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Abstract

We present an algorithm for the statisti-
cal learning setting with a bounded exp-
concave loss in d dimensions that obtains
excess risk O(dlog(1/d)/n) with probability
1—4. The core technique is to boost the confi-
dence of recent in-expectation O(d/n) excess
risk bounds for empirical risk minimization
(ERM), without sacrificing the rate, by lever-
aging a Bernstein condition which holds due
to exp-concavity. We also show that a regret
bound for any online learner in this setting
translates to a high probability excess risk
bound for the corresponding online-to-batch
conversion of the online learner. Lastly, we
present high probability bounds for the exp-
concave model selection aggregation prob-
lem that are quantile-adaptive in a certain
sense. One bound obtains a nearly optimal
rate without requiring the loss to be Lips-
chitz continuous, and another requires Lips-
chitz continuity but obtains the optimal rate.

1 Introduction

In the statistical learning problem, a learning agent ob-
serves a sample of n points Z1, ..., Z, drawn i.i.d. from
an unknown distribution P over an outcome space
Z. The agent then seeks an action f in an action
space F that minimizes their expected loss, or risk,
Ezp[l(f,Z)], where £ is a loss function £: Fx Z — R.
Several recent works have studied this problem in the
situation where the loss is exp-concave and bounded,
F and Z are subsets of R?, and F is convex. Mahdavi
et al. (2015) were the first to show that there exists a
learner for which, with probability at least 1 — §, the
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excess risk decays at the rate d(log n+log(1/§))/n. Via
new algorithmic stability arguments applied to empir-
ical risk minimization (ERM), Koren and Levy (2015)
and Gonen and Shalev-Shwartz (2016) discarded the
log n factor to obtain a rate of d/n, but their bounds
only hold in expectation. All three works highlighted
the open problem of obtaining a high probability ex-
cess risk bound with the rate dlog(1/6)/n. Whether
this is possible is far from a trivial question in light of
a result of Audibert (2008): when learning over a finite
class with bounded n-exp-concave losses, the progres-
sive mixture rule (a Cesaro mean of pseudo-Bayesian
estimators) with learning rate n obtains expected ex-
cess risk O(1/n) but, for any learning rate, these rules

suffer from severe deviations of order /log(1/d)/n.

This work resolves the high probability question: we
present a learning algorithm with an excess risk bound
(Corollary 1) which has rate dlog(1/d)/n with proba-
bility at least 1 — 6. ERM also obtains O((dlog(n) +
log(1/6))/n) excess risk, a fact that apparently was
not widely known although it follows from results in
the literature. To vanquish the logn factor with the
small log(1/0) price it suffices to run a two-phase ERM
method based on a confidence-boosting device. The
key to our analysis is connecting exp-concavity to the
central condition of Van Erven et al. (2015), which in
turn implies a Bernstein condition. We then exploit
the variance control of the excess loss random vari-
ables afforded by the Bernstein condition to boost the
boosting the confidence trick of Schapire (1990).

In the next section, we discuss a brief history of the
work in this area. In Section 3, we formally de-
fine the setting and describe the previous O(d/n) in-
expectation bounds. We present the results for stan-
dard ERM and our confidence-boosted ERM method
in Sections 4 and 5 respectively. Section 6 extends the
results of Kakade and Tewari (2009) to exp-concave
losses, showing that under a bounded loss assump-
tion a regret bound for any online exp-concave learner
transfers to a high probability excess risk bound via
an online-to-batch conversion. This extension comes
at no additional technical price: it is a consequence of
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the variance control implied by exp-concavity, and this
control can be leveraged by Freedman’s inequality for
martingales to obtain a fast rate with high probability.
This result continues the line of work of Cesa-Bianchi
et al. (2001) and Kakade and Tewari (2009) and ac-
cordingly is about the generalization ability of online
exp-concave learning algorithms. One powerful con-
sequence of this result is a new guarantee for model
selection aggregation: we present a method (Section
7) for the model selection aggregation problem over
finite classes with exp-concave losses that obtains a
rate of O((log|F| + logn)/n) with high probability,
with no dependence on the Lipschitz continuity of the
loss function. All previous bounds of which we are
aware depend on the Lipschitz continuity of the prob-
lem. Moreover, the bound is a quantile-like bound in
that it improves with the prior measure on a subclass
of nearly optimal hypotheses.

2 A history of exp-concave learning

Learning under exp-concave losses with finite classes
dates back to the seminal work of Vovk (1990) and
the game of prediction with expert advice, with the
first explicit treatment for exp-concave losses due to
Kivinen and Warmuth (1999). Vovk (1990) showed
that if a game is np-mixable (which is implied by 7-
exp-concavity), one can guarantee that the worst-case
individual sequence regret against the best of K ex-
perts is at most loe K = An online-to-batch conversion
then implies an in-expectation excess risk bound of the
same order in the stochastic i.i.d. setting.

