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APPENDIX A. EXPONENTIAL CONTRACTIVITY

A natural generalization of the strong concavity case is to assume that logx is
strongly concave for z and z’ far apart and that log 7w has “bounded convexity”
when z and 2’ are close together. It turns out that in such cases Assumption 2.A
still holds. More formally, the following assumption can be used even when the
drift is not a gradient. For f: X — R% and r > 0, let

() £ inf {2(f(m) SIED @) e ot — }

2
Define the constant Ry = inf{R > 0: x(r) > 0 Vr > R}.

Assumption A.1 (Strongly log-concave tails). For the function f € C*(X,R9),
there exist constants R, € [0,00) and k € (0,00) such that

k(r) > —£ for all r < R and k(r) > k for all v > R.

Furthermore, k(r) is continuous and fol re(r)"dr < co.

Theorem A.1 (Eberle [7], Wang [12]). If Assumption A.1 holds for f = b then
Assumption 2.A holds for

Ro
C =exp (‘11/0 TK(T)dS)

1 < {?’26 max(R?, 8k~ 1) if (R2 < 8

log(1/p) = | 8V2m R=1=1V2(40=1 + k=1)e!R*/8 4 32R=2k=2  otherwise.

For detailed calculations for the case of a mixture of Gaussians model, see Gorham
et al. [9)].

APPENDIX B. PROOFS OF THE MAIN RESULTS IN SECTION 3

We state all our results in the more general case of a diffusion on a convex space
X C R We begin with some additional definitions. Any set G C C(X) defines an
integral probability metric (IPM)

dg(p,v) = sup () — v(9)l,

where ;4 and v are measures on X. The Wasserstein metric dyy corresponds to
W2 {¢peCWX)||pllL <1}, The set H = {¢ € CL(X)|||h]|z < 1} will be used to
define an IPM dy. For a set Z C R", we use 0Z to denote the boundary of Z.
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2 J. H. HUGGINS AND J. ZOU

Suppose [|b — b||2 < e. We first state several standard properties of the Wasser-
stein metric and invariant measures of diffusions. The proofs are included here for
completeness.

Lemma B.1. For any p,v € P(X), dy(u,v) = dw(u,v).

Proof sketch. The result follows since any Lipschitz function is continuous and a.e.-
differentiable, and continuously differentiable functions are dense in the class of
continuous and a.e.-differentiable functions. (I

We use the notation (X;);>o ~ Diff(b, X) if X, is a diffusion defined by
A diffusion X; is said to be strong Feller if its semigroup operator (m ¢)(z) =

E[¢(Xz1)], ¢ € C(X), satisfies the property that for all bounded ¢, m¢ is bounded
and continuous.

Proposition B.2. Assume Assumption 2.B(1) holds and let (X;)i>0 ~ Diff(b, I).
Then for each x € X, X has the invariant density m and is strong Feller.

Proof. The existence of the diffusions follows from Tanaka [11, Theorem 4.1], the
strong Feller property follows from Ethier and Kurtz [8, Ch. 8, Theorems 1.5 & 1.6],
and the fact that 7 is the unique stationary measure follows since Ajm = 0. O

By the same proof as Proposition B.2, we have

Proposition B.3 (Diffusion properties). For f € CO(X,R?) with |||z < oo, the
diffusion (X;)i>0 ~ Diff(f, I) exists and has an invariant distribution my.

Proposition B.4 (Expectation of the generator). For f € CO(X,R%), let the
diffusion (Xi)¢>0 ~ Diff(f,I) have invariant density 7y and assume that linear
functions are ¢-integrable. Then for all ¢ € C*(X) such that ||¢|, < oo and As¢
is my-integrable, my(Afp) = 0.

Proof. Let P, be the semigroup operator associated with (X;);>o:

(Pro)(z) = E[p(Xy )]

Since by hypothesis linear functions are mg-integrable and ¢ is Lipschitz, ¢ is ms-
integrable. Thus, P,¢ is 7s-integrable and by the definition of an invariant measure
(see [1, Definition 1.2.1] and subsequent discussion),

w5 (Pg) = s (B.1)
Using the fact that 0,2 = P.Af [1, Eq. (1.4.1)], differentiating both size of
Eq. (B.1), applying dominated convergence, and using the hypothesis that Ar¢
is m¢-integrable yields
0=0ymy(Pro) = mp(0 Pr9) = mp(PrArd) = mp(Aso).
([l
We next show that the solution to Eq. (4.1) is Lipschitz continuous with a Lips-

chitz constant depending on the mixing properties of the diffusion associated with
the generator.



SUPPLEMENT TO APPROXIMATE DIFFUSIONS 3

Proposition B.5 (Differential equation solution properties). If Properties 2.A and
Assumption 2.B(1) hold, then for any h € C1(X) with ||h|| < oo, the function

w@) & [ (n(h) B )
exists and satisfies

l[unll )IIhIIL (B.2)

«_C
~ log(1/p
(Ayup)(z) = h(z) — w(h). (B.3)

Proof. We follow the approach of Mackey and Gorham [10]. By Assumption 2.A
and the definition of Wasserstein distance, we have that there is a coupling between
Xz and X, ¢ such that

E[| Xzt — Xortll2] < Cllz — a'l2p".

The function wuy, is well-defined since for any = € X,
[ int) ~ bt o) ae = |
0 0

§sup|\Vh(z)||2/ /E[||Xx7t—Xw/,tHg]w(a:’)dx’dt
zeX 0 X

/X (EIR(Xor )] — E[A(X0)]) w(a) do’| dt

= sup HVh(z)Hg/ / lz — 2| Cpln(x’) da’ dt
zeX 0 X

< bl Exenllz — X]2] / Cptdt
0
< o0,

where the first line uses the property that m(h) = [, E[h(X, )7 (2")d2" and the
final inequality follows from Assumption 2.B(2) and the assumption that 0 < p < 1.
Furthermore, u;, has bounded Lipschitz constant since for any z, 2’ € X,

lun () — un(z")| =

/OO" E[A(Xz 1) = h(Xor )] dt‘

< sup [ Vh(2)]l2 / E[[ X0y — Xp[lo]
zeX 0

< Ihlizle — s / Cptdt
0

_ Clhlle

log(1/p)

Finally, we show that (Apun)(x) = h(z) — w(h). Recall that for h € C(X), the
semigroup operator is given by (mh)(z) = E[h(X,)]. Since X, is strong Feller
for all x € X by Proposition B.2, for all ¢ > 0, its generator satisfies [8, Ch. 1,
Proposition 1.5]

= 2”2

h—mh = Ab/o (w(h) — mwsh) ds. (B.4)
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Hence,

[h(x) = m(h) = [h(z) = (m:h)(2)]]

/X E[A(Xs.0)] — E[A(Xar )]r(a’) da’

< sup HVh(Z)Ilz/ E[[| Xort — Xa¢ll2)m(2") da’
zeX X

< [Pl Ex~rlllz — X[2]Cp".

Thus, conclude that the left-hand side of Eq. (B.4) converges pointwise to h(x) —
mw(h) as t — oco. Since Ay is closed [8, Ch. 1, Proposition 1.6], the right-hand side
of Eq. (B.4) limits to Apup. Hence, uy solves Eq. (B.3). O

We can now prove the main result bounding the Wasserstein distance between
the invariant distributions of the original and perturbed diffusions.
Proof of Theorem 3.1. By Proposition B.3 and Assumption 2.B, the hypotheses of
Proposition B.4 hold for f =b. Let F £ {uj, |h € H}. Then

dw(m,7) = sup |w(h) — 7(h)| by definition and Assumption 2.B
heH

= sup |m(Apup) — 7(Apun)| by Eq. (B.3)
het

= sup |7(Apupn)| by Proposition B.4
heH

= sup |7(Apu)| Dby definition of F
ueF

= sup |7(Apu — Aju)| by Proposition B.4
ueF

= sup |#(Vu-b— Vu-b)| by definition of A,
ueF

< sup |7 (|| Vull2[[b — b)]2)]
ueF

Ce -

< by Eq. (B.2) and ||b — b||2 <.

Tog(1/7) (B.2) and [|b —b]|

O

A similar analysis can be used to bound the Wasserstein distance between 7 and
7 when the approximate drift b is itself stochastic.

Proof of Theorem 3.4. We will need to consider the joint diffusions Z; = (X;,Y;)
and Z; = (X;,Y;) on Z 2 X x R?, where

AdZ; = (b(X}), baue(Y2)) dt + (V2AWX, S dW)Y) — n,L(dt)
AZ; = (0(X4, Y2), baue (V1)) At + (V2 AW, S dWY) — nyL(dt).

Notice that X; and Y; are independent and the invariant distribution of X; is .
Let mz and 7z be the invariantNdistributions of Z; and Z;, respectively. Also note
that the generators for Z; and Z; are, respectively,

Azd(2) = Vo - (b(x), bauz(y)) + Ads(z) + D H¢y(z)
Az9(2) =V¢- (6(% Y), bauz (y)) + A¢e(2) + D Hoy(z).

where H is the Hessian operator.
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By Proposition B.3 and 2.B, the hypotheses of Proposition B.4 hold for f(z,y) =
(b(z,9), baue(y)). Let Hy 2 {h € CYZ) |||kl < 1} and Fz £ {up|h € Hz}.
Also, for z = (z,y) € Z, let idy(z) = y. Then, by reasoning analogous to that in
the proof of Theorem 3.1,

dw(m,7) < dw(rz,7z)

= sup |mz(h) —7z(h)]
heH z
= sup |7z(Azu — Azu)|
ueFz
= sup |[7z(Vu-b— Vu-b)
ueFz
= sup [E[Vu(X,Y)-E[b(X) - b(X,Y)|X])|
ueFz
Sup E[[Vu(X, Y)[2[EBX) - b(X, V)| X]||2]]

C 7(e)
~ log(1/p)

IN

O
Proof of Theorem 3.5. The proof is very similar to that of Theorem 3.1, the only

difference is in the Lipshitz coefficient of the differential equation solution uy(x) in
B.5. Using polynomial contractivity, we have

lun () — up(z')| =

/ HMXW)—MX%ON4

0

gsupHthQHQ/" B[ Xy — Xor 2] dt
zEX 0

suwmm—xwg/ Clt+ /)" di
0
.

= o ngetie =l
Plugging in this Lipschitz constant, we have
Ce

(a—1)pot

dw(ﬂ',ﬁ') S

APPENDIX C. CHECKING THE INTEGRABILITY CONDITION

The following result gives checkable conditions under which Assumption 2.B(3)
holds. Let Bg £ {r € R?|||z|2 < R}.

Proposition C.1 (Ensuring integrability). Assumption 2.B(3) is satisfied if b =
Viegm, b=Vlog7, ||b—bl2 <€, and either
(1) there ezist constants R > 0,B > 0,6 > 0 such that for all x € X \ Bpg,
o) = b(x)ll2 < B/||lz]*°; or i
(2) there exists a constant R > 0 such that for allz € X\Bg x-(b(x)—b(x)) > 0.
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Proof. For case (1), first we note that since [, (7(x)—7(z)) dz = 0, by the (general-
ized) intermediate value theorem, there exists * € X such that w(z*) — 7(z*) = 0,
and hence log w(z*) —log 7(z*) = 0. Let p[x*, z] be any path from z* to x. By the
fundamental theorem of calculus for line integrals,

|[log 7(z) — log7(x)| = llogfr(z*) —log7(z*) + /[ ](b(r) - l;(r)) ~dr

S UG R IRAOEY
y[z= 2]
= RIS
First consider © € X NBr. Choosing p[z*, x] to be the linear path v[z*, z], we have
og(a) —log(@) <c [ I @lar
~[z*,x

ellz — x|
< (R+0%)e, (C.1)

where £* £ ||z*||z.
Next consider z € X'\ Bg. Let £ £ ||z[|2 and 2’ = £z. Choose p[z*, z] to consist
of the concatenation of the linear paths v[x*, 0], v[0, 2], and ~[z’, 0], so

