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Abstract

In this paper, we describe an algorithm for
estimating the provenance of hacks on web-
sites. That is, given properties of sites and
the temporal occurrence of attacks, we are
able to attribute individual attacks to joint
causes and vulnerabilities, as well as estimat-
ing the evolution of these vulnerabilities over
time. Specifically, we use hazard regression
with a time-varying additive hazard function
parameterized in a generalized linear form.
The activation coefficients on each feature are
continuous-time functions over time. We for-
mulate the problem of learning these functions
as a constrained variational maximum likeli-
hood estimation problem with total variation
penalty and show that the optimal solution
is a 0th order spline (a piecewise constant
function) with a finite number of adaptively
chosen knots. This allows the inference prob-
lem to be solved efficiently and at scale by
solving a finite dimensional optimization prob-
lem. Extensive experiments on real data sets
show that our method significantly outper-
forms Cox’s proportional hazard model. We
also conduct case studies and verify that the
fitted functions are indeed recovering vulner-
able features.

1 Introduction

Websites get hacked, whenever they are subject to a
vulnerability that is known to the attacker, whenever
they can be discovered efficiently, and, whenever the
attacker has efficient means of hacking at his disposal.
This combination of knowledge, opportunity, and tools
is quite crucial in shaping the way a group of sites
receives unwanted attention by hackers.
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Unfortunately, as an observer, we are not privy to ei-
ther one of these three properties. In fact, we usually
do not even know the exact time ts a site s was hacked.
Instead, all we observe is only that a compromised site
will eventually be listed as such on one (or more) black-
lists. That is, we know that by the time a site lands
on the blacklist it definitely has been hacked. However,
there is no guarantee that the blacklists are compre-
hensive nor is there any assurance that the blacklisting
occurs expediently. These blacklists also do not reveal
which feature of the website was to blame.

On the other hand, meta-data do exist for each website
and they allow us to measure the vulnerability of the
websites quantitatively. These include specific string
snippets on websites that are indicative of certain ver-
sions of software which might have been identified as
vulnerabilities or containing bugs that lead to possible
security breaches. An interesting method that uses
these features to identify websites at risk is recently
proposed in Soska & Christin (2014). However, it is
unclear how each of these features contributes to the
“hazard” of a particular website getting hacked at a
given time.

In this paper, we propose a novel hazard regression
model to address this problem. Specifically, the model
provides a clear description of the probability a site
getting hacked conditioned on its time-varying features,
therefore allowing prediction tasks such as finding web-
sites at risk, or inferential tasks such as attributing
attacks to certain features as well as identifying change
points of the activations of certain features to be con-
ducted with statistical rigor.

Related work. The primary strategy for identifying
web-based malware has been to detect an active infec-
tion based on features such as small iFrames (Mavrom-
matis & Monrose, 2008). This approach has been pur-
sued by both academia (e.g., Borgolte et al., 2013, Inv-
ernizzi & Comparetti, 2012) and industry (e.g., Google,
McAfee, Norton). While intuitive, this approach suffers
from being overly reactive, and defenders must compete
against adversaries in an arms race to detect increas-
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ingly convoluted and obscure forms of malice.

Soska & Christin (2014) propose a data driven (linear
classification) approach to identify software packages
that were being targeted by attackers to predict the
security outcome of websites.

Compared with former works, our method is able to pre-
dict the time a site will be hacked in a survival analysis
framework. Our method naturally handles censoring of
observations (i.e. inconsistency of exact hacking time
and the time listed on blacklists). Moreover, our model
automatically identifies a small number of features as
exploits and allows the activation coefficients on each
feature to be functions over continuous time. Further-
more, we show the optimal solution of the functions
is a 0th order spline adaptively connected by a finite
number of adaptively chosen knots. Finally, our hazard
regression model is quite generic and much more pow-
erful than the widely-used Cox model, therefore it can
be viewed as a novel and alternative way to estimating
nonparametric hazard functions at scale, and used as a
drop-in replacement in many other applications.

