
Fast rates with high probability in exp-concave statistical learning

A Proofs for Stochastic Exp-Concave Optimization

Proof (of Lemma 1) The exp-concavity of f 7→ `(f, z) for each z ∈ Z implies that, for all z ∈ Z and all
distributions Q over F :

Ef∼Q
[
e−η`(f,z)

]
≤ e−η`(Ef∼Q[f ],z) ⇐⇒ `(Ef∼Q[f ], z) ≤ −1

η
log Ef∼Q

[
e−η`(f,z)

]
.

It therefore holds that for all distributions P over Z, for all distributions Q over F , there exists (from convexity
of F) f∗ = Ef∼Q[f ] ∈ F satisfying

EZ∼P [`(f∗, Z)] ≤ EZ∼P
[
− 1
η log Ef∼Q

[
e−η`(f,Z)

]]
.

This condition is equivalent to stochastic mixability as well as the pseudoprobability convexity (PPC) condition,
both defined by Van Erven et al. (2015). To be precise, for stochastic mixability, in Definition 4.1 of Van Erven
et al. (2015), take their Fd and F both equal to our F , their P equal to {P}, and ψ(f) = f∗; then strong
stochastic mixability holds. Likewise, for the PPC condition, in Definition 3.2 of Van Erven et al. (2015) take
the same settings but instead φ(f) = f∗; then the strong PPC condition holds. Now, Theorem 3.10 of Van
Erven et al. (2015) states that the PPC condition implies the (strong) central condition. �

Proof (of Theorem 1) First, from Lemma 1, the convexity of F together with η-exp-concavity implies that
(P, `,F) satisfies the η-central condition.

The remainder of the proof is a drastic simplification of the proof of Theorem 7 of Mehta and Williamson
(2014). Technically, Theorem 7 of that work applies directly, but one can get substantially smaller constants by
avoiding much of the technical machinery needed there to handle VC-type classes (e.g. symmetrization, chaining,
Talagrand’s inequality).

Denote by Lf := `f − `f∗ the excess loss with respect to comparator f∗. Our goal is to show that, with high
probability, ERM does not select any function f ∈ F whose excess risk E[Lf ] is larger than a

n for some constant
a. Clearly, with probability 1 ERM will never select any function for which both Lf ≥ 0 almost surely and with
some positive probability Lf > 0; we call these functions the empirically inadmissible functions. For any γn > 0,
let F�γn be the subclass formed by starting with F , retaining only functions whose excess risk is at least γn,
and further removing the empirically inadmissible functions.

Our goal now may be expressed equivalently as showing that, with high probability, ERM does not select any
function f ∈ F�γn where γn = a

n and a > 1 is some constant to be determined later. Let F�γn,ε be an optimal
proper (ε/L)-cover for F�γn in the `2 norm. From the Lipschitz property of the loss it follows that this cover
induces an ε-cover in sup norm over the loss-composed function class {`f : f ∈ F�γn}. Observe that an ε-cover
of F�γn in the `2 norm has cardinality at most (4R/ε)d (Carl and Stephani, 1990, equation 1.1.10), and the
cardinality of an optimal proper ε-cover is at most the cardinality of an optimal (ε/2)-cover. (Vidyasagar, 2002,

Lemma 2.1). It hence follows that |F�γn,ε| ≤
(

8LR
ε

)d
.

Let us consider some fixed f ∈ F�γn,ε. As we removed the empirically inadmissible functions, there exists some
ηf ≥ η for which E[e−ηfLf ] = 1. Theorem 3 and Lemma 4, both from Mehta and Williamson (2014), imply that

log EZ∼P
[
e−(ηf/2)Lf

]
≤ − 0.18ηfa

(Bηf ∨ 1)n
.

Applying Theorem 1 of Mehta and Williamson (2014) with t = a
2n and the η in that theorem set to ηf/2 yields:

Pr


 1

n

n∑

j=1

Lf (Zj) ≤
a

2n


 ≤ exp

(
−0.18

ηf
Bηf ∨ 1

a+
aηf
4n

)
.

Now, since η ≤ ηf for all f ∈ F�γn,ε, taking the union bound over F�γn,ε implies that

Pr


∃f ∈ F�γn,ε :

1

n

n∑

j=1

Lf (Zj) ≤
a

2n


 ≤

(
8LR

ε

)d
exp

(
−0.18

η

Bη ∨ 1
a+

aη

4n

)
.
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Setting ε = 1
2n and taking n ≥ 5, from inversion it follows that with probability at least 1− δ, for all f ∈ F�γn,ε,

we have 1
n

∑n
j=1 Lf (Zj) ≤ a

2n , where

a = 8

(
B ∨ 1

η

)(
d log(16LRn) + log

1

δ

)
.

