=0> r1_global;
real <lower=0> r2_global;
vector <lower =0>[d] r1_local;
vector <lower =0>[d] r2_local;

}

transformed parameters {
real <lower=0> tau; // global shrinkage parameter
vector <lower =0>[d] lambda; // local shrinkage parameters
vector[d] beta; // regression coefficients
vector[n] f; // latent values
real sigma; // noise std

sigma = exp(logsigma );
lambda = r1_local .* sqrt(r2_local );
tau = r1_global * sqrt(r2_global );
beta = z .* lambda*tau;
f = beta0 + x*beta;

}

model {
// half -t priors for lambdas
z ∼ normal(0, 1);
r1_local ∼ normal (0.0, 1.0);
r2_local ∼ inv_gamma (0.5* nu_local , 0.5* nu_local );

// half -t prior for tau
r1_global ∼ normal (0.0, scale_global*sigma );
r2_global ∼ inv_gamma (0.5* nu_global , 0.5* nu_global );

// gaussian prior for the intercept
beta0 ∼ normal(0, scale_icept );

// observation model
y ∼ normal(f, sigma);

}



Juho Piironen, Aki Vehtari

The code for the logistic regression model is very similar, we simply remove the lines related to the noise deviation
sigma, and change the observation model and the type of the target variable data y. The scale for τ is now
simply scale global. Thus, to follow our recommendation, we set scale global = τ0 = p0

D−p0

σ√
n
(Eq. (16)), by

plugging in σ = 2 (Sec. 3.4).

data {
int <lower=0> n; // number of observations
int <lower=0> d; // number of predictors
int <lower=0,upper=1> y[n]; // outputs
matrix[n,d] x; // inputs
real <lower=0> scale_icept; // prior std for the intercept
real <lower=0> scale_global; // scale for the half -t prior for tau
real <lower=1> nu_global; // degrees of freedom for the half -t priors for tau
real <lower=1> nu_local; // degrees of freedom for the half -t priors for lambdas

// (nu_local = 1 corresponds to the horseshoe )
}

parameters {
real beta0; // intercept

// auxiliary variables that define the global and local parameters
vector[d] z;
real <lower=0> r1_global;
real <lower=0> r2_global;
vector <lower =0>[d] r1_local;
vector <lower =0>[d] r2_local;

}

transformed parameters {
real <lower=0> tau; // global shrinkage parameter
vector <lower =0>[d] lambda; // local shrinkage parameter
vector[d] beta; // regression coefficients
vector[n] f; // latent values

lambda = r1_local .* sqrt(r2_local );
tau = r1_global * sqrt(r2_global );
beta = z .* lambda*tau;
f = beta0 + x*beta;

}

model {
// half -t priors for lambdas
z ∼ normal(0, 1);
r1_local ∼ normal (0.0, 1.0);
r2_local ∼ inv_gamma (0.5* nu_local , 0.5* nu_local );

// half -t prior for tau
r1_global ∼ normal (0.0, scale_global );
r2_global ∼ inv_gamma (0.5* nu_global , 0.5* nu_global );

// gaussian prior for the intercept
beta0 ∼ normal(0, scale_icept );

// observation model
y ∼ bernoulli_logit(f);

}


