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Abstract

While there has been a significant amount
of work studying gradient descent techniques
for non-convex optimization problems over
the last few years, all existing results estab-
lish either local convergence with good rates
or global convergence with highly suboptimal
rates, for many problems of interest. In this
paper, we take the first step in getting the
best of both worlds — establishing global con-
vergence and obtaining a good rate of conver-
gence for the problem of computing square-
root of a positive definite (PD) matrix, which
is a widely studied problem in numerical
linear algebra with applications in machine
learning and statistics among others.

Given a PD matrix M and a PD start-
ing point Ug, we show that gradient
descent with appropriately chosen step-

size finds an e-accurate squareroot of
M in O(alog(HMfUOQHF/e)) itera-

tions, where o 2 (max{|[Uo|?>,||M],} /
min{o2; (Ug), omin (M)})3/2. Our result is
the first to establish global convergence for
this problem and that it is robust to errors

in each iteration.

A key contribution of our work is the gen-
eral proof technique which we believe should
further excite research in understanding de-
terministic and stochastic variants of simple
non-convex gradient descent algorithms with
good global convergence rates for other prob-
lems in machine learning and numerical lin-
ear algebra.
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1 Introduction

Given that a large number of problems and frameworks
in machine learning are non-convex optimization prob-
lems (examples include non-negative matrix factoriza-
tion [Lee and Seung, 2001], sparse coding [Aharon
et al., 2006], matrix sensing [Recht et al., 2010], matrix
completion [Koren et al., 2009], phase retrieval [Netra-
palli et al., 2015] etc.), in the last few years, there has
been an increased interest in designing efficient non-
convex optimization algorithms. Several recent works
establish local convergence to the global optimum for
problems such as matrix sensing [Jain et al., 2013, Tu
et al., 2015], matrix completion [Jain and Netrapalli,
2014, Sun and Luo, 2015], phase retrieval [Candes
et al., 2015], sparse coding [Agarwal et al., 2013] and
so on (and hence, require careful initialization). How-
ever, despite strong empirical evidence, none of these
results have been able to establish global convergence.
On the other hand some other recent works [Nesterov
and Polyak, 2006, Ge et al., 2015, Lee et al., 2016, Sun
et al., 2015] establish the global convergence of gradi-
ent descent methods to local minima for a large class of
non-convex problems but the results they obtain are
quite suboptimal compared to the local convergence
results mentioned above. In other words, results that
have very good rates are only local (and results that
are global do not have very good rates).

Therefore, a natural and important question is if gra-
dient descent actually has a good global convergence
rate when applied to specific and important functions
that are of interest in machine learning. Apart from
theoretical implications, such a result is also impor-
tant in practice since a) finding a good initialization
might be difficult and b) local convergence results are
inherently difficult to extend to stochastic algorithms
due to noise.

In this work, we answer the above question in affir-
mative for the problem of computing square root of
a positive definite (PD) matrix M: i.e., minyso f(U)
where f(U) = |[M — U?||%. This problem in itself is
a fundamental one and arises in several contexts such
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as computation of the matrix sign function [Higham,
2008], computation of data whitening matrices, signal
processing applications [Kaminski et al., 1971, Carl-
son, 1990, Van Der Merwe and Wan, 2001, Tippett
et al., 2003] and so on.

1.1 Related work

Given the importance of computing the matrix square-
root, there has been a tremendous amount of work
in the numerical linear algebra community focused on
this problem [Bjorck and Hammarling, 1983, Higham,
1986, 1987, 1997, Meini, 2004]. For a detailed list of
references, see Chapter 6 in Higham’s book [Higham,
2008].

