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Abstract

Symmetric nonnegative matrix factorization
(SymNMF) plays an important role in
applications of many data analytics problems
such as community detection, document
clustering and image segmentation. In this
paper, we consider a stochastic SymNMF
problem in which the observation matrix
is generated in a random and sequential
manner. We propose a stochastic nonconvex
splitting method, which not only guarantees
convergence to the set of stationary points of
the problem (in the mean-square sense), but
further achieves a sublinear convergence rate.
Numerical results show that for clustering
problems over both synthetic and real world
datasets, the proposed algorithm converges
quickly to the set of stationary points.

1 Introduction

Symmetric  nonnegative  matrix  factorization
(SymNMF)  approximates a given symmetric
nonnegative matrix Z € RM*N by a low rank
matrix XX7, where the factor matrix X € RN*X
is component-wise nonnegative, typically with
K <« N [1-3]. Finding an exact factorization (i.e.,
3 X > 0 such that XX” = Z) is NP hard [4],
where such factors are called completely positive
matrices [5]. In recent years, SymNMF has found
many applications in document clustering, community
detection, image segmentation and pattern clustering
in bioinformatics [1,3,6]. In particular, SymNMF
shows better clustering results than the well-known
eigen-value decomposition based spectral clustering
method [7-9], when the clusters are placed within a
cluttered background [3,10]. SymNMF is not only
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able to provide a good interpretation of the resulting
data, but also outperforms spectral clustering and
nonnegative matrix factorization (NMF) when the
data set exhibits certain nonlinear structures [3].

Classical SymNMF problems are deterministic, where
the observation matrix Z is completely known.
However, in recent applications such as social network
community detection, the matrix Z represents the
relations among the clusters/communities, observed
during a given time period. By nature such
matrix is random, whose structure is determined
by the dynamics of the network connections [11].
Furthermore, in many modern big-data related
problems such as matrix completion [12]|, subspace
tracking [13], community detection, the data are
usually collected through some random sampling
techniques. As a concrete example, in community
detection problems the observed activities among the
nodes can change over time hence is random. In these
applications sampling the connectivity of the graph
at a given time results in a random similarity matrix,
such as stochastic block model [14]. Mathematically,
the stochastic SymNMF problem can be formulated as
the following stochastic optimization problem

. _ 1 T 2
min  f(X) = 3 E2[IXX" ~ Z|7] (1)
where || - || denotes the Frobenius norm, inequality

constraint X > 0 is component-wise, Z follows some
distribution over a set Z € RV XV and the expectation
is taken over the random observation Z. In clustering
problems, the samples of matrix Z can be the similarity
matrix which measures the connections among nodes
over networks.

As we will see later, the problem in (1) is equivalent
to minx>o [|[XX” — Egz[Z]|%. If we know the
distribution of Z, then we can computer Ez[Z] first
and the problem is converted to a classical SymNMF
problem. However, in practice, we usually do not
have access to the underlying distribution of Z.
Instead, we can obtain sequentially realizations of Z,
such as in the application of online streaming data
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[15]. Tt is possible to use a batch of samples to
compute the empirical mean of Z and implement the
deterministic SymNMF algorithms. As more samples
are collected, the empirical mean will converge to
the ensemble mean, leading to a consistent estimator
of the solution of the symmetric factor X. There
are two problems with such an approach. First,
it may be desirable to have an estimate of the
symmetric factor X at each time instant, namely
when a new sample of Z is available. Running the
complete SymNMF algorithm at each time instant
may be computationally expensive. Second, even
if the computational complexity is not a concern,
existing analysis results and theoretical guarantees
such as convergence rate are not applicable to the case
where the matrix to be factorized is changing with
time (although eventually converging to the ensemble
mean). Therefore, it is desirable to develop efficient
algorithms that produce online SymNMF updates
based on sequential realizations of Z.

Related Works. Recently, the stochastic projected
gradient descent (SPGD) methods are proposed for
dealing with stochastic nonconvex problems [16, 17].
However, there has been no convergence guarantee
when directly applying SPGD to solve the stochastic
SymNMF problem, since there is no global Lipschitz

continuity of the gradient of the objection function.