Audibert (2008) showed that when learning over a fi-
nite class with exp-concave losses, no progressive mix-
ture rule can obtain a high probability excess risk
bound of order better than 4/log(1/0)/n. ERM fares
even worse, with a lower bound of /log | F|/n in expec-
tation. (Juditsky et al., 2008). Audibert (2008) over-
came the deviations shortcoming of progressive mix-
ture rules via his empirical star algorithm, which first
runs ERM on F, obtaining fERM, and then runs ERM a
second time on the star convex hull of F with respect
to fonu. This algorithm achieves O(log|F|/n) with
high probability; the rate was only proved for squared
loss with targets Y and predictions ¢ in [—1, 1], but it
was claimed that the result can be extended to general,
bounded losses § — ¢(y,7) satisfying smoothness and
strong convexity as a function of predictions . Under
similar assumptions, Lecué and Rigollet (2014) proved
that a method, Q-aggregation, also obtains this rate
but can further take into account a prior distribution.

For convex classes, such as F C R? as we consider
here, Hazan et al. (2007) designed the Online Newton
Step (ONS) and Exponentially Weighted Online Op-

timization (EWOO) algorithms. Both have O(dlogn)
regret over n rounds, which, after online-to-batch con-
version yields O(dlog(n)/n) excess risk in expecta-
tion. Mahdavi et al. (2015) showed that an online-to-
batch conversion of ONS enjoys excess risk bounded
by O(dlog(n)/n) with high probability. While this re-
solved the statistical complexity of learning up to logn
factors, ONS (though efficient) can have a high compu-
tational cost of O(d?) even in simple cases like learning
over the unit £5 ball, and in general its complexity may
be as high as O(d*) per projection step (Koren, 2013).

If one hopes to eliminate the logn factor, the addi-
tional hardness of the online setting makes it unlikely
that one can proceed via an online-to-batch conver-
sion approach. Moreover, computational considera-
tions suggest circumventing ONS anyways. In this
vein, as we discuss in the next section both Koren and
Levy (2015) and Gonen and Shalev-Shwartz (2016) re-
cently established in-expectation excess risk bounds
for a lightly penalized ERM algorithm and ERM itself
respectively, without resorting to an online-to-batch
conversion. Notably, both works developed arguments
based on algorithmic stability, thereby circumventing
the typical reliance on chaining-based arguments to
discard logn factors. Table 1 summarizes what is
known and our new results.

3 Rate-optimal in-expectation bounds

We now describe the setting more formally. In this
work F is always assumed to be convex, except in
Section 7, which studies the model selection aggrega-
tion problem for countable classes. We say a func-
tion A: F — R has diameter C' if supy, ;o7 [A(f1) —
A(f2)] < C. Assume for each z € Z that the loss map
0(-,2): f > L(f, 2) is n-exp-concave, i.e. f s e~ 1(f:2)
is concave over F. We further assume, for each out-
come z, that the loss £(-,z) has diameter B. We
adopt the notation ¢;(z) = £(f,z). Given a sample
of n points drawn i.i.d. from an unknown distribu-
tion P over Z, our objective is to select a hypothesis
f € F that minimizes the excess risk Ez.p[¢;(Z)] —
infrerEzoplly(Z)]. We assume that there exists
f* € F satisfying E[ff*(Z)] = inffe}‘ EZNp[gf(Z)];
this assumption also was made by Gonen and Shalev-
Shwartz (2016) and Kakade and Tewari (2009).

Let Ax be an algorithm, defined for a function class F
as a mapping Ar: |, >, 2" — F; we drop the sub-
script F when it is clear from the context. Our start-

IThis assumption is not explicit from Koren and Levy
(2015), but their other assumptions might imply it. Re-
gardless, if their results and those of Gonen and Shalev-
Shwartz (2016) hold, our analysis in Section 5 can be
adapted to work if the infimal risk is not achieved.
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Convex F Finite F

Algorithm Expectation  Probability 1 — § Expectation Probability 1 —§
Progressive mixture — — log |F|/n Q(+y/log(1/6)/n)
Empirical star / Q-agg. — — log | F|/n (log | F| +1og(1/0))/n
Online Newton Step dlogn/n d(logn +log(1/6))/n — —

EWOO dlogn/n (dlogn + log(1/6))/n — —

ERM d/n (dlogn +log(1/6))/n  Q(y/log|F|/n) —

Boosted ERM — dlog(1/d9)/n — —

Table 1: Excess risk bounds (new results in bold). Upper bounds are big-O. Boosted ERM applies CONFIDENCE-
BoosT to ERM. “ERM” is either penalized ERM (Koren and Levy, 2015) or ERM (Gonen and Shalev-Shwartz,
2016). For simplicity we only show dependence in d, n, and § and restrict Q-aggregation to uniform prior.