Now, since supf∈F�γn minfε∈F�γn,ε ‖`f − `fε‖∞ ≤ 1
2n , and increasing a by 1 to guarantee that a > 1, with

probability at least 1− δ, for all f ∈ F�γn , we have 1
n

∑n
j=1 Lf (Zj) > 0. �

Proof (of Lemma 2) The main tool we use is part 2 of Theorem 5.4 of Van Erven et al. (2015). First, as per
the proof of Lemma 1, note that the central condition as defined in the present work is equivalent to the strong
PPC condition of Van Erven et al. (2015). We actually can improve that result due to our easier setting because
we may take their function v to be the constant function identically equal to η. Consequently, in equation (70)
of Van Erven et al. (2015), we may take ε = 0, improving their constant c2 by a factor of 3; moreover, their
result actually holds for the second moment, not just the variance, yielding:

E[X2] ≤ 2

ηκ(−2ηB)
E[X], (6)

where κ(x) = ex−x−1
x2 .

We now study the function

x 7→ 1

κ(−x)
=

x2

e−x + x− 1
.

We claim that for all x ≥ 0:

x2

e−x + x− 1
≤ 2 + x.

L’Hôpital’s rule implies that the inequality holds for x = 0, and so it remains to consider the case of x > 0.

First, observe that the denominator is nonnegative, and so we may rewrite this inequality as

x2 ≤ (2 + x)(e−x + x− 1),

which simplifies to

0 ≤ 2e−x + x+ xe−x − 2 ⇔ 2(1− e−x) ≤ x(1 + e−x).

Therefore, we just need to show that, for all x > 0,

2

x
≤ 1 + e−x

1− e−x =
ex/2 + e−x/2

ex/2 − e−x/2 = coth(x/2),

which is equivalent to showing that for all x > 0,

tanh(x) ≤ x.
But this indeed holds, since

tanh(x) =
ex − e−x
ex + e−x

=
2(x+ x3

3! + x5

5! + . . .)

2(1 + x2

2! + x4

4! + . . .)

= x · 1 + x2

3! + x4

5! + . . .

1 + x2

2! + x4

4! + . . .

≤ x.
The desired inequality is now established.

Returning to (6), we have

E[X2] ≤ 2

η
(2 + 2ηB)E[X] ≤ 4

(
1

η
+B

)
E[X]. �
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Proof (of Lemma 3) The following simple version of Bernstein’s inequality will suffice for our analysis. Let
X1, . . . , Xn be independent random variables satisfying Xj ≥ B almost surely. Then

Pr


 1

n

n∑

j=1

Xj − E[X] ≥ t


 ≤ exp


− nt2

2
(
E
[

1
n

∑n
j=1X

2
]

+ Bt
3

)


 .

Denote by Lf := `f − `g1 the excess loss with respect to comparator g1. Fix some f ∈ G′ \ {g1}, take X = −Lf ,
and set t = E[Lf ], yielding:

Pr


 1

n

n∑

j=1

Lf (Zj) ≤ 0


 ≤ exp

(
− nE[Lf ]2

2(E[L2
f ] + 1

3B E[Lf ])

)

≤ exp

(
− nE[Lf ]2

2(C E[Lf ]q + 1
3B E[Lf ])

)

= exp

(
− nE[Lf ]2−q

2
(
C + 1

3B E[Lf ]1−q
)
)

≤ exp

(
− nE[Lf ]2−q

2
(
C + 1

3B
2−q)

)
.

Therefore, if

E[Lf ] ≥




2
(
C + B2−q

3

)
log |G

′|
δ

n




1/(2−q)

, (7)

then it holds with probability at least 1− δ
|G′|−1 that 1

n

∑n
j=1 Lf (Zj) > 0. The result follows by taking a union

bound over the subclass of G′ \ {g1} for which (7) holds. �

B Proofs for Model Selection Aggregation (Section 7)

Proof (of Theorems 4 and 5) The starting point is the following bound for the progressive mixture rule
when run with prior π and parameter η, due to Audibert (see Theorem 1 of Audibert (2008), but the result
was already proved in an earlier technical report version of Audibert (2009) (see Corollary 4.1 and Lemma
3.3 therein). When run on an n-sample, an online-to-batch conversion of the progressive mixture rule yields a

hypothesis f̂ satisfying

EZn
[
EZ
[
`(Y, f̂(X))

]]
≤ inf
ρ∈∆(F)

{
Ef∼ρ EZ [`(Y, f(X))] +

D(ρ ‖π)

η(n+ 1)

}

where D(ρ ‖π) is the KL-divergence of ρ from π.3 Note that this bound does not explicitly depend on the
boundedness nor the Lipschitz continuity of the loss.