Classical stochastic approximation methods can also
be wused, but without convergence and rate of
convergence guarantees. There have been a number of
works that focus on designing customized algorithms
for deterministic SymNMF such as projected gradient
descent (PGD) and projected Newton (PNewton)
[3, 18]. Both of then solve the deterministic
version of problem (1). However, there has been
no global convergence analysis since the objective
function is a nonconvex fourth-order polynomial. A
straightforward strategy of reducing the order of the
polynomial with respective to X is to introduce a new
variable Y and rewrite SymNMF equivalently as

min 1||XYT — 7|3 (2)

Y>0,X=Y 2 B

Then, a simply way of solving problem (2) might
ignore the equality constraint X = Y first, and
then update variables X and Y in an alternative
way. The alternative nonnegative least squares
(ANLS) algorithm was proposed in [3] for dealing with
SymNMF, where a regularized term is added to the
objective function as the penalty of the difference
between the two matrices. Unfortunately, there is
no guarantee that the Y-iterate will converge to the
X-iterate. Alternating direction method of multipliers
(ADMM) is one of the powerful tools on solving
the optimization problems where the variables have

linear coupling. It has also been applied to matrix
factorization-type problems such as NMF [19-21].
Existing results such as [22-25] for analyzing ADMM
for nonconvex problems do not apply for SymNMF
either, because in these works the objective function is
required to be separable over the block variables. Fast
convergence rates of stochastic ADMM algorithms are
presented recently [26,27], however, these algorithms
only work for stochastic convex optimization problems.
In fact, none of the works has rigorous theoretical
justification that they can be applied directly for
SymNMF in the stochastic settings.

The most relevant algorithm that uses the nonconvex
splitting method for solving SymNMF was proposed
in [28], but the algorithm, called NS-SymNMF, only
works for the case where the given data is deterministic.
In this paper, we consider the stochastic setting
of matrix factorization that potentially make the
SymNMF more practical. The proposed algorithm is a
generalization of the previous NS-SymNMF algorithm,
which is able to factorize the realizations of the random
observation matrix in each iteration. Further, actually
the convergence proof of NS-SymNMF does not apply
to that of SNS-SymNMF | since the iterates are coupled
with the random data matrices as the algorithm
proceeds such that the boundness of the iterates is
not clear if the convergence proof of NS-SymNMF was
used.

Contributions of This Paper. In this paper,

a  stochastic nonconvex  splitting  SymNMF
(SNS-SymNMF) is proposed for problem (1),
where the underlying distribution is unknown,

but realizations of Z are available sequentially. Our
algorithm is based upon reformulation (2), where we
have introduced a new variable Y. The advantage of
doing so is that when adding the equality constraint
to the objective as the quadratic penalty, the problem
is strongly convex with respect to either Y and X.
A Lagrangian relaxation technique is further used
to gradually enforce the equality constraint as the
algorithm evolves. The proposed algorithm belongs
to the class of stochastic algorithms, because at
each iteration only a few samples of the observation
matrix are used. Based on different ways in which the
samples are utilized, we analyze the performance of
the algorithm in terms of its convergence rates to the

set of stationary solutions of problem (1). The main
contributions of this paper are given below.
e The proposed algorithm possesses sublinear

convergence rate guarantees. When an aggregate
of the past samples is used (possibility with
non-uniform weighting), the algorithm converges
sublinearly to the stationary points of problem (1)
in mean-square; when the instantaneous samples
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are used, the algorithm converges sublinearly to
a neighborhood around the stationary solutions.
To our best knowledge, this is the first
stochastic algorithm that can possess a sublinear
convergence rate for stochastic SymNMF.

e We demonstrate the performance of the proposed
stochastic algorithm for clustering problems. It
has been shown that SNS-SymNMF is much
faster compared with some existing algorithms
for generic stochastic nonconvex optimization
problems numerically. Further, due to the use
of non-uniform aggregate sampling, the proposed
algorithm is capable of tracking changes of the
community structure.

All proofs of this paper are provided in the
supplemental materials.