ing point will be an algorithm 4 which, when provided
with a sample Z of n i.i.d. points, satisfies an expected
risk bound of the form

Ez~pr [Eznop [baz)(Z) — (p-(2)]] <9(n). (1)

Koren and Levy (2015) and Gonen and Shalev-
Shwartz (2016) both established in-expectation
bounds of the form (1) that obtain a rate of O(d/n)
in the case when F C R, each in a slightly different
setting. Koren and Levy (2015) assume, for each out-
come z € Z, that the loss ¢(-, z) has diameter B and
is B-smooth for some 8 > 1, i.e. for all f, f' € F, the
gradient is [-Lipschitz:

IVs€(f,2) = V(f', 2)ll2 < BIf = f'll2-
They also use a 1-strongly convex regularizer I': F —
R with diameter R. Under these assumptions, they
show that ERM run with the weighted regularizer %I‘
has expected excess risk at most
W(n) =2 (w +100Bd + R) .

n\ 7

It is not known if the smoothness assumption is nec-
essary to eliminate the logn factor.

Gonen and Shalev-Shwartz (2016) work in a slightly
different setting that captures all known exp-concave
losses. They assume that the loss is of the form
05 (2) = ¢y ((f,x)), for F C R They further assume,
for each z = (z,y), that the mapping § — ¢,(y) is
a-strongly convex and L-Lipschitz, but they do not
assume smoothness. They show that standard, unreg-
ularized ERM has expected excess risk at most

2
’L/J(n) = LQnd = %’

where 1 = o/ L?; the purpose of the rightmost expres-
sion is that the loss is n-exp-concave. Although this
bound ostensibly is independent of the loss’s diameter
B, the dependence may be masked by 7: for logistic
loss, n = e~ B /4, while squared loss admits the more
favorable n = 1/(4B)2.

4 A high probability bound for ERM

As a warm-up to proving a high probability O(d/n)
excess risk bound, we first show that ERM itself ob-
tains excess risk O(dlog(n)/n) with high probability;
here and elsewhere, if § is omitted the dependence is
log(1/4). That ERM satisfies such a bound was largely
implicit in the literature, and so we make this result
explicit. The closest such result, Theorem 1 of Mah-
davi and Jin (2014), does not apply as it relies on an
additional assumption (see their Assumption (I)). Our
assumptions subtly differ from elsewhere in this work.
We assume that F C R? satisfies sup; ez [[f— f'[l2 <
R and that, for each outcome z € Z, the loss £(-, 2)
is L-Lipschitz and |{f(z) — {4-(2)] < B. The first
two assumptions already imply the last for B = LR.
All these assumptions were made by Mahdavi and Jin
(2014) and Koren and Levy (2015), sometimes implic-
itly, and while Gonen and Shalev-Shwartz (2016) only
make the Lipschitz assumption, for all known n-exp-
concave losses the constant 7 depends on B (which
itself typically will depend on R).

The first, critical observation is that exp-concavity im-
plies good concentration properties of the excess loss
random variable. This is easiest to see by way of the 7-
central condition, which the excess loss satisfies. This
concept, introduced by Van Erven et al. (2012) as
“stochastic mixability”, is defined as follows.

Definition 1 (Central condition) We say that
(P,¢, F) satisfies the mn-central condition for some

n > 0 if there exists a comparator f* € F such that,
forall feF, Ezup [e_"(éf(z)—ef*(z))] <1.

Jensen’s inequality implies that if this condition holds,
the corresponding f* must be a risk minimizer. It is
known (Van Erven et al., 2015, Section 4.2.2) that in
our setting (P, ¢, F) satisfies the n-central condition.

Lemma 1 Let F be convex. Take £ to be a loss func-
tion £: F x Z — R, and assume that, for each z € Z,
the map £(-,2): f — L(f,z) is n-exp-concave. Then,
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for all distributions P over Z, if there exists an f* € F
that minimizes the risk under P, then (P,{,F) satis-
fies the n-central condition.

Under the central condition, Theorem 7 of Mehta and
Williamson (2014) directly implies an O(dlog(n)/n)
bound for ERM; however, a far simpler version of that
result yields much smaller constants. The proof of the
version below, in the appendix for completeness, only
makes use of an (¢/L)-net of F in the ¢3 norm, which
induces an e-net of {¢; : f € F} in the sup norm.