The basic component of most these algorithms is the
Newton’s method to find the square root of a positive
number. Given a positive number m and a positive
starting point ug, Newton’s method gives rise to the
iteration

m

Upy1 % <ut + ) . (1)

Ut

It can be shown that the iterates converge to /m at a
quadratic rate (i.e., e-accuracy in log log% iterations).
The extension of this approach to the matrix case is
not straight forward due to non commutativity of ma-
trix multiplication. For instance, if M and Uy were
matrices, it is not clear if uﬂt should be replaced by

U, 'M or MU, ' or something else. One approach
to overcome this issue is to select Ug carefully to en-
sure commutativity through all iterations [Higham,
1986, 1997, Meini, 2004], for example, Ug = M or
Uo = I. However, commutativity is a brittle prop-
erty and small numerical errors in an iteration itself
can result in loss of commutativity. Although a lot
of work since, has focused on designing stable itera-
tions that are inspired by Eq.(1) [Higham, 1986, 1997,
Meini, 2004], and has succeeded in making it robust in
practice, no provable robustness guarantees are known
in the presence of repeated errors. Similarly, another
recent approach by Sra [2015] uses geometric opti-
mization to solve the matrix squareroot problem but
their analysis also does not address the stability or ro-
bustness to numerical or statistical errors (if we see a
noisy version of M) .

Another approach to solve the matrix square-root
problem is to use the eigenvalue decomposition (EVD)
and then take square-root of the eigenvalues. To the
best of our knowledge, state-of-the-art computation
complexity for computing the EVD of a matrix (in the
real arithmetic model of computation) is due to Pan
et al. [1998], which is O (n“logn + nlog? nloglog 1)
for matrices with distinct eigenvalues. Though the re-

sult is close to optimal (in reducing the EVD to ma-
trix multiplication), the algorithm and the analysis are
quite complicated. For instance robustness of these
methods to errors is not well understood. As men-
tioned above however, our focus is to understand if lo-
cal search techniques like gradient descent (which are
often applied to several non-convex optimization pro-
cedures) indeed avoid saddle points and local minima,
and can guide the solution to global optimum.

Finally, as we mentioned earlier, Ge et al. [2015], Lee
et al. [2016] give some recent results on global conver-
gence for general non-convex problems which can be
applied to matrix squareroot problem. While Lee et al.
[2016] prove only asymptotic behavior of gradient de-
scent without any rate, applying the result of Ge et al.
[2015] gives us a runtime of O (n'/poly (¢))!, which
is highly suboptimal in terms of its dependence both
on n and on e.

1.2 Our contribution

In this paper, we propose doing gradient descent on
the following non-convex formulation:

. 2112
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We show that if the starting point Ug is chosen to

be a positive definite matrix, our algorithm converges

to the global optimum of Eq.(2) at a geometric rate.

In order to state our runtime, we make the following
notation:

3
max ([[Uoll, , /TM],)

min (amin (Uo) , \/Omin (M)>

>

(3)

where omin (Ug) and ||Ug||, are the minimum singular
value and operator norm respectively of the starting
point Ug, and opmin (M) and |[M]|, are those of M.
Our result says that gradient descent converges € close
M— 2

to the optimum of Eq.(2) in O (a logw

iterations. Each iteration involves doing only three
matrix multiplications and no inversions or least-
squares. So the total runtime of our algorithm is

o (n“alog %), where w < 2.373 is the matrix
multiplication exponent[Williams, 2012]. As a byprod-
uct of our global convergence guarantee, we obtain
the robustness of our algorithm to numerical errors

for free. In particular, we show that our algorithm is

'For optimization problem of dimension d, Ge et al.
[2015] proves convergence in the number of iteration of
O (d*), with O (d) computation per iteration. In matrix
squareroot problem d = n?, which gives total O (nlo) de-
pendence.
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Method Runtime Global Provable
convergence | robustness
Gradient descent (this paper) o (an“’ log %) v v
Stochastic gradient descent [Ge 10
et al., 2015] O (n'®/poly (¢)) v v
Newton variants [Higham, 2008] @) (n‘*’ log log %) X X
EVD (algebraic [Pan et al., 1998]) @) (n‘” log n 4 nlog? nloglog %) Not iterative X
EVD (power method [Golub and 311 . .
Van Loan, 2012)) O (n3log 1) Not iterative X

Table 1: Comparison of our result to existing ones. Here w is the matrix multiplication exponent and « is our
convergence rate parameter defined in Eq.(3). We show that our method enjoys global convergence and is also
provably robust to arbitrary bounded errors in each iteration. In contrast, Newton variants only have local
convergence and their robustness to errors in multiple iterations is not known. Robustness of methods based on

eigenvalue decomposition is also not well understood.

robust to errors in multiple steps in the sense that if
each step has an error of at most J, then our algorithm
achieves a limiting accuracy of O (ay/[[M][,0). An-
other nice feature of our algorithm is that it is based
purely on matrix multiplications, where as most ex-
isting methods require matrix inversion or solving a
system of linear equations. An unsatisfactory part of
our result however is the dependence on a > k3/2,
where k is the condition number of M. We prove a
lower bound of € (k) iterations for our method which
tells us that the dependence on problem parameters in
our result is not a weakness in our analysis.