2 Stochastic Nonconvex Splitting for
SymNMF

2.1 Main Assumptions

The sequentially sampled data Z® are assumed to
be independent and identically distributed (i.i.d.)
realizations of the random matrix Z, where 7 denotes
the index of the sample. Rather than assuming
the unbiased gradient and bounded variance of
the stochastic gradient in most stochastic gradient
methods [17], we only need to make assumptions on
samples for SymNMF. Specifically, we assume the
following.

e Al) Unbiased sample: E[Z?D] =Z Vi;

e A2) Bounded variance:
Tr[Var[ZW]] = E[| 2D - Z||3] < 0? Vi

e A3) Bounded magnitude:
|1ZD|p < Z <00 Vi

In practice, the magnitude of samples is finite, so A3
is valid [3,17].

2.2 The Problem Formulation for Stochastic
SymNMF

We start by considering the following reformulation of
problem (1) to the following problem:

1 2
in = ||XY? —Ey[Z
min 2H z[Z]| % (3)
st. X=Y,0<Y<r7

where Z is a symmetric matrix; 7 > 0 is some given
constant.

Under Al, it is easy to check that when 7 is sufficiently
large (with a lower bound dependent on Z), then
problem (3) is equivalent to problem (1), in the sense
that there is a one-to-one correspondence between the
stationary points of problem (1) and (3), where the
stationary condition of problem (1) is given by [29,
Proposition 2.1.2]

((X*(X*)"—Z) X" X -X*) >0,VX, 0<X <.

where X* denotes the stationary points. To be precise,
we have the following result.

Lemma 1 Let Z;y denote the (i,k)th entry of the
matric Z. Under A1 — A8, suppose T > 0, Vk where

_ —
N RYD IRy /g @

ek: ) ’

then a point X* is a stationary point of problem (1) if
and only if X* is a stationary point of problem (3).

Although the objective function does not have
Lipschitz continuous gradient, Theorem 1 suggests
that we can solve (1) within a compact set.

2.3 The Framework of SNS for SymNMF

To this end, let wus construct the augmented
Lagrangian for (3), given by

1 —_
LX,Y5A) = SIXY" = Z][7 + (Y = X, A)
P
+5IY =X (5)

where A € RV*K is a matrix of dual variables (or
Lagrange multipliers); (-) denotes the inner product
operator; p > 0 is a penalty parameter whose value
will be determined later.

The proposed SNS-SymNMF algorithm alternates
between the primal updates of variables X and Y, and
the dual update for A. We split the data samples

) is used for updating Y

into two groups where Zgl
and 2(21) is used for X, respectively. Our algorithm
is also capable of dealing with a few different ways of

aggregating the samples at each iteration:

1. A Mini-Batch of L instantaneous samples are
used;

2. An aggregate of the historical samples is used;

3. A special weighted aggregate of the historical
samples is used.

See Table 1 for their mathematical descriptions. In
the table, ¢ denotes the tth iteration of the algorithm;
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Table 1: Rules of Aggregating Samples

Mini-batch Aggregate Weighted Aggregate

t tL 7 (i t i 7 (3 t t .7 (2
Zg) = %Zi:(tfl)LJrl Zg) Zg) = %Ei:l Zg) Zp = t(t2+1) 2i1 Zzg)
t tL =10 t t G t t .5
Zg) = %Zi:(tfl)LJrl Zé) Zg) =~ %Ei:l Zg) Zg) - t(til) D1 Zzg)

th) and Z;t) are the actual (aggregated) samples used
in our algorithm.

In the following, we provide the main steps of the
proposed algorithm. The implementation of each step
will be provided shortly. At iteration ¢ + 1, we first
compute the objective value evaluated at the previous
sample, followed by the primal updates for X and Y,
finally the dual variable A is updated. Specifically,

3 -
B =2 IXO YOy - 2 (62)

YO =arg g}gTEY(X“),Y; Az (6b)

XU = arg min £x(X, YD A0 28), (6c)
AGD ZA® L px )y )y (6d)

where we have defined
—~ 1
Ly(X, ¥ AO:z) £ S IXOYT -2
p g :
+ §||X(t) Y +AD/p|% + THY - YW,

~ 1
Lx(X, YU A0:Z0) £ CIX(Y )T - 20|

p
+ S X = Y+ A /7

We remark that this algorithm is somewhat similar
in form to the standard ADMM method applied
to problem (3). The ADMM based methods lack
convergence guarantees for our problem, because
they only work for nonconvex problems in which
primal variables are separable in the objective,
which is not satisfied in our SymNMF problem
(23, 24]. The key difference compared with the
aforementioned algorithms is the proximal term ||Y —
Y @2, multiplied by an iteration dependent penalty
parameter S(Y) > 0. This proximal term makes the
objective function (6b) as a tight upper bound of the
augmented Lagrangian for the original Y-subproblem
that does not include this term. In the convergence
analysis, we will see that introducing such proximal
term is critical in guaranteeing the decrease of the
augmented Lagrangian as the iteration proceeds.

We also mention that using independent samples for
the X and Y update is critical in the convergence
analysis of the algorithm.

2.4 Implementation of the SNS-SymNMF
Algorithm

The X-Subproblem. The X-subproblem in (6¢) is
equivalent to the following problem

min D5 — XA (7)
where

DY £ ZPy ) - A© 4 py D
Agz—&-l) A (Y(t+1))Ty(t+1) +pl=0

are two fixed matrices for X-iterate. This is a simple
least-squares problem whose solution is given by

X = DRV (AT (®)

Note that the Agé'H) is a K x K matrix, where K is
usually small (e.g., K represents the number of clusters
in graph clustering applications).

The Y-Subproblem. To solve the Y-subproblem
in (6b), we similarly define the fixed matrices for
Y-iterate as follows,

Dgt() N (X(t))ngt) + p(X(t))T + (A(t))T + B(t)(Y(t))T’
A%’}) 2 (X(t))Tx(t) + (p+ ﬁ(t))l = 0.

Note that the subproblem (6b) can be decomposed into
N separable constrained least squares problems. We
may just use the conventional gradient projection for
solving each one of them, using iterations

YO = projy, (Y — a(APY™ - DY) (9)

where Dy ; denotes the ith column of matrix Dy,

a is the step size, which is chosen as I/Amax(Ag)),
Amax(+) denotes the maximum eigenvalue of a matrix,
n denotes the iteration of the inner loop, projy(w)
denotes the projection of a given vector w to the
feasible set of Y;. Other efficient methods of solving
(6b) can be also applied, such as active set algorithms
[30].

The SNS-SymNMF Algorithm. Leveraging
the efficient calculation of YU**1D and X0+D  we

summarize the algorithm as shown in Algorithm 1,
where T denotes the total number of iterations.
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Algorithm 1 The SNS-SymNMF Algorithm

1: Input: Y, X1, A(l), and p

2: fort=1,...,T do

3: Update B*) according to (6a)
Select data using Table 1
Update Y+1) by solving (6b)
Update X+1) using (8)
Update A+ using (6d)

8: end for

9: Output: Iterate Y(") chosen uniformly random
from {Y T .

3 Convergence Analysis

The convergence analysis is built upon a series of
lemmas (shown in the supplemental materials), which
characterize the relationship among the augmented
Lagrangian, the primal/dual variables as well as the
random samples.

First we construct a function that measures the
optimality of the iterates {X® , Y® A®}  Define
the proximal gradient of the augmented Lagrangian
function as

Y" — projy[Y" — Vy (L(Y,X, A)]

< 2
VEXY M) 2| G s YA

where the operator

. A . . 2
projy(W) £ arg min [W=Y[}  (10)

i.e., it is the projection operator that projects a given
matrix W onto the feasible set of Y. Here we propose
to use the following quantity to measure the progress
of the algorithm [17,23]

PXO, YO, AD) £ VLXD, YO, A)|E
+ XY = YO (1)

It can be verified that if lim;_, ., P(X®), Y, A(t)) =
0, then a stationary point of the problem (3) is
obtained.

The key point of the proof is to quantify the optimality
gap in (11). First, we bound the successive difference
of the multipliers by that of the successive difference
of the primal variables and samples. Second, we prove
the augmented Lagrangian decreases in every iteration
and lower bounded. Finally, we check the optimality
gap that is quantified by some constant over T'(or L).
These steps represent a major departure from the more
traditional steps for proving ADMM-type algorithms,
which only work for convex cases.

We also remark the convergence proof of
SNS-SymNMF is different from the work in [28§].

Here we start from the proof of the boundness of the
X-iterate, then the convergence of the algorithm to
stationary points can be characterized.

Theoretical Results. First, when a mini-batch
of samples are used at each iteration, we have the
following result.

Theorem 1 Suppose A1 — A8 hold true. Then the
iterates generated by the SNS-SymNMF algorithm with
Mini-Batch samples satisfy the following relation

o? Wa?