Theorem 1 Let F C R? be a conver set satisfying
supy prer |f — f'll2 < R. Suppose, for all z € Z, that
the loss U(-, z) is n-exp-concave and L-Lipschitz. Let
Sup,ez rer |0r(2) —Ly-(2)| < B. Then if n > 5, with
probability at least 1 — 6, ERM learns a hypothesis f
with excess risk bounded as

Ezmrllf(2) - £y (2) @)
<1 (3(BVY) (alog(16LRN) +1og}) +1).

5 Boosting the confidence for high
probability bounds

The two existing excess risk bounds mentioned in Sec-
tion 3 decay at the rate 1/n. A naive application of
Markov’s inequality unsatisfyingly yields excess risk
bounds of order (n)/d that hold with probability
1—4. In this section, we present and analyze our meta-
algorithm, CONFIDENCEBOOST, which boosts these
in-expectation bounds to hold with probability at least
1 — & at the price of log(1/6) factor. This method
is essentially the “boosting the confidence” trick of
Schapire (1990); the novelty lies in a refined analy-
sis that exploits a Bernstein-type condition to improve
the rate in the final high probability bound from the
typical O(1/4/n) to the desired O(1/n).

Our analysis of CONFIDENCEBOOST actually applies
more generally than the exp-concave learning setting,
requiring only that 4 satisfy an in-expectation bound
of the form (1), the loss £(-, z) have bounded diameter
for each z € Z, and the problem (P, ¢, F) satisfy a
(C, q)-Bernstein condition.

Definition 2 (Bernstein condition) We say that
(P, ¢, F) satisfies the (C,q)-Bernstein condition for
some C > 0 and q € (0,1] if there exists a comparator
f* € F such that, for all f € F,

Eonr|(65(2) ~ £5-(2))*]| S CEap [64(2) — (- (2))".

Before getting to CONFIDENCEBOOST, we first show
that the exp-concave learning setting satisfies the
Bernstein condition with the best exponent, ¢ = 1,

Algorithm 1: CONFIDENCEBOOST
Input: Z,...,Zg iri\fi P™ Zy ~ P™ learner Arx
for j=1— K do f; = Ar(Z,)

return ERM £, (Zy1), with Fx = {f1,...

7fK}

and so is a special case of the more general setting
we analyze. Recall from Lemma 1 that the n-central
condition holds for (P, ¢, F). The next lemma, which
adapts a result of Van Erven et al. (2015), shows that
the n-central condition, together with boundedness of
the loss, implies that a Bernstein condition holds.

Lemma 2 (Central to Bernstein) Let X be a ran-
dom wvariable taking values in [—B, B]|. Assume that

E[e="X] < 1. Then E[X?] < 4(1/n+ B)E[X].

Boosting the “boosting the confidence” trick.
First, consider running A on a sample Z; of n
i.i.d. points. The excess risk random variable
Ez[la(z,)(Z)—Ls-(Z)] is nonnegative, and so Markov’s
inequality and the expected excess risk being bounded
by % (n) imply that

Pr (Ez[laz)(Z) = (p-(2)] Z e~ ¥(n)) < ¢.

Now, let Zi,...,Zk be independent samples, each
of size n. Running A on each sample yields f; =
A(Zy),. .., fx := A(Zk). Applying Markov’s inequal-
ity as above, combined with independence, implies
that with probability at least 1 — e™® there exists
J € [K] such that EZNP[Efj(Z) — U5 (Z)] < e-9¥(n).
Let us call this good event GOOD.

Our quest is now to show that on event GOOD, we
can identify any of the hypotheses fl, cee fK approx-
imately satisfying EZNP[Efj(Z) — 05 (Z)] < e-tp(n),
where by “approximately” we mean up to some slack
that weakens the order of our resulting excess risk
bound by a multiplicative factor of at most K. As we
will see, it suffices to run ERM over this finite subclass
using a fresh sample. The proposed meta-algorithm is
presented in Algorithm 1.

Analysis. From here on out, we treat the initial
sample of size Kn as fixed and unhat the K estimators
above, referring to them as fi,..., fx. Without loss
of generality, we further assume that they are sorted
in order of increasing risk (breaking ties arbitrarily).
Our goal now is to show that running ERM on the
finite class Fx := {f1,..., [k} yields low excess risk
with respect to comparator f;. A typical analysis of
the boosting the confidence trick would apply Hoeffd-
ing’s inequality to select a risk minimizer optimal to
resolution 1/4/n, but this is not good enough here. As
a further boost to the trick, this time with respect to
its resolution, we will establish that a Bernstein condi-
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tion holds over a particular subclass of Fx with high
probability, which will in turn imply that ERM obtains
O(1/n'/2=9) excess risk over F.

We first establish an approximate Bernstein condi-
tion for (P,¢, Fk). Since ||€fj — €f1||L2(p) < ||€fj -
gf*”Lz(P) + ||€f1 — L= La(P) for all f; € Fk, from the
(C, q)-Bernstein condition, ||{y, — £, H%Q(P) is at most

< C (Elty, — 019+ E[tg, — £4-]%)
+2C (E[Kfj — (4] - E[ty, —Kf*])q/z
< C(3E[ly, — 5)7 + E[ls, — £4-])
= C(3(Elty, — £5,] +Elty, — £5-])" +E[t5, — £5]9)
< C(3E[y, — £p]" +4E[Ly, — £4:]7);

the last step uses the subadditivity of the concave map
x +— 9. We call this bound an approximate Bernstein
condition because, on event GOOD, for all f; € Fk:

105, = €1 N Lopy < C (BE[Ly, — £4]7 +4(e - 1p(n))?) -

Define the class Fj as the set {fi} U
{f; € Fi 1 E[ty, — €y,] > 4% -9p(n)}.  Then with
probability Pr(coop) > 1 — e % the problem
(P, ¢, ) satisfies the (4C, g)-Bernstein condition.

We now analyze the outcome of running ERM on
{fi,-.., fx} using a fresh sample of n points. The
next lemma shows that ERM performs favorably un-
der a Bernstein condition, a well-known result.

Lemma 3 Let G be a finite class of functions
{q1,.-.,9K} and assume without loss of generality that
g1 18 a risk minimizer over G. Let G' C G be a subclass
for which, for all f € G':

E[(gf - £g1)2} < CE[gf - ggl]q’

and £y — €y, < B almost surely. Then, with probabil-
ity at least 1 — §, ERM run on G will not select any
function f in G' whose excess risk satisfies

- / 1/(2—q)
C B2-4 lo [g7|—1
E[Zf _ggl] > <2( - n) = ) :

Applying Lemma 3 with § = Fx and G’ = FJ., with
probability at least 1 — & over the fresh sample, ERM
selects a function f; falling in one of two cases:

o Ezplly,(Z) — 5, (2)] < 4M9e - p(n);

2-¢q 1/(2—q)
2(C+E5— ) log &
° EZNP[Efj(Z)_gfl(Z)] < <(n)g5>

We now run CONFIDENCEBOOST with K = [log(2/6)]
on a sample of n points, with nj = 5% and nyp = 3;
for simplicity, we assume that 2K divides n. Taking
the failure probability for the ERM phase to be §/2,
CONFIDENCEBOOST admits the following guarantee.

Theorem 2 Let (P, ¢, F) satisfy the (C,q)-Bernstein
condition, and assume for all z € Z that the loss
U(-, z) has diameter B. Impose any necessary assump-
tions such that algorithm A obtains a bound of the
form (1). Then, with probability at least 1 — &, CONFI-
DENCEBOOST run with K = [log(2/0)], n1 = n/(2K),
and nir = n/2 learns a hypothesis f with excess risk
Ezpll;(Z) — Ly-(Z)] at most

o (sr) o

4l/ae . o (2103?[3] ) ,

4+ ma. . —
x (4(C+33 q)(log};Jrlogﬂogg]))l/(Z 9

n

The next result for exp-concave learning is immediate.

Corollary 1 Applying Theorem 2 with Ax the algo-
rithm of Koren and Levy (2015) and their assumptions
(with B > 1), the bound in Theorem 2 specializes to

(%22 (£ +aB+R)). (4)

Similarly taking Ax the algorithm of Gonen and
Shalev-Shwartz (2016) and their assumptions yields

0 (2t (¢4 B)). (5)

Remarks. As we saw from Lemmas 1 and 2, in the
exp-concave setting a Bernstein condition holds for the
class F. A natural inquiry is if one could use this Bern-
stein condition to show directly a high probability fast
rate of O(d/n) for ERM. Indeed, under strong con-
vexity (which is strictly stronger than exp-concavity),
Sridharan et al. (2009) show that a similar bound for
ERM is possible; however, they used strong convexity
to bound a localized complexity. It is unclear if exp-
concavity can be used to bound a localized complexity,
and the Bernstein condition alone seems insufficient;
such a bound may be possible via ideas from the local
norm analysis of Koren and Levy (2015).

6 Online-to-batch-conversion

This section shows that if one is willing to accept the
additional logn factor in a high probability bound,
then it is sufficient to use an online-to-batch conver-
sion of an online exp-concave learner whose worst-case
cumulative regret (over n rounds) is logarithmic in n.
Using such a conversion, it is easy to get an excess risk
bound with the additional logn factor that holds in ex-
pectation. The key difficulty is making such a bound
hold with high probability. This result provides an al-
ternative to the high probability O(logn/n) result for
ERM in Section 4.
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Mahdavi et al. (2015) considered an online-to-batch
conversion of ONS and established the first high proba-
bility O(logn/n) excess risk bound in the exp-concave
statistical learning setting. Their analysis is elegant
but seems intimately coupled to ONS; it is thus unclear
if their analysis can yield excess risk bounds for online-
to-batch conversions of other online exp-concave learn-
ers. This leads to our next point and a new path: it
is possible to transfer regret bounds to high probabil-
ity excess risk bounds via online-to-batch conversion
for general online exp-concave learners. Our analysis
builds strongly on the analysis of Kakade and Tewari
(2009) in the strongly convex setting.