Outline: In Section 2, we will briefly set up the no-
tation we will use in this paper. In Section 3, we will
present our algorithm, approach and main results. We
will present the proof of our main result in Section 4
and conclude in Section 5. The proofs of remaining
results can be found in the Appendix.

2 Notation

Let us briefly introduce the notation we will use in this
paper. We use boldface lower case letters (v, w,...)
to denote vectors and boldface upper case letters
(M, X,...) to denote matrices. M denotes the in-
put matrix we wish to compute the squareroot of.
o; (A) denotes the i*" singular value of A. o, (A)

denotes the smallest singular value of A. k(A) de-

notes the condition number of A i.e., U”_A‘(Ii). K with-

out an argument denotes k(M). A; (A) denotes the
ith largest eigenvalue of A and Apnin(A) denotes the
smallest eigenvalue of A.

Algorithm 1 Gradient descent for matrix square root
Input: M, PD matrix Ug,n,T
Output: U
fort=0,---,7T—1do
U1 =Ug — 1 (Ut2 - M) U; — Uy (Ut2 - M)
end for
Return Ur.

3 Our Results

In this section, we present our guarantees and the high-
level approach for the analysis of Algorithm 1 which is
just gradient descent on the non-convex optimization
problem:

. 2
oM o

We first present a warmup analysis, where we assume
that all the iterates of Algorithm 1 commute with M.
Later, in Section 3.2 we present our approach to an-
alyze Algorithm 1 for any general starting point Uyp.
We provide formal guarantees in Section 3.3.

3.1 Warmup — Analysis with commutativity

In this section, we will give a short proof of conver-
gence for Algorithm 1, when we ensure that all iterates
commute with M.

Lemma 3.1. There exists a constant ¢ such that if

1 < ey, @nd Uo s chosen to be \/|[M]; - I, then
2

Uy in Algorithm 1 satisfies:

[0 =M% < exp (2000 (M)1) [U? — M7
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Proof. Since Ug = +/|[M||,I has the same eigenvec-
tors as M, it can be seen by induction that Uy has the
same eigenvectors as M for every t. Every singular
value o; (Ug41) can be written as

7i (Ussa) = (1= 27 (03 (U)* = 0: (M)) ) 0 (UL)
(5)

Firstly, this tells us that ||[Ug||, < /2 [|M]|, for every
t. Verifying this is easy using induction. The state-
ment holds for ¢ = 0 by hypothesis. Assuming it holds
for Uy, the induction step follows by considering the

two cases [Ugll, < /[M[, and /[M], < [Us, <

2||M]||, separately and using the assumption that
n < W A similar induction argument also tells us
2

that o; (Ug) > # Eq.(5) can now be used to

yield the following convergence equation:
0i (Ugsa)® — o (M)‘
2 2
= |03 (Ut) — 0 (M)‘ . (1 — 47]0'1 (Ut)
+4n20; (UL)? (03 (U)? = 03 (M) )

72 (U = o2 (M) - (1~ o (U)?

IN

+87%0; (U)* M)
< (1 - 200, (U’

exp (—N0min (M))

o (Ut)2 -0 (M)’

IN

o: (Uy)? — 0, (M)

)

where we used the hypothesis on n in the last two
steps. Using induction gives us

o; (Ut)2 - M‘ < exp (—nomin (M) t)

ag; (U0)2 — M‘ .

This can now be used to prove the lemma:

U2 -M|5 =" (ai (Uo)? — o (M))

K2

2

<exp (- 200w (M) 1) 3 (0 (Uo)* — o, (M)

K3
<exp (—2nomin (M) 1) HU02 - M||2F :
O

Note that the above proof crucially used the fact that
the eigenvectors of Uy and M are aligned, to reduce the
matrix iterations to iterations only over the singular
values.

3.2 Approach

As we begin to investigate the global convergence
properties of Eq.(4), the above argument breaks down

due to lack of alignment between the singular vectors
of M and those of the iterates Ug. Let us now take
a step back and consider non-convex optimization in
general. There are two broad reasons why local search
approaches fail for these problems. The first is the
presence of local minima and the second is the pres-
ence of saddle points. Each of these presents different
challenges: with local minima, local search approaches
have no way of certifying whether the convergence
point is a local minimum or global minimum; while
with saddle points, if the iterates get close to a saddle
point, the local neighborhood looks essentially flat and
escaping the saddle point may take exponential time.

The starting point of our work is the realization that
the non-convex formulation of the matrix squareroot
problem does not have any local minima. This can be
argued using the continuity of the matrix squareroot
function, and this statement is indeed true for many
matrix factorization problems. The only issue to be
contended with is the presence of saddle points. In
order to overcome this issue, it suffices to show that
the iterates of the algorithm never get too close to
a saddle point. More concretely, while optimizing a
function f with iterates Uy, it suffices to show that
for every t, Ut always stay in some region D far from
saddle points so that for all U, U’ € D:

IVf(O) =vf(U)p <LIU=U'lp  (6)

IV (U)llp = VES(U) = fo), (7)

where f. = miny f(U), and L and ¢ are some con-
stants. If we flatten matrix U to be n2?-dimensional
vector, then Eq.(6) is the standard smoothness as-
sumption in optimization, and Eq.(7) is known as gra-
dient dominated property [Polyak, 1963, Nesterov and
Polyak, 2006]. If Eq.(6) and Eq.(7) hold, it follows
from standard analysis that gradient descent with a
step size n < % achieves geometric convergence with

f(Ue) = fu < exp (=nft/2) (f(Uo) — f) .

Since the gradient in our setting is (Ut2 — M) U +
U (Ut2 — M), in order to establish Eq.(7), it suffices
to lower bound Ay (Ug). Similarly, in order to es-
tablish Eq.(6), it suffices to upper bound [|Ugl[,. Of
course, we cannot hope to converge if we start from
a saddle point. In particular Eq.(7) will not hold for
any [ > 0. The core of our argument consists of Lem-
mas 4.3 and 4.2, which essentially establish Eq.(6) and
Eq.(7) respectively for the matrix squareroot problem
Eq.(4), with the resulting parameters [ and L depen-
dent on the starting point Ug. Lemmas 4.3 and 4.2
accomplish this by proving upper and lower bounds
respectively on ||Ugll, and Amin (Ug). The proofs of
these lemmas use only elementary linear algebra and
we believe such results should be possible for many
more matrix factorization problems.
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3.3 Guarantees

In this section, we will present our main results estab-
lishing that gradient descent on (4) converges to the
matrix square root at a geometric rate and its robust-
ness to errors in each iteration.

3.3.1 Noiseless setting

The following theorem establishes geometric conver-
gence of Algorithm 1 from a full rank initial point.

Theorem 3.2. There exist universal numerical con-
stants ¢ and ¢ such that if Ug is a PD matrixz and
n < a5z, then for every t € [T — 1], we have Uy be a
PD matriz with

M =T < exp (=enB%) [[M = To*|| .,
where o and B are defined as
3

N max ([|Uoll,, /IM]l,)
min (O’min (Uo) , /Omin (M))

153 é min (O‘min (Uo) » V Omin (M))

«

Remarks:

e This result implies global geometric convergence.
Choosing n = QLBQ, in order to obtain an accuracy
of €, the number of iterations required would be

112
o (alog”MI:O”F)

e Note that saddle points of (4) must be rank de-
generate matrix (omin (U) = 0) and starting Algo-
rithm 1 from a point close to the rank degenerate
surface takes a long time to get away from the
saddle surface. Hence, as Ug gets close to being
rank degenerate, convergence rate guaranteed by
Theorem 3.2 degrades (as # (Up)?). It is possi-
ble to obtain a smoother degradation with a finer
analysis, but in the current paper, we trade off
optimal results for a simple analysis.

e The convergence rate guaranteed by Theorem 3.2
also depends on the relative scales of Uy and M
(say as measured by ||U0||§ / IM]|,) and is best if
it is close to 1.

e We believe that it is possible to extend our analy-
sis to the case where M is low rank (PSD). In this
case, suppose rank(M) = k, and let U* be the k-
dimensional subspace in which M resides. Then,
saddle points should satisfy o1, (UTU*) = 0.

A simple corollary of this result is when we choose
Up = A, where [M][, < A < 2|[MJ|, (such a A can
be found in time O (n?) Musco and Musco [2015]).

Corollary 3.3. Suppose we choose Ug = A, where

M|, < X < 2|MJ,. Then HM—UTQHF < € for
2

Tz@@glogllMUolp)_

€

3.3.2 Noise Stability

Theorem 3.2 assumes that the gradient descent up-
dates are performed with out any error. This is not
practical. For instance, any implementation of Algo-
rithm 1 would incur rounding errors. Our next result
addresses this issue by showing that Algorithm 1 is sta-
ble in the presence of small, arbitrary errors in each
iteration. This will establish the stability of our algo-
rithm in the presence of round-off errors for instance.
Formally, we consider in every gradient step, we incur
an error Ayg.

The following theorem shows that as long as the errors
Ayt are small enough, Algorithm 1 recovers the true
squareroot upto an accuracy of the error floor. The
proof of the theorem follows fairly easily from that of
Theorem 3.2.

Theorem 3.4. There exist universal numerical con-
stants ¢ and ¢ such that the following holds: Suppose
Up is a PD matrix and n < aiBQ where o and 8 are
defined as before:

3
§ max (HU0||27 ||M||2)

min (amin (Uo) , /Omin (M)>

8 2 min (Umin (Uo) , v/ Omin (M)> :

(07

Suppose further that || Aglly < 55510min (M)B. Then,
for every t € [T — 1], we have Uy be a PD matriz with

IM = T < exp (=ens?) [M —Uo®| .

t—1

~ 52
+4max(|[Uolly, /3 [M[,) Y e ™ === A ||,
s=0
Remarks:
e Since the errors above are multiplied
by a decreasing sequence, they can be

bounded to obtain a limiting accuracy of
O (a(l[Uolly + /M) (sup [ Asll 7))

e Ifthere is error in only the first iteration i.e., Ay =
0 for ¢t # 0, then the initial error Ag is attenuated
with every iteration,

M — U < exp (—ens’t) M - U?||,.
+ 6 max(|[Uo|l3, [M[ly)e =1 | A .

That is, our dependence on [[Agl|x is exponen-
tially decaying with respect to time ¢. On the
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contrary, best known results only guarantees the
error dependence on ||Ag||  will not increase sig-
nificantly with respect to time ¢ [Higham, 2008].

3.3.3 Lower Bound

We also prove the following lower bound showing that
gradient descent with a fixed step size requires Q (k)
iterations to achieve an error of O (o min (M)).

Theorem 3.5. For any value of k, we can find a
matriz M such that, for any step size m, there ex-
ists an initialization Ug that has the same eigenvec-
tors as M, with ||Ugll, < +/3|IM]||y and omin (Ug) >
1—10 Omin (M), such that we will have HUt2 — MHF >
10min (M) for all t < k.

This lemma shows that the convergence rate of gra-
dient descent fundamentally depends on the condition
number k, even if we start with a matrix that has the
same eigenvectors and similar scale as M. In this case,
note that the lower bound of Theorem 3.5 is off from
the upper bound of Theorem 3.2 by /x. Though we
do not elaborate in this paper, it is possible to formally
show that a dependence of k3/2 is the best bound pos-
sible using our argument (i.e., one along the lines of
Section 3.2).

4 Proof Sketch for Theorem 3.2

In this section, we will present the proof of Theo-
rem 3.2. To make our strategy more concrete and
transparent, we will leave the full proofs of some tech-
nical lemmas in Appendix A.

At a high level, our framework consists of following
three steps:

1. Show all bad stationary points lie in a measure
zero set {U|¢p(U) = 0} for some constructed po-
tential function ¢(+). In this paper, for the matrix
squareroot problem, we choose the potential func-
tion ¢(-) to be the smallest singular value function
Omin ()

2. Prove for any € > 0, if initial Uy, € D, =
{U] |¢(U)| > €} and the stepsize is chosen ap-
propriately, then we have all iterates U, € D..
That is, updates will always keep away from bad
stationary points.

3. Inside regions D., show that the optimization
function satisfies good properties such as smooth-
ness and gradient-dominance, which establishes
convergence to a global minimum with good rate.

Since we can make e arbitrarily small and since
{U|¢(U) = 0} is a measure zero set, this essentially es-

tablishes convergence from a (Lebesgue) measure one
set, proving global convergence.

We note that step 2 above implies that no stationary
point found in the set {U|¢(U) = 0} is a local mini-
mum — it must either be a saddle point or a local max-
imum. This is because starting at any point outside
{U|¢(U) = 0} does not converge to {U|p(U) = 0}.
Therefore, our framework can be mostly used for non-
convex problems with saddle points but no spurious
local minima.

Before we proceed with the full proof, we will first illus-
trate the three steps above for a simple, special case
where n = 2 and all relevant matrices are diagonal.
Specifically, we choose target matrix M and parame-
terize U as:

4 0
0 2

x 0
0y

)

Here z and y are unknown parameters. Since we are
concerned with U > 0, we see that z,y > 0. The
reason we restrict ourselves to diagonal matrices is so
that the parameter space is two dimensional letting
us give a good visual representation of the parameter
space. Figures 1 and 2 show the plots of function value
contours and negative gradient flow respectively as a
function of x and y.

We will use Figures 1 and 2 to qualitatively establish
the three steps in our framework.

1. From Figure 1, we note that (2,/2) is the global
minimum. (2,0), (0,v/2) are saddle points, while
(0,0) is local maximum. We notice all the station-
ary points which are not global minima lie on the
surface opmin(U) = 0, that is, the union of x-axis
and y-axis.

2. By defining a boundary {Ul|omin(U) > ¢, ||UJ|, <
C'} for some small ¢ and large C' (corresponding to
the red box in Figure 2), we see that negative gra-
dient flow is pointed inside the box which means
that for any point in the box, performing gradient
descent with a small enough stepsize will ensure
that all iterates lie inside the box (and hence keep
away from saddle points).

3. Inside the red box, Figure 2 shows that negative
gradient flow points to the global optimum. More-
over, we can indeed establish upper and lower
bounds on the magnitude of gradients within the
red box — this corresponds to establishing smooth-
ness and gradient dominance respectively.

Together, all the above observations along with stan-
dard results in optimization tell us that gradient de-
scent has geometric convergence for this problem.
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Figure 1: Contour of Objective Functions

We now present a formal proof of our result.

4.1 Location of Saddle Points

We first give a characterization of locations of all the
stationary points which are not global minima.
Lemma 4.1. Within symmetric PSD cone {U|U =
0}, all stationary points of f(U) = HM — U2H§J which
are not global minima, must satisfy omin (U) =0

Proof. For any stationary point U’ of f(U) which is
not on the boundary {Ulowi,(U) = 0}, by linear al-
gebra calculation, we have:

0=[Vf(U)|E = [(U? -M)U' + U'(U”? - M)| %
=((U”? -M)U + U (U? - M),
(U”? -M)U’ + U'(U”? - M))
=2Tr([(U”? — M)U']?) + 2Tr((U"? — M)2U"?)
>405,,(U)[|U” = M| %

Therefore, since U’ is not on the boundary of PSD
cone, we have o2, (U) > 0, which gives f(U’) =

||M — U'2||jJ # 0, thus U’ is global minima. O

As mentioned before, note that all the bad stationary
points are contained in {Ul|omin (U) = 0} which is a
(Lebesgue) measure zero set.
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Figure 2: Flow of Negative Gradient

4.2 Stay Away from Saddle Surface

Since the gradient at stationary points is zero, gradi-
ent descent can never converge to a global minimum
if starting from suboptimal stationary points. Fortu-
nately, in our case, gradient updates will keep away
from bad stationary points. As in next Lemma, we
show that as long as we choose suitable small learning
rate, omin (Uy) will never be too small.

min (omin(Uo) o2 (M) /10)
max (|| Uol,(31M],) ")
where ¢ is a small enough constant. Then, for every
t € [T —1], we have Uy in Algorithm 1 be a PD matrix

with

Lemma 4.2. Suppose n < ¢

’

min M
)\min (Ut) 2 min <Umin (UO) ) 01—0()> .

It turns out that the gradient updates will not only
keep omin (U) from being too small, but also keep
|lUJ|, from being too large.

1 F
. or
10 max (| Uo||2,3[|M]|,, )

every t € [T —1], we have Uy in Algorithm 1 satisfying:

[Uell, < max (||Uo||2 3 ||M||2) |

Although ||U||, is not directly related to the surface
with bad stationary points, the upper bound on ||U||,
is crucial for the smoothness of function f(-), which
gives good convergence rate in Section 4.3.

Lemma 4.3. Suppose n <
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4.3 Convergence in Saddle-Free Region

So far, we have been able to establish both upper
bounds and lower bounds on singular values of all it-
erates U; given suitable small learning rate. Next, we
show that when spectral norm of U is small, function
f(U) is smooth, and when oy, (U) is large, function
f(U) is gradient dominated.

Lemma 4.4. Function f(U) = |[M-— U2||i? is
8 max{T, | M||,}-smooth in region {U]| HU||§ < T}
That is, for any Uy, Ug € {U]| HU||§ < T}, we have:

IVF(U1)=Vf(Usz)|lr < 8max{T’, [ M][;}[|U1—~Us||r

Lemma 4.5. Function f(U) = ||M—U2Hi7 is 4dy-
gradient dominated in region {Ulomn (U)? > ~}.
That is, for any U € {Ulomin (U)2 > v}, we have:

IVF(U)7 = 47£(U)

Lemma 4.4 and 4.5 are the formal versions of Eq.(6)
and Eq.(7) in Section 3.2, which are essential in estab-
lishing geometric convergence.

Putting all pieces together, we are now ready prove

our main theorem:

Proof of Theorem 3.2. Recall the definitions in Theo-
rem 3.2:

3
s [ max([Uolly, /M)

min (Umin (Uo) , /Omin (M))

8 2 min (%m (Uo), vV Omin (M)>

(07

By choosing learning rate n < 722 with small enough
constant c¢. We can satisfy the precondition of Lemma
4.2, and Lemma 4.3 at same time. Therefore, we know

all iterates will fall in region:

{U]nmz < max (||Uo|27\/3|M|2) |

Omin (M> > }
10

Then, apply Lemma 4.4 and Lemma 4.5, we know in
this region, function f(U) = ||U2 - MH? has smooth-
ness parameter:

)\min (U) Z min <UIIIiIl (UO) )

8 max {max {|Uo|13,3 M|, } M, } < 240257

and gradient dominance parameter:

. Omin M 2
4 min {O’?nin(Ug)7 10(0)} > g

- 25

That is, f(U) in the region is both 2402/3 32-smooth,
and 32 /25-gradient dominated.

Finally, by Taylor’s expansion of smooth function, we
have:

f(Ugy1) <f(Us) +(VF(Us), Ugyr — Uy)
+120%/38% [Up 11 — Uelf7,

—f(Uy) — (n — 12203 8%) |V £ (UL)||%

n 2
<f(Uy) — 2 V(U %
52

<(1-n=—)f(U

<(1—n'55)f(UL)
The second last inequality is again by setting constant
¢ in learning rate to be small enough, and the last
inequality is by the property of gradient dominated.
This finishes the proof.

O

5 Conclusion

In this paper, we take a first step towards addressing
the large gap between local convergence results with
good convergence rates and global convergence results
with highly suboptimal convergence rates. We con-
sider the problem of computing the squareroot of a PD
matrix, which is a widely studied problem in numeri-
cal linear algebra, and show that non-convex gradient
descent achieves global geometric convergence with a
good rate. In addition, our analysis also establishes
the stability of this method to numerical errors. We
note that this is the first method to have provable ro-
bustness to numerical errors for this problem and our
result illustrates that global convergence results are
also useful in practice since they might shed light on
the stability of optimization methods.

Our result shows that even in the presence of a large
saddle point surface, gradient descent might be able
to avoid it and converge to the global optimum at a
linear rate. We believe that our framework and proof
techniques should be applicable for several other non-
convex problems (especially those based on matrix fac-
torization) in machine learning and numerical linear
algebra and would lead to the analysis of gradient de-
scent and stochastic gradient descent in a transparent
way while also addressing key issues like robustness to
noise or numerical errors.
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