1
. ) v A <
IE[’PMml—Batch()( ,Y ,A )] ~ TC(M + T ) + 7

where C,U, W are some constants

Theorem 1 says that using the Mini-Batch samples
the SNS-SymNMF algorithm converges sublinearly to
a ball of size Wo?/L around the stationary points of
problem (3). Further, the radius of the ball can be
reduced when increasing the number of samples L.

Second, if all the past samples are averaged using the
same weight, then the algorithm can converge to the
stationary points of the stochastic SymNMF problem.

Theorem 2 Suppose Al — A8 hold true and the
following is satisfied

p>8NK72 (12)

Then the following statements are true for
SNS-SymNMF with averaged samples:

1. The equality constraint is satisfied in the limit,
i.e.,

i ® _vy®)2
Jim E[IX - YO|3] ~ 0.

2. The sequence {X®, YO ADY is bounded, and
every limit point of the sequence is a stationary
point of problem (3).

Below we show that the gap E[P(X(™),Y(") AM)]
goes to zero in mean-square sublinearly.

Theorem 3 Suppose A1 — A3 hold true. Then the
iterates generated by the SNS-SymNMF algorithm with
aggregate samples satisfy the following relation

< CS +Co? + Ko?

E[Pagsrgore( X", Y, A0 T

where C,S, K are some constants.

Theorem 2 and Theorem 3 show that the stochastic
SymNMF can converge to a stationary point of (3) in
mean-square, and in a sublinear manner. Then, we
have the following corollary directly.
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Corollary 1 Suppose A1 — A3 hold true. Then
the iterates generated by the SNS-SymNMF algorithm
with weighted aggregate samples satisfy the following
relation

< CS+Co?+K'c?

E[Pueighted(X ™, Y AT T

where K' > K.

We remark that those constants, such as C,U, W, S, IC,
mentioned in the theorems are only dependent on the
initialization of the algorithm and parameters of given
problems, such as N, K, 7, Z. The explicit expressions
of the constants can be found in the supplemental
materials.

It is worth noting that when o2 = 0, our convergence
analysis of the SNS-SymNMF algorithm still holds
true for the deterministic case [28].

We also remark that given a required error, when the
dimension of the problems increases, the stochastic
algorithms need a more total number of iterations to
achieve this error.

4 Numerical Results

4.1 Synthetic Data Set

Data Set Description. We use a similar random
graph as adopted in [8] for spectral clustering. The
graph is generated as follows. For each time slot, data
points {z;} € R, i = 1,..., N, are generated in one
dimension. We specify 4 clusters. The numbers of data
points in each cluster are 12, 24, 48 and 36. Within
each cluster, data points follow an i...d. Gaussian
distribution. The means of the random variables in
these 4 clusters are 2,4,6,8, respectively, and the
variance is 0.5 for all distributions. Then, construct
the similarity matrix 252) € RVXN (or ig)), whose
(,4)th entry is determined by the Gaussian function
exp(—(z; — x;)%/(20%)) where 02 = 0.5. Finally,
we repeat the process mentioned above to generate
a series of adjacency matrices for the community
detection problem. The mean of the adjacency matrix
represents the ground truth of the connections among
the nodes and variance measures the uncertainty of
each sample. Based on this model, we know that the
weights between two points which belong to the same
cluster are very likely higher than the weights between
two points which belong to different clusters.

Algorithms Comparison. Each point in Figure 1 is

an average of 20 independent Monte Carlo (MC) trials.

All algorithms are started with the same initial point
each time, and the entries of the initialized X (or Y)

follow an 4.7.d. uniform distribution in the range [0, 7].

Mini-Batch SPGD [17] is applied to solve problem

(3) where the step-size « is 0.01. Note that this
algorithm cannot be directly applied to solve problem
(1) due to the lack of Lipschitz continuous gradient.
The proposed SNS-SymNMF uses two groups of
data at each iteration, while Mini-Batch-SPGD only
needs one. For fair comparison, in the simulation
Mini-Batch-SPGD uses (th) + th))/z as the input
sample. Also, when the Mini-Batch strategy is used,
the algorithms perform updates every L independent
samples, where L is fixed.