We first consider a different, related setting: online
convex optimization (OCO) under a B-bounded, v-
strongly convex loss that is L-Lipschitz with respect
to the action. An OCO game unfolds over n rounds.
An adversary first selects a sequence of n convex loss
functions c¢i,...,¢,. In round t, the online learner
plays f; € F, the environment subsequently reveals
cost function ¢, and the learner suffers loss c¢;(f;).
Because we are interested in analyzing the statistical
learning setting, we constrain the adversary to play
a sequence of n points z1,...,2, € Z, inducing cost
functions (-, z1),...,£(:, zn).

Consider an online learner that sequentially plays ac-
tions f1,..., fn € F in response to z1,..., 2,, so that
f+ depends on (z1,...,2:—1). The (cumulative) regret
is defined as >, £y, (z:) —infrer >y £5(2:). When
the losses are bounded, strongly convex, and Lips-
chitz, Kakade and Tewari (2009) showed that if an
online algorithm has regret R, on an i.i.d. sequence
Z1y...y 2y ~ P, online-to-batch conversion by simple
averaging f,, := % >y fi has the following guarantee.

Theorem 3 (Cor. 5, Kakade and Tewari (2009))
For all z € Z, assume that (-, z) is bounded by B,
v-strongly conver, and L-Lipschitz. Then with prob-
ability at least 1 — 4log(n)d the action f, satisfies
excess risk bound

Ez~plls,(Z) = 4-(2)]

2 L 2 1
< Ru oy g /L2lo85 VR +max{@763} log 5
n v n 1% n

Under various assumptions, there are OCO algorithms
that obtain worst-case regret (under all sequences
Z1y-+-32n) Ryn = O(logn); e.g., Online Gradient De-
scent (Hazan et al., 2007) satisfies R,, < (2;—5(1+10g n),
where G is an upper bound on the gradient.

What if we relax strong convexity to exp-concavity?
As we will see, it is possible to extend the analysis of
Kakade and Tewari (2009) to n-exp-concave losses. Of
course, such a regret-to-excess-risk bound conversion
is useful only if we have online algorithms and regret

bounds to start with. Indeed, at least two such algo-
rithms and bounds exist, due to Hazan et al. (2007):

e ONS, with R, < 5 (% + GD) dlogn, where G is
a bound on the gradient and D is a bound on the
diameter of the action space.

e Exponentially Weighted Online Optimization
(EWOO0), with R, < ;d(1+log(n+1)). The
better regret bound comes at the price of not being
computationally efficient.

We now show how to extend the analysis of Kakade
and Tewari (2009) to exp-concave losses. While simi-
lar results can be obtained from the work of Mahdavi
et al. (2015) for the specific case of ONS, our analysis
is agnostic of the base algorithm. As a consequence,
our analysis applies to EWOO, which, although highly
impractical, offers a better regret bound. The key in-
sight is that exp-concavity implies a variance inequal-
ity similar to Lemma 1 of Kakade and Tewari (2009),
a pivotal result of that work that unlocks Freedman’s
inequality for martingales (Freedman, 1975). Let Z!
denote the sequence Z1, ..., Z;.

Lemma 4 (Conditional variance control)
Define the Martingale difference sequence

& = Ez[05,(2) — Ly (2)] = (5,(Z0) — Ly (Z2)).
Then

Var [¢ | 2071 <4 (% n B) Ez[(,(2) — 1;(2)).

PROOF Observe that Var [& | Z{ '] = Var[¢;,(Z;) —
U-(Zy) | Z7']. Treating the sequence Z{~ " as fixed
and also treating f; as a fixed parameter f, the above
conditional variance equals Var [(;(Z)—{s+(Z)], where
only Z ~ P is random. Then, Lemma 2 implies that

Var[£;(2)—t5-(2)] <4 (3 + B) El6(2) — £-(2)] m

The next corollary is from a retrace of the proof of
Theorem 2 of Kakade and Tewari (2009).