2 Background

Our work is based on two key sets of insights: the spe-
cific way how vulnerabilities are discovered, exploited
and communicated in the community, and secondly,
the mapping of these findings into a specific statistical
model.

2.1 Attacks on Websites

We start by describing the typical economics of hackers
and websites.

Exploits are first discovered by highly skilled individ-
ual (hackers) who will use them for their own purposes
for an extended period of time, as long as there is an
ample supply of hackable sites that can be discovered
efficiently. Once the opportunity for such hacks di-
minishes due to an exhausted supply, the appropriate
vulnerabilities are often published since they’re now of
little value to the discoverer and since publication can
convey reputation in the community.

Once this knowledge enters the public domain, the
availability of available tools increases with it. It is
added to the repertoire of popular rootkits, at the
ready disposal of “script kiddies” who will attempt to
attack the remaining sites. The increased availability
of tools often offsets the reduced opportunity to yield a
secondary wave of infections.

An important aspect in the above scenario is the way
how sites are discovered. Quite frequently this is ac-
complished by web queries for specific strings in sites,

indicative of a given vulnerability (e.g. database, CMT,
server, scripting language). In other words, string
matches are excellent features to determine the vulner-
ability of a site and are therefore quite indicative of
the likelihood that such a site will be attacked. Un-
fortunately, we are not privy to the search strings a
potential attacker might issue. However, we can use
existing fingerprints to learn such sequences, e.g. the
tags and attributes in the pages of a site.

In a nutshell, the above leads to the following statistical
assumptions on how vulnerability of sites and the infec-
tious behavior occurs. Firstly, sites are only practically
vulnerable once a vulnerability is discovered. Second,
changes in attack behavior are discrete rather than
gradual. In the following we design a statistical esti-
mator capable of adapting to this very profile.

2.2 Hazard Regression

Hazard regression is commonly used in survival analysis
of patients suffering from potentially fatal diseases.
There, one aims to estimate the chances of survival
of a particular patient with covariates (attributes) x,
as a function of time, such as to better understand
the effects of x. Unfortunately, each patient only has
one life, and possibly different attributes x, hence, it is
impossible to estimate the fatality rate directly.

Instead, one assumes that the hazard rate λ(x, t) gov-
erns the instantaneous rate of dying of any x at any
given time t:

λ(t) = lim
dt→0

p(t ≤ T < t+ dt|T ≥ t)
dt

(1)

= lim
dt→0

p(t ≤ T < t+ dt)

dt
· 1

p(T ≥ t)

That is, the density of dying at time t is given by

p(t|x) = λ(x, t) p (survival until t|x)︸ ︷︷ ︸
F (t|x)

. (2)

This leads to a differential equation for the survival
probability with solution

F (t|x) = exp

(
−
∫ t

0

λ(x, τ)dτ

)
. (3)

Here we assumed, without loss of generality, that time
starts at 0. Note that a special case of the above is
λ(x, t) = λ0, in which case we have F (t, x) = e−tλ0 .
This is the well-known nuclear decay equation (also an
example of survival analysis).

In our case, death amounts to a site being infected and
λ(x, t) is the rate at which such an infection occurs.
An extremely useful fact of hazard regression is that it
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is additive. That is, if there are two causes with rates
λ and γ respectively, (2) allows us to add the rates.
We tacitly assume here that once a site is infected, the
attacker will take great care to keep further attackers
out, or at least, it will remain blacklisted as long as it is
infected in some manner. In terms of (3) we have

F (t|x) = exp

(
−
∫ t

0

λ(x, τ) + γ(x, τ)dτ

)
(4)

and p(t|x) = [λ(x, t) + γ(x, t)]F (t, x).

The reason why this is desirable in our case follows
from the fact that we may now model λ as the sum of
attacks and can treat them as if they were independent
in the way they affect sites.

One challenge in our analysis is the fact that we may not
always immediately discover whether a site has been
taken over. The probability that this happens in some
time interval [t1, t2] is given by F (t1|x)− F (t2|x), i.e.
by the difference between the cumulative distribution
functions.

Finally, the absence of evidence (of an infection) should
not be mistaken as evidence of absence of such. In other
words, all we know is that the site survived until time
T . By construction, their probability is thus given by
F (T |x). In summary, given intervals [ti, Ti] of likely
infection for site i, at time T we have the following
likelihood for the observed data:

p(sites|T ) =
∏

i∈hacked

[F (ti, xi)− F (Ti, xi)]
∏

i 6∈hacked

F (T, xi).

(5)

Most hazard regression approaches are based on the
Cox’s propotional hazard model Cox (1972) λ(t|x) =
λ0(t) exp(w

>x), including parametric models, and non-
parametric models with baseline hazard rate λ0(t) un-
specified Cox (1975). The proportional assumption
may not hold because of the time-varying effect of co-
variates Buchholz et al.. As a result, time-dependent
effect models that allow w(t) as functions over time for
each feature are proposed. Typically people developed
time functions based on fractional polynomials Sauer-
brei et al. (2007), or spline functions Kooperberg et al.
(1994). Due to the huge parameter space, techniques
like reduced rank methods Perperoglou (2013) and
structured penalized methods Tibshirani (1997), Ver-
weij & van Houwelingen (1995), Perperoglou (2014) are
proposed. However those works either search for global
smoothing functions or need to pre-specify knots manu-
ally, and typically work on only tens of features.

We do not wish to make strong parametric assumptions,
but since x is high-dimensional, estimating λ(x, t) com-
pletely non-parametrically is intractable. To add to
the complexity, inspired by hacking campaigns, λ(x, t)

is not a smoothly changing function, but can jump sud-
denly in response to certain events. It may not have a
small or even bounded Lipschitz constant. We therefore
constrain complexity of the function via total variations
that adapts to such heterogeneous smoothness without
blowing up the model complexity.

2.3 Trend Filtering

Trend filtering (Kim et al., 2009, Tibshirani, 2014) is
a class of nonparametric regression estimators that
has precisely the required property. It is minimax
optimal for the class of functions [0, 1] → R whose
kth order derivative has bounded total variation. In
particular, it has the distinctive feature that when
k = 0, 1 it produces piecewise constant and piecewise
linear estimates (splines of order 0 and 1) and when
k ≥ 2 it gives piecewise smooth estimates. The local
adaptivity stems from the sparsity inducing regularizers
that chooses a small but unspecified number of knots.
When k = 0, trend filtering reduces to the fused lasso
which solves

argmin
β
L(β) + γ

T−1∑
t=1

|βt+1 − βt|.

for a given loss function L. The advantage of this model
is that each discrete change in the rate function effec-
tively corresponds to the discovery or the increased (or
decreased) exploitation of a vulnerability — after all,
the rate of infection should not change unless new vul-
nerabilities are discovered or a patch is released.

3 Attributing Hacks

We will now assemble the aforementioned tools into a
joint model for attributing hacks.

3.1 Additive hazard function and variational
maximum likelihood

Given the hazard function λ(t, xi) of each website i ∈
{1, ..., n} with feature vector xi(t) ∈ Rd at time t, we
have the following survival problem:

max
∏

i∈hacked

p(ti ≤ τi < Ti)
∏

i/∈hacked

p(τi > T )

where τi is the unobserved random variable indicating
the exact time that website xi is being hacked. All we
know for websites on the blacklist1 is the time already

1A blacklist in this context is a list of websites maintained
by a third party which are confirmed to be either malicious,
compromised, or otherwise adversarial according to the
expertise of the curator. Entries in a blacklist always contain
the website in question, but are also furnished timestamps
of the security event and information regarding the nature
of the malice.
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been hacked Ti and the last time it was alive ti. This is
what we call an “interval-censored” observation. Time
T denotes the end of the observation interval, e.g.,
now. Websites that were still alive at T are considered
“right censored” because all we know is that their hack
time will be beyond of T . Under the survival analysis
framework, we have

p(τi > T ) =e−
∫ T
0
λ(t,xi(t))dt

p(ti ≤ τi < Ti) =p(τi ≥ ti)− p(τi ≥ Ti) (6)

=e−
∫ ti
0 λ(t,xi(t))dt − e−

∫ Ti
0 λ(t,xi(t))dt

It remains to specify the hazard function. In our setting,
x is a high-dimensional feature vector, so we need
to impose further structures on the hazard function
λ(x, t) to make it tractable. We thus make an additive
assumption and expand the hazard function into an
inner product

λ(x, t) = 〈x(t), w(t)〉 = w0(t) +

d∑
i=1

xi(t)wi(t).

This is still an extremely rich class of functions as xi(t)
can be different over time and wi(t) is allowed to be
any univariate nonnegative function (denoted by F).
Leaving it completely unconstrained will inevitably
overfit any finite data set. In order to allow for sharp
changes of wi(t), we choose to constrain the complexity
of the function class via a total variation (TV) penalty.
Then we can learn the model by solving the variational
penalized maximum likelihood problem below:

min
(w0,w1,...,wd)∈Fd

n∑
i=1

`({xi, zi, ψi};w) + γ

d∑
j=0

TV(wj)

s.t. wj(t+ δ)− wj(t) ≥ 0

for any j ∈ [d], t ∈ R, δ ∈ R+

(7)
where zi is the indicator of censoring type for ob-
servation xi, i.e. interval-censored or right-censored;
ψi := {ti, Ti, T} is the associated censoring time; wj(t)
is the evaluation of function wj at time t. The mono-
tonic constraints are optional. We call the model class
“non-monotone” when we drop the constraints from (7).
Note that our method is a much richer representation
comparing to Cox’s proportional hazard model (Cox,
1972). Our method handles time-varying coefficients
and feature vectors while Cox model is static. Also,
the semiparametric nature of Cox model by construc-
tion leaves out the baseline hazard λ0(t) such that it
becomes non-trivial to produce a proper survival distri-
bution. For example, a common trick is to parametrize
the baseline hazard rate λ0(t) by a either a constant or
a log-Weibull density. Our formulation does not require
a parametric assumption and produces a nonparamet-
ric estimate of it to account for all the effects that are

not explained by the given feature. There, only issue is
that (7) is an infinite dimensional function optimization
problem and could be very hard to solve.

3.2 Variational characterization

The following theorem provides a finite set of simple
basis functions that can always represent at least one
of the solution to (7).
Theorem 1 (Representer Theorem). Assume no ob-
servations are uncensored, feature xi(t) for each site
is piecewise constant over time with finite number of
change points. Let sτ (t) = 1(t ≥ τ) be the step function
at τ . There exists an optimal solution (w1, ..., wd) of
the above problem such that for each j = 1, .., d,

wj(t) =
∑
τ∈T

sτ (t)c
(j)
τ

for some set T that collects all censoring boundaries
and places where feature xj(t) changes, and coefficient
vector c(j) ∈ R|T |.

The proof, given in the supplementary, uses a varia-
tional characterization due to De Boor (1978), Mam-
men et al. (1997) and a trick that reparameterizes
our problem using the cumulative function Wi(t) =∫ t
0
wi(t)dt. Extra care was taken to handle the non-

negativity and monotone constraints. We remark that
the above result also applies to the case when γ = 0
(unpenalized version), and/or the case when there is
no monotone constraints.

The direct consequence of Theorem 1 is that we can
now represent piecewise constant functions by vectors
in R|T | and solve (7) by solving a tractable finite dimen-
sional fused lasso problem (with an optional isotonic
constraints) of the form:

min
w0,w1,...,wd∈R|T |

n∑
i=1

`({xi, zi, ψi};w) + γ

d∑
j=0

‖Dwj‖1

s.t. wj(`+ 1)− wj(`) ≥ 0

for any j = 1, ..., d, ` = 1, ..., |T | − 1.
(8)

where we abuse the notation to denote wj as evaluations
of function wj at sorted time points in T ; and D ∈
R(|T |−1)×|T | is the discrete difference operator.

Although the above result does not cover the cases
when we penalize the log penalty

∑|T |−1
`=1 log

(
|wj(`+

1)−wj(`)|+ε
)
instead of the `1 norm in (8), we can still

restrict our attention to the class of piecewise constant
functions, which is a sensible reformulation anyway.
The reason we consider such a nonconvex penalty is,
say two small changes we would rather prefer one large
change. Using an `1 norm this is sometimes difficult to
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accomplish, because when minimizing |a− b|+ |b− c|,
any value of b ∈ [a, c] will be a minimizer (for fixed
boundaries a < c). A nonconvex penalty, on the other
hand, allows for such changes.
Remark 1 (Higher order Trend Filtering). For kth
order trend filtering with k ≥ 1, we do not get the same
variational characterization. Although we can still show
that there is a spline W ∗j that is optimal, there is no
guarantee that the knots of W ∗j are necessarily a subset
of T . Fortunately, by Proposition 7 of Mammen et al.
(1997), restricting our attention to the class of splines
with knots in T will yield a spline that is very close to
the W ∗j at every τ ∈ T and it has total variation of its
kth derivative on the same order as TV(W ∗j ). In addi-
tion, a spline is uniformly approximated by the class of
functions that can be represented by the falling factorial
basis (Tibshirani, 2014, Wang et al., 2014), therefore,
the function from kth order trend filtering defined on
T will be a close approximation to the optimal solution
of the original variational problem.
Remark 2 (A sparse and memory-efficient update
scheme). The theorem suggests a memory-efficient
scheme for optimization, as one can only keep track of
the coefficients of the step functions rather than rep-
resenting the dense vectors w0, ..., wd. Moreover, each
stochastic gradient update will be sparse since each user
has only a handful of changes in his feature vectors
over time and at most two censoring brackets.
Remark 3 (On statistical error rates). The model
we put together is in fact an additive trend filtering
model. A recent manuscript (Sadhanala & Tibshirani,
2017) showed that the minimax rate of such models is
dn−

2k+2
2k+3 under a number of assumptions. It does not

directly apply to our problem, due to our non-convex loss
functions and additional non-negativity and isotonic
constraints.

3.3 Algorithms

Due to the interval-censoring in problem (8), the loss
functions are not convex, and the penalty is either con-
vex (`1) or nonconvex (log(| · |+ ε)) but non-smooth.
In addition, there are non-negativity and possibly iso-
tonic constraints. In our experiments, we find that
proximal gradient approach with a stochastic variance
reduced gradient approximation (Johnson & Zhang,
2013) works well for our purpose and it allows us to
scale up the method to work with at least hundreds of
thousands of data points and features.

Note that the probability of each interval-censored
data − log(p(ti ≤ τi < Ti)) in (6) can be decomposed
as
∫ ti
0
λ(t, xi)dt− log

(
1− exp

(
−
∫ Ti

ti
λ(t, xi)dt

))
. As

a result we only need to calculate the integral between
ti and Ti for interval-censored data while evaluating

the gradients:

∇gi(w) =


1

1−exp
( ∫ Ti

ti
λ(t,xi)dt

)Dτ>, if ti ≤ t < Ti.

Dτ>, otherwise.

where gi(·) is the negative log-likelihood function on
xi; τ ∈ Rd,T denotes sorted times in T for each feature
j ∈ {1, ..., d}. We have the following updates:

zt+1 = zt +∇2
gi(wt),

w(1) = wt − α

β +
√
zt+1

(∇gi(wt) −∇gi(w̃) + µ̃),

w(2) = min
w is isotonic

‖w(1) − w‖2 + ‖Dw(1)‖1,

wt+1 = min
w is nonnegative

‖w(2) − w‖2 + ‖w‖1.

Here, w̃ means a snapshot of w after every m iterations;
µ̃ means the average of the∇gi(w̃) over all xi. The third
update can be solved in linear time by dynamic pro-
gramming (Johnson, 2013). Lastly, Reddi et al. (2016)
proved fast convergence rate of proximal SVRG to a
stationary point for nonconvex loss functions, which
guarantees that only O(1/ε) proximal operators calls
and O(n+ n2/3/ε) incremental gradient computation
are needed to get to ε accuracy.

4 Experiments

In this section, we show the accuracy of the inference
of the learned latent hazard function evaluated on syn-
thetic data with ground truth and by conducting case
studies on real data via domain expert’s knowledge. We
also evaluate the out-of-sample predictive power mea-
sured by log-likelihood, that significantly outperforms
Cox’s proportional methods.

4.1 Simulation study

We simulate two kinds of attacks. First one is attacks
with strict monotonic hazard rate. It corresponds to
our statistical model with a monotone constraint on
the hazard rate. This is easy to understand because
once a vulnerability is known it will become easier and
easier for hackers to attack as more tools are available.
The second one is simulated attacks without monotonic
hazard rate. This leads to our “non-monotone” model.
It’s a practical assumption because in reality, the attack
campaigns could be complex. We will talk about both
the cons and pros of these two schemes in the analysis
of real-world data.

In both cases, we simulate the data as follows. We
generate 40 features among of which 4 features are
vulnerable exploits that are potentially under attack.
To simulate the true attacks, we assume there could be
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Figure 1: Estimated hazard rate on one exploit:
log+monotone(left), l1+monotone (middle) and
monotone (right).
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Figure 2: Estimated hazard rate on one exploit:
log+l1(left), l1 (middle) and non-monotone (right).

several attack campaigns for each exploit. We randomly
pick change points over time (cast as real numbers
in [0, 10.0]) each of which corresponds to one attack
campaign. The hazard rate for each campaign are
randomly sampled too. Given the ground true hazard
rate we sample the hacked times for each of 1000 data
points. Independently, we assume another uniformly
sampled checking points served as censoring times. We
finally obtain our experimental interval-censored times
by finding the nearest censoring times around each
hacked time.

The results for monotonic hazard rates are reported in
Figure 1 and 3. We denote “`1” as `1 penalized Total
Variation, and “log” as log penalized Total Variation.
The convergence in Figure 3 shows that compared
with “`1” and monotone, “ log” penalty works a bit
better. The reason can be seen from Figure 1 (1 out
of 4 exploit) where the “log” penalty produces much
sharper hazard curves and approximate the ground
truth quite well.

Figures 2 and 4 illustrate the results on data without
monotonic hazard rates constraint. Both the “`1” and
“log” penalties work well. It is well expected that the
non-monotone model without any regularization would
overfit the data badly. The minor difference between
“`1” and “`1 + log” is that “`1 + log” produces sharper
curves but tends to ignore weak signals (e.g. the second
knot) when the signal-to-noise ratio is relatively small,
i.e. prefer significant signals.

0 10 20 30 40 50

0.
69

0.
70

0.
71

0.
72

data pass

ne
ga

tiv
e 

lo
gl

os
s

l1+monotone 
log+monotone 
monotone
ground truth

0 10 20 30 40 500.
82

0
0.

85
0

data pass

ne
ga

tiv
e 

lo
gl

os
s 

0.
83

0 
0.

84
0

l1+monotone 
log+monotone 
monotone 
ground truth

Figure 3: Convergence on training data (left) and test
data (right) respectively. (monotone hazard rate)
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Figure 4: Convergence on training data (left) and test
data (right) respectively. (non-monotone hazard rate)

4.2 Real-World Data

The data used for evaluation was sourced from the
work of Soska & Christin (2014) and was compromised
as a collection of interval censored sites from black-
lists and right censored sites randomly sampled from
.com domains 2. As a consequence of the time-varying
distribution of software deployed on the web, all the
samples were drawn from The Wayback Machine3 when
archives were available at appropriate dates.

One of the blacklists that was sampled was Phish-
Tank, a blacklist of predominately phishing4 websites
for which 11,724,276 unique links from 91,155 unique
sites were observed between February 23, 2013 and
December 31, 2013. The Wayback Machine contained
usable archives for 34,922 (38.3%) domains. The other
blacklist that was used contains websites that perform
search redirection attacks Leontiadis et al. (2014) and
was sampled from October 20, 2011 to September 16,
2013. In total the sample contained 738,479 unique
links, from 16,173 unique domains. Amazingly, the

2A .com zone file is the list of all registered .com domains
at the time.

3The Wayback Machine is a service that archives parts
of the web.

4A phishing website is a website that impersonates an-
other site such as a bank, typically to trick users and steal
credentials.
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Wayback Machine contained archives in the acceptable
range for 14,425 (89%) of these sites.

These two blacklists are particularly well suited for pro-
viding labeled samples of attacked websites as manual
inspection has shown, an overwhelmingly large propor-
tion of these sites were compromised by a hacker.

Lastly, the .com zone file from January 14th, 2014 was
randomly sampled, ignoring cases where an image of
the site was not available in The Wayback Machine. In
total 336,671 archives distributed uniformly between
February 20th, 2010 and September 31st, 2013 were
collected. These samples were checked against our
blacklists as well as Google Safe Browsing to ensure
that as few compromised sites remained in the sample
as possible.

We automatically extracted raw tags and attributes
from webpages, that served as features (a total of
159,000 features). These tags and attributes could
be like <br>, or <meta> WordPress 2.9.2</meta>.
They are useful for indicating the presence of code that
is vulnerable or may be the target of adversaries.

4.3 Real-World Numeric Results

To estimate the actual hazard rate we first estimate
the approximate distributions over hacked websites and
still not hacked websites during that period. There are
120 million websites registered in .com zone file at end.
We reweigh the non-hacked websites by 200 times. To
report the results, we randomly select 80% for training
and validation, and the rest as test data.

The baseline method is the classic Cox Proportional
model (Cox, 1972) which has been extensively used
for hazard regression and survival analysis ever since
its invention, is still considered a “gold standard” in
epidemiology, clinical trials and biomedical study today
(see e.g., Woodward, 2013). Cox model is parametrized
based on the features just like we do, but is not time-
varying. As has been discussed in section 3.1, to esti-
mate the survival probabilities we specify a uniform
distribution for the baseline hazard function.

An experimental comparison between our models and
Cox on the aforementioned dataset are shown in Fig-
ure 5. Comparing to our models, the Cox model un-
derfits the data quite a bit. Our “monotone” model
that allows only non-decreasing hazard rate underfits
the data a little but still significantly outperforms Cox.
Moreover due to much smaller parameter space need to
search, we find that it converges faster than “`1+non-
monotone” model. Our “log+monotone” model per-
forms nearly the same convergence (overlapped). Again
it is well expected that “non-monotone” model without
any constraint overfits the data severely. “`1+non-
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Figure 5: Convergence on training data (left) and test
data (right) respectively.

Methods Empirical model size
non-monotone 2 · 106
monotone 4.04 · 105

`1+nonmonotone 5.16 · 105
Cox 1.59 · 105

Table 1: Empirical model size (active breakpoints for
our methods, number of parameters for Cox) estimated
by different statistic models.

monotone” model which is well-regularized performs
the best.

Due to the sparsity of our models, table 1 shows that
with only around 3 times parameter storage our models
can give significantly better estimates compared with
the Cox model. Most importantly, identifying the
changes of each feature’s susceptibility over time can
help people understand the latent hacking campaigns
and leverage these insights to take appropriate action.
We will discuss more in section 4.3.1.

Finally it is imperative that the model does not assign
non-zero hazard rate to features that are uncorrelated
with the security outcome of a website. The hazard
curve for 200 random features believed to be uncorre-
lated with security (such as tags for custom font colors,
styles, and links to unique images) was manually stud-
ied, 182 (9% false positive rate) of which generated a
hazard value of 0 for the enture duration of the experi-
ment. Of the 18 features that were assigned a non-zero
hazard curve, all of them reported a value of less than
0.04 which can be ignored.