We remark that in the implementation of
SNS-SymNMF we let 7 = maxy 6, and gradually
increase the value of p from an initial value
to meet condition (12) for accelerating the
convergence rate [31]. Here, the choice of p follows
ptY = min{p® /(1 — ¢/p®),81NK72} where
e = 1073 as suggested in [32], and p() = N7. To
update Y, we use the block pivoting method [30].

The SNS-SymNMF algorithm is performed using
different data sampling rules. From Figure 1(a),
it is shown that the aggregate-SNS-SymNMF
algorithm converges faster than Mini-Batch-SPGD
and Mini-Batch-SNS-SymNMF since the variance
of samples is reduced by the aggregated data.
The weighted-SNS-SymNMF algorithm is slightly
slower than aggregate-SNS-SymNMF, but still
presents a sublinear convergence rate. As shown
in Figure 1(b), the optimality gap plateaus in
Mini-Batch-SNS-SymNMF and Mini-Batch-SPGD
due to the sample aggregation rules, which
is  consistent with the theoretical analysis
shown in Theorem 1. The optimality gap of
Mini-Batch-SNS-SymNMF is larger than that of
Mini-Batch-SPGD, since the number of samples used
for each block is only a half of Mini-Batch-SPGD.
Here, to get rid of the effect of the dimension of Z, we
use || X — proj, [X — Vx(f(X))]|l as the optimality
gap, where proj, denotes the nonnegative projection
operator.

The convergence behaviors for dynamic networks are
shown in Figure 1(c) and Figure 1(d), where the
means of the random wvariables in the 4 clusters
are changed to 1,7,3,5 at the 400th sample.
Aggregate-SNS-SymNMF  performs worse than
weighted-SNS-SymNMF because of the aggregated
€rTors. Although Mini-Batch-SNS-SymNMF and
Mini-Batch-SPGD can adapt to the network
topology variation, constant optimality gaps still
remain as can be observed in Figure 1(d). For
the weighted-SNS-SymNMF algorithm, since more
weights are given to the current data samples, the
change of the network topology can be tracked.
Therefore, weighted-SNS-SymNMF can still give
a very low objective value after the 400th sample



Songtao Lu, Mingyi Hong, Zhengdao Wang

350 v
\
' \ —6— Aggregate-SNS-SymNMF
300f ! A Mini-Batch-SNS-SymNMF-
' N - = = Mini-Batch-SPGD
— ' N Weighted-SNS-SymNMF
~E 250 N
N \ AN .
| 200 . S
o \ Seo
Y S - -
é 150 N R
— N S~ -
— Ay =~
= 3 -
100 \,\/
~,
s0f Sl
o. . Tmmseeaaol
9-0-—0-g 000004
[ 500 1000 1500
Number of Samples (4)
(a) Static networks
- . . . . . .
1 " —— Aggregate-SNS-SymNMF
s00/1 v 0 mie Mini-Batch-SNS-SymNMF |
[ = = = Mini-Batch-SPGD
jorad [ Weighted-SNS-SymNMF
e - \
= 1
o Y
| 1 \\ »
4 300 v [
§ 1 * AN S~ ~
" S~ -
= kN i DTN
= 200 . s --..
N RS
S|
100 1
ol Oe, ‘ ===
0 200 400 600 800 1000 1200 1400

Number of Samples (4)

(¢) Dynamic networks

—— Aggregate-SNS-SymNMF
i == Mini-Batch-SNS-SymNMF
15h - = = Mini-Batch-SPGD
1 Weighted-SNS-SymNMF

& Wl o, At Lo
DL TN L IPSE NS PR 7 Pl MR O LS SR
N N YA At i TNy ot

_______________

PXD, YD), A (log)
4

0 500 1000 1500

Number of Samples (i)

(b) Static networks

Aggregate-SNS-SymNMF
‘‘‘‘‘ Mini-Batch-SNS-SymNMF
- = = Mini-Batch-SPGD

— 15} 1
& " Weighted-SNS-SymNMF
=
) 1
18-
i ‘?\‘ Np b,
s "if“"\' e ~<.ah ;"I‘Il!t"‘j'l ‘jl;‘
> o5 YR
%
a

500 1000 1500
Number of Samples (4)

(d) Dynamic networks

Figure 1: The convergence behaviors. The parameters are K = 4; N = 120; L = 10. The z-axis represents the total

number of observed samples.

compared with other algorithms.