Corollary 2 For all z € Z, let £(-,2) be bounded by
B and n-exp-concave with respect to the action f € F.
Then with probability at least 1 — 9, for any n > 3, the
excess risk of fn 18 at most

7%+4\/(},+B)1og‘m§”-vnm

4logn

+16(l+B>logl.
n n

In particular, an online-to-batch conversion of EWOO
yields excess risk of order

dlogn + (loglogn)B+Blog%

nn n
vatogn ( [loglogmB | [(1 | B)jpe1
+ AL (\/ e (G + n)logé).
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Proceeding similarly yields a bound for ONS under the
additional assumptions that F has bounded diameter
and that V{(f,z) has bounded norm for all z € Z.

Obtaining o(log(n)/n) excess risk. The worst-
case regret bounds in this online setting have a logn
factor, but when the environment is stochastic and the
distribution satisfies some notion of easiness the actual
regret can be o(logn). In such situations the excess
risk similarly can be o(log(n)/n) because our excess
risk bounds depend not on worst-case regret bounds
but rather the actual regret. We explore one scenario
where such improvement is possible. Suppose that the
loss is also B-smooth; then, when the cumulative loss
of f* is small, the analysis of Orabona et al. (2012,
Theorem 1) for ONS yields an improved regret bound
of order log(1+ Y7, £s«(Z;)). As a simple example,
consider the case when the problem is realizable in the
sense that {4« (Z) = 0 almost surely. Then the regret
bound is constant and the rate with respect to n for
the excess risk in Corollary 2 is logl%.

7 Model selection aggregation

In the model selection aggregation problem for exp-
concave losses, we are given a countable class F of
functions from an input space X to an output space )
and aloss £: Y x Y — R; for each y € ), the mapping
9 — £(y,9) is n-exp-concave. The loss is a supervised
loss, as in supervised classification and regression, un-
like the more general loss functions used in the rest of
the paper. The random points Z ~ P now decompose
into an input-output pair Z = (X,Y) € Z = X x ).
We often use the notation £¢(Z) := £(Y, f(X)). The
goal is the same as in the stochastic exp-concave opti-
mization problem, but now F fails to be convex.

After Audibert (2008) showed that the progressive
mixture rule cannot obtain fast rates with high proba-
bility, several works developed methods that departed
from progressive mixture rules and gravitated instead
toward ERM-style rules, starting with the empirical
star algorithm of Audibert (2008) and a subsequent
method of Lecué and Mendelson (2009) which runs
ERM over the convex hull of a data-dependent sub-
class. Lecué and Rigollet (2014) extended these re-
sults to take into account a prior on the class using
their @Q-aggregation procedure. All the methods re-
quire Lipschitz continuity of the loss? and are for fi-
nite classes. In this section, we present an algorithm
that carefully composes exponential weights-type algo-
rithms and still obtains a fast rate with high probabil-

2 Audibert (2008) analyzed bounded squared loss, with a
suggestion for analyzing exp-concave losses; from the tech-
niques used, Lipschitz continuity likely would be required.

ity for the model selection aggregation problem. One
incarnation can do so with the fast rate of O(log | F|/n)
for finite |F|, by relying on Boosted ERM. Another,
“pure” version based on exponential weights-type pro-
cedures alone can get a rate of O(log |F|/n + logn/n)
with no dependence on the Lipschitz continuity of the
loss. To our knowledge, this is the first fast rate high
probability bound for model selection aggregation that
lacks dependence on the Lipschitz constant of the loss.
Both results hold more generally, allowing for count-
able classes, taking into account a prior distribution
m over F, and providing a quantile-like improvement
when there is a low quantile with close to optimal risk.

As F is countable and hence not convex, algorithms for
stochastic exp-concave optimization do not apply. Our
approach is to apply stochastic exp-concave optimiza-
tion to the convex hull of a certain small cardinality,
data-dependent subset of F. The first phase obtains
this subset via the progressive mixture rule. We offer
two variants for the second phase: PM-EWOO (Al-
gorithm 2) and PM-CB (Algorithm 3). In the algo-
rithms, AP™ and A®¥ are online-to-batch conversions of
the progressive mixture rule and EWOO respectively,
A is CONFIDENCEBOOST, and A®™ is ERM.

Our interest in PM-EWOO is two-fold: (i) it is a
“purely” exponential weights type method in that it
is based only on the progressive mixture rule and
EWOO; (i) it does not require any Lipschitz assump-
tion on the loss function, unlike all previous work.
Theorem 4 Let F be a countable and m a prior dis-
tribution over F. Assume that for each y the loss
;g — Ly, 7)) is n-exp-concave. Further assume that
supy. prer £y, J(@)) — y, £'(2))| < B for all (z,y) in
the support of P. Then with probability at least 1 — 6,
PM-EWOO run with K = [log(2/6)], n1 = n/(2K)
and ny1 = n/2 learns a hypothesis f satisfying

Ezwp [ff-(z) - gf*(Z)}
<e- —n W
< e-BAYESRED, <2ﬂog Py ,ﬂ) + Oew (6, n),

log §++/log % log n) Blog 10%71)
nn + n .