4.3.1 Real-World Case Study

In this section, we manually inspect the model’s ability
to automatically discover known security events. To
this end, the model was trained on the aforementioned
dataset and λi(t) was measured for features i that
corresponded directly to websites that were known to
be the victim of attacks.
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Figure 6: λt(i) of a feature known to correspond di-
rectly to instances of Wordpress 3.2.1 and Wordpress
3.5.1.(left); λt(i) of features known to correspond di-
rectly to different versions of the Wordpress content
management system that were attacked in the summer
of 2011.(right)

Figure 6 (left) demonstrates some of the differences
between the monotone and non-monotone models by
following the hazard assigned to features that corre-
spond to Wordpress 3.5.1. In early 2013, our dataset
recorded a few malicious instances of Wordpress 3.5.1
sites (among some benign ones). These initial samples
appeared to be part of a small scale test or proof of
concept by the adversary to demonstrate their abil-
ity to exploit the platform. Both models detect these
security events and respond by assigning a non-zero
hazard.

Following the small scale test was a lack of activity for
a few weeks, during which the non-monotone model
relaxes its hazard rate back down to zero, just before
an attack campaign on a much larger scale is launched.
This example illustrates the importance of not letting
a guard down in the context of security. Once a vulner-
ability for a software package is known, that package
is always at risk, even if it is not actively being ex-
ploited.

Despite not taking the most prudent approach to se-
curity, the non-monotone model captures the notion
that adversaries tend to work in batches or attack cam-
paigns. Previous work Soska & Christin (2014) has
shown that it is economically efficient for adversaries
to compromise similar sites in large batches, and after
a few attack campaigns, most vulnerable websites tend
to be ignored. This phenomena is shown in Figure 6
where Wordpress 3.2.1 was attacked in late 2011 and
then subsequently ignored with the exception of a few
small attacks that were likely the work of amateurs
or password guessing attacks which are orthogonal to
the underlying software and any observable content
features. The monotone model in this case is very
prudent while the non-monotone model captures the
notion that the software is not being targeted.

It can be observed from Figure 6 (right) that a num-
ber of distinct Wordpress distributions experienced a
change-point in the summer of 2011 (between July
8th 2011 and August 11th 2011). This phenomena
was present in several of the most popular versions of
Wordpress in the dataset including versions 2.8.5, 2.9.2
and 3.2.1.

This type of correlation between the hazard of features
corresponding to different versions of a software pack-
age is expected. This correlation often occurs when
adversaries exploit vulnerabilities which are present in
multiple versions of a package, or plugins and third
party add-ons that share compatibility across the dif-
ferent packages.

Manual investigation revealed that a number of impact-
ful CVEs5 such as remote file inclusion and privilege
escalation were found for these versions of Wordpress as
well as a particular plugin around the time of July 2011.
While it is impossible to attribute with certainty any
particular vulnerability, the observed behavior is con-
sistent with vulnerabilities that impact large number
of consecutive iterations of software.

5 Conclusion

In this paper, we propose a novel survival analysis-
based approach to model the latent process of websites
getting hacked over time. The proposed model at-
tempts to solve a variational total variation penalized
optimization problem, and we show that the optimal
function can be linearly represented by a set of step
functions with the jump points known to as ahead of
time. This allows us to solve the problem by either
Lasso or fused lasso efficiently using proximal stochas-
tic variance reduced gradient algorithm. The results
suggest that the model significantly outperforms the
classic Cox model and is highly interpretable. Through
a careful case study, we found that at least some of the
active features and jump points we discovered by fitting
the model to data are indeed important components
of known vulnerability, and major jump points often
clearly mark out the life cycles of these exploits. In
the future, the same model (and variants) can be used
in many other settings to study consumer spending
behaviors, marriage, animal habitats and so on.
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