We also compare the performance of the
SNS-SymNMF  algorithm and the deterministic
SymNMF algorithm where the samples are replaced by

Z in SNS-SymNMF. The results are shown in Figure 2.

It can be observed that the SNS-SymNMF algorithm
has a similar convergence rate with NS-SymNMF in
terms of the objective values. However, deterministic
SymNMF has a faster convergence rate than
SNS-SymNMF with respective to the optimality
gap, which is expected, since deterministic SymNMF
uses the mean of the adjacency matrix without any
uncertainty.

4.2 Real Data Set

Data Set Description. we use the 6th subset of the
processed topic detection and tracking (TDT2) data
set with 10 classes’ which includes 3050 documents
and each of them has 36771 features. The adjacency
matrix is constructed by the self-tuning method [33],
where the weight between the ith sample and the jth
one is given by w; ; = exp(—||x; — x,||3/(0i0;)),Vi #

see http://www.cad.zju.edu.cn/home/dengcai/Data
/TextData.html.

J. The local scale o; is computed by the Euclidean
distance between x; and its kth neighbor, where x;
denotes the ith document vector which is normalized
to have unit 2-norm and ¢ = 1,...,N. We use k =7
as suggested in [33] and enforce w;; = 0,Vi. Then
the (7, j)th entry of the similarity matrix 2?) (or Zg))
is computed as in the normalized cut [8] which is
d.ﬁl/Z’wi,jd;l/Q where dz = Zi\,[ wmv,Vi’.

K2

In order to mimic the stochastic setting, we select 5
classes that have larger number of documents than the
others in the 6th subset of TDT2. The total numbers
of documents in these 5 classes are 1843, 440, 226, 144,
and 103. Then, for each time slot, we uniformly pick
up 100, 50, 45, 15, 30 documents from the selected 5
classes to form 25”, and then independently perform
the same sampling process again to form ig). The
average of all samples is considered as the true mean
(i.e., Z) for NS-SymNMF. The variance of samples in
this case is 02 = 32.32.

Algorithms Comparison. The simulation results
shown in Figure 3 are based on 20 MC trials. It can be
observed that Mini-Batch algorithms converge slowly
compared with aggregated/weighted SNS-SymNMF
and NS-SymNMF, since Mini-Batch algorithms only
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use a subset of samples. Although NS-SymNMF
shows a lower objective value than SNS-SymNMF,
it is interesting to see that SNS-SymNMF has a
similar convergence rate as NS-SymNMF in terms
of the objective values with only a small difference.
Furthermore, the accuracy obtained by NS-SymNMF
and aggregated/weighted SNS-SymNMF is only
slightly different during the whole process as the
algorithms proceed. Therefore, the new variant of
SymNMF, SNS-SymNMF, can be considered as an
online algorithm that deals with clustering problems,
which is not only processing the real-time data
sequentially but also can provide accurate clustering
results?.

Finally, we remark that the previous literatures [2, 3]
have already shown the advantages of deterministic
SymNMF in terms of clustering accuracy compared
with classic methods, such as K-means variants, NMF
variants, spectral clustering variants. Here, we focus
on the stochastic setting for SymNMF and omit the
accuracy results for other methods.

2More simulations related to the computational time,
impact of sample variance, and parameter tuning are
shown in the supplemental materials, where the numerical
results with larger networks are also included.

We also remark that in this paper we just adopt
a very simple version of Mini-Batch methods. The
main purpose is to take the Mini-Batch methods as
the counterparts for the average/weighted aggregation
rules and to show the impact of the variance of samples
on performance of algorithms. Actually, there is a
tradeoff on selecting the length L as the Mini-Batch
algorithm proceeds. = A more reasonable way of
choosing L is discussed in [17] and more variants of
Mini-Batch algorithms for stochastic SymNMEF could
be considered as the future work.

5 Conclusion

In this paper, the stochastic SymNMF problem is
considered in the areas of clustering and community
detection. We show that the proposed stochastic
nonconvex splitting algorithm converges to the set
of stationary points of SymNMF in a sublinear
manner. Numerical experiments show that the
proposed method has a similar convergence rate and
clustering accuracy as deterministic SymNMF does.
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