Here, BAYESRED,, (n, 7) is the n-generalized Expected
Bayesian Redundancy (Grinwald, 2012), defined as

: _ D(pllm)
Lt B2 [Erep (D) — (2] + S |

for D(-||-) the KL-divergence. The bound can be
rewritten as a quantile-like bound; for all p € A(F):
Eznr [(1(Z) ~Epep [14(2)

< (e —1)GAP(p, f*) + w + 0w (4, 1),

-
with gy (5,1) = O ( 5(
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Algorithm 2: PM-EWOO
Input: Zi,...,Zx ~ P™, Zy ~ P
for j =1— K do f; = AY(Z;)

return A% (Zy), with Fg = conv({f1,...

afK)}

Algorithm 3: PM-CB

Input: Zi, ..., Zox 4 P, Zyy ~ P

for j=1— K do fj = AT(Z;)

return A®(Zg 1, . .., Zog, Zui, Aigzv({fl ,,,,, fK)})

where GAP(p, f*) := Ez [Efn, [€4(2)] — £+ (Z)]. This
bound enjoys a quantile-like improvement when
GAP(p, f*) is small. For instance, if there is a set F’ of
large prior measure which has excess risk close to f*,
then Theorem 4 pays log(1/x(F")) for the complexity;
in contrast, Theorem A of Lecué and Rigollet (2014)
pays a higher complexity price of log(1/x(f*)).

Lastly, we provide a simpler bound by specializing to
the case of p concentrated entirely on f*. Then

2¢elog 2| log —4s~
Esp [e (2) - zf*(Z)] < % + 0o (6,10).

Theorem 4 does not require Lipschitz continuity of the
loss, but the rate is suboptimal due to the logn factor.
The next result obtains the correct rate by using CON-
FIDENCEBOOST for the second stage of the procedure.

Theorem 5 Tuke the assumptions of Theorem 4, but
instead assume that for each y the loss £: § — £(y,7)
is a-strongly convex and L-Lipschitz (so (a/L?)-exp-
concavity holds). Then with probability at least 1 — 0,
PM-CB run with K = [log(3/0)], n1 = n/(4K) and
nir = n/2 learns a hypothesis f satisfying

Egop [ef(Z) — U (Z)]

S e - BAYESREDn <4’710ng3-|, 7T> -+ QCB((sa 77,)7
4

with By (5,n) = O (Ugs) n Bk;gg)

nn

The proofs of Theorems 4 and 5 are nearly identical.
We sketch a proof here, as it uses a novel reduction
of the second phase to a low-dimensional stochastic
exp-concave optimization problem. For simplicity, we
restrict to the case of finite F, uniform prior =, and
competing with f*. We start with an initial procedure
that drastically reduces the set of candidates to a set
of O(log(1/§)). To this end, note that an online-to-
batch conversion of the progressive mixture rule run
on n samples obtains expected excess risk at most
log |F|/(n(n + 1)). Hence, K independent runs yield
a hypothesis with the same bound inflated by a factor

e with probability at least 1 — e~%X. By taking the
convex hull of this set of K predictors and reparame-
terizing the problem, we get a stochastic n-exp-concave
optimization problem over the K-dimensional simplex;
the best predictor in the convex hull clearly is no worse
than the best one in F. Thus, our analyses of EWOO
and CONFIDENCEBOOST apply and the results follow.

8 Discussion and Open Problems

We presented the first high probability O(d/n) ex-
cess risk bound for exp-concave statistical learning.
The key to proving this bound, the link between exp-
concavity and the central condition, suggests that exp-
concavity implies a low noise condition. Here, low
noise can be viewed through the central condition, by
the exponential decay of the lower tail of the excess loss
random variables, or the Bernstein condition, by the
variance of the excess loss of a hypothesis being con-
trolled by its excess risk. The previous in-expectation
O(d/n) results of Koren and Levy (2015) and Go-
nen and Shalev-Shwartz (2016) used the geometric
interpretation of exp-concavity, which we boosted to
high probability results using the low noise interpreta-
tion. It would be interesting to get a high probability
O(d/n) result that proceeds purely from a low noise
interpretation or purely from a geometric one.

We also developed high probability quantile-like risk
bounds for model selection aggregation, one with an
optimal rate and another with a slightly suboptimal
rate but no dependence on the Lipschitz continuity of
the loss. However, our bound form is not yet a full
quantile-type bound; it degrades when the GAP term
is large, while the bound of Lecué and Rigollet (2014)
does not have this problem. Yet, our bound provides
an improvement when there is a neighborhood around
f* with large prior mass, which the bound of Lecué
and Rigollet cannot do. It is an open problem to get
a bound with the best of both worlds.
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