Fix some ρ∗ that nearly obtains the infimum (or obtains it, if possible). Then

EZn
[
EZ
[
`(Y, f̂(X))

]]
− Ef∼ρ∗ EZ [`(Y, f(X))] ≤ D(ρ∗ ‖π)

η(n+ 1)
.

We cannot apply the boosting the confidence trick just yet as the LHS is not a nonnegative random variable;

3We say “of ρ from π” because the Bregman divergence form of the KL-divergence, which makes clear that the KL-
divergence is measure of the curvature of negative Shannon entropy between ρ and π when considering a first-order Taylor
expansion around π.
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this issue motivates the following rewrite.

EZn
[
EZ
[
`(Y, f̂(X))

]]
− EZ [`(Y, f∗(X))]

≤ Ef∼ρ∗ EZ [`(Y, f(X))]− EZ [`(Y, f∗(X))]︸ ︷︷ ︸
gap(ρ∗,f∗)

+
D(ρ∗ ‖π)

η(n+ 1)
.

When the progressive mixture rule is run on K independent samples, yielding hypotheses f (1), . . . , f (K), then
Markov’s inequality implies that with probability at least 1− e−K (over the (Kn)-sample) there exists j ∈ [K]
for which

EZ
[
`(Y, f (j)(X))

]
− EZ [`(Y, f∗(X))]

≤ e
(
gap(ρ∗, f∗) +

D(ρ∗ ‖π)

η(n+ 1)

)
,

which can be re-expressed as

EZ
[
`(Y, f (j)(X))

]
− EZ [`(Y, f∗(X))]

≤ e · gap(ρ∗, f∗) +
e ·D(ρ∗ ‖π)

η(n+ 1)

= e

(
inf

ρ∈∆(F)

{
Ef∼ρ EZ [`(Y, f(X))] +

D(ρ ‖π)

η(n+ 1)

}
− EZ [`(Y, f∗(X))]

)

= e ·BayesRedη (n, π) .

In the sequel, we assume that this high probability event has occurred.

Now, let F̃ = conv
(
{f (1), . . . , f (K)}

)
. Clearly, f (j) ∈ F̃ , and so we also have

inf
f∈F̃

EZ [`(Y, f(X))] ≤ e ·BayesRedη (n, π) . (8)

It therefore is sufficient to learn over F̃ and compete with its risk minimizer. But this is only a K-dimensional
problem, and if δ = e−K , we have K = log 1

δ . To see why the problem is only K-dimensional, consider the
transformed problem, where

x̃ =



f (1)(x)

...
f (K)(x)


 .

The loss can now be reparameterized, from

` : F̃ → R with ` : f 7→ `(y, f(x))

to ˜̀: ∆K−1 → R with ˜̀: q 7→ `(y, 〈q, x̃〉),

where ∆K−1 is the (K − 1)-dimensional simplex
{
q ∈ [0, 1]K :

∑K
j=1 qj = 1

}
.

∆K−1 is clearly convex and the loss is η-exp-concave with respect to q ∈ ∆K−1; to see the latter, observe that
from the η-exp-concavity of the loss with respect to ŷ = 〈q, x̃〉:

Eq∼Pq
[
e−η`(y,〈q,x̃〉)

]
≤ e−η`(y,Eq∼Pq [〈q,x̃〉])

= e−η`(y,〈Eq∼Pq [q],x̃〉).
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Lastly, the loss is still bounded by B since F̃ consists only of convex aggregates of f̂1, . . . , f̂K , themselves convex
aggregates over F (and we assumed boundedness of the loss with respect to the original class).

We now can proceed in two ways. The high probability bound for EWOO (the first display after Corollary 2)
applies immediately. This bound can be simplified to (taking d = K = dlog(2/δ)e)

O




√
B
(

log 1
δ +

√
log 1

δ log n
)

ηn
+
B
(
log log n+ log 1

δ

)

n


 ,

which, in light of (8), proves Theorem 4.

If we further assume the loss framework of Gonen and Shalev-Shwartz (2016), then ˜̀ still satisfies α-strong
convexity in the sense needed because, conditional on the actual prediction ŷ, the loss ˜̀ is the same as loss `.
Hence, the bound (5) ConfidenceBoost from Corollary 1 applies (taking d = K = dlog 3

δ e), finishing the proof
of Theorem 5. �


