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1 Gibbs updates
KFA Likelihood and priors:
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where Xn ∈ Rm1×···×mT is the nth data item, and dik is the i = [i1, . . . , iT ]
element of the kth atom. The precisions γε, γs have gamma priors.
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2 Bayesian Conditional Density Filter for KFA
We record surrogate conditional sufficient statistics (SCSS) for the global param-
eters that directly interact with the data or local parameters D, γε, γs, πk. The
SCSS are given by the posterior updates of the global parameters. The SCSS are
accumulated for each subset of data, and then applied in the subsequent update
as the prior parameters. We reset the SCSS after the number of data items seen
is the same as the size of the dataset. In our implementation we update the
model parameters 3 times using a single subset of data. The SCSS are held fixed
until the 3rd iteration. This allows stale local parameters {S,Z} to be refreshed
before updating the SCSS. The algorithm below describes the process.

for epoch = 1 to numEpoch do
Randomly partition X into minibatches X (i) of size batchSize
Set SCSS to prior parameters
for all X (i) do
Update S(i),Z(i) and all hyperparameters with KFA
Do a standard KFA update twice (including the dictionary)
Update SCSS (∀k):

µDkSCSS = µDkSCSS + µDk(i)

γDkSCSS = γDkSCSS + γDk(i)
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end for
Reset SCSS to original prior parameters
if epoch == 1 then
Update S,Z and all hyperparameters using the full data set (note that
every column is independent, so this can be done in parallel).

end if
end for
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3 Barbara Images

Figure 1: Barbara reconstructions from a random 20% of the pixels: corrupted
image (top), KFA (center), BPFA (bottom). KFA reconstructs the eyes and mouth
better than BPFA. Also, the contrast in the stripe pattern is stronger in the KFA
reconstruction.
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4 Dictionary Recovery
For this example, we assume the dictionary is composed of the 5× 5× 5× 5 DCT
filters. Note that each filter is rank-1 (separable). We generate 500 data samples
using normal random weights for S, enforce that only 8 nonzero elements are
present in each column of Z and set the noise variance to 0.01. We use the
same settings for BPFA and KFA, with R = 1. The dictionary size is K = 625,
the same as the number of DCT filters. We ran both models for 100 iterations.
Figure 2 shows the learned dictionaries from each algorithm. KFA learns the
DCT filters. We find that even when we set R to the expected rank RE = 30,
the KFA dictionary atoms are low-rank. The BPFA dictionary looks noisy
(high-rank structures) while both of the KFA dictionaries have low-rank atoms.

The RMSE for the three models is given in table 1. We can see from the
dictionary and the RMSE that KFA is discovering the multi-way structure of
the data. The number of samples is smaller than the dictionary, yet KFA is still
able to find a well structured dictionary and achieve a lower error.

Table 1: RMSE on 4D-DCT example

BPFA KFA R = 1 KFA R = 30

RMSE 0.03795 0.01387 0.01095
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Figure 2: 4D-DCT example dictionaries collapsed to 2D: KFA (top), BPFA (bottom).
Zoom-in for fine structure.
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