[ b Bl @l
:/ mmfammwwma+/ 1) — Ball (O
~y[z*,0] 8

[0,2']
+/{}MW—MM&W@M%
vz’ x
Now, we bound each term:

/ 1b(r) = b(r) 2]l (t)[|2 dt < £%€

~[z*,0]

/ 1(r) = b(r)|l2]l7' (¢) |2 dt < Re
~[0,2']

1
—b <({-R)B
/ﬂM [6(r) = b(r)|l2]|7" (t)[|2 dt < R) L (RE(- R PR

1
k)5 [ R~ (=Rl

< R5
It follows that there exists a constant B > 0 such that for all z € X, |logm(x) —
log7#(z)| < B. Hence B~'r < # < B, so ¢ is m-integrable if and only if it is
m-integrable.
Case (2) requires a slightly more delicate argument. Let 2* and ¢* be the same
as in case (1). For z € X N Bg, it follows from Eq. (C.1) that

logm(z) — log7(z) > —(R + £*)e.
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For x € X \ Bg, arguing as above yields

logm(x) — log 7(x) = / (b(r) = b(r)) -dr

plz*,z]

> — br—l;r 27’/t 5 dt
= /p[m*,r'] llb(r) (M2l @l
+ b(r) —b(r)) - r'(¢) dt
[y[z/,z]( (r) () (t)

v

—(R+ e+ / (b(q(t)z) — b(q(t)x)) - axdt

vz, 2]

\%

—(R+ )¢,

where we have used the fact that r(t) = ¢(t)x for some linear function ¢(t) with
slope a > 0. Combining the previous two displays, conclude that for all z € &,
7(z) < e+ (2), hence Assumption 2.B(3) holds. O

We suspect Proposition C.1 continues to hold even when b # Vlognw and b #
Vlog#. Note that condition (1) always holds if X' is compact, but also holds for
unbounded X as long as the error in the gradients decays sufficiently quickly as
|||2 grows large. Given an approximate distribution for which ||b — b||2 < €/2, it
is easy to construct a new distribution that satisfies condition (2):

Proposition C.2. Assume that 7 satisfies ||b— b|la < €/2 and let
ex
fr(z) & 3l {@llzllz/R=DI[R/2 < |[z]l2 < R] + 1[|Jz]2 > R]}.
Then the distribution
Tr(z) o 7(x)efr@
satisfies condition (2) of Proposition C.1.

Proof. Let bg 2 Vlog7g. First we verify that ||b — bg|ly < e Forz € X NBr/2,
7r(x) = 7(x), so ||b(x) — br(z)||2 < €/2. Otherwise z € X\ Bg/2, in which case
since || fr(z)|| < €/2 it follows that ||b(z) — br(z)|l2 < e. To verify condition (2),
calculate that for z € X' \ Bg,

2 (b(x) — b)) = o (bm ()

ex ) ezl z-ex
20zlla ) = 2 2l
U

By taking R very large in Proposition C.2, we can ensure the integrability con-
dition holds without having any practical effect on the approximating drift since
br(z) = b(x) for all z € Br/o. Thus, it is safe to view Assumption 2.B(3) as a mild
regularity condition.

APPENDIX D. APPROXIMATION RESULTS FOR PIECEWISE DETERMINISTIC
MARKOV PROCESSES

In the section we obtain results for a broader class of PDMPs which includes
the ZZP a special case [2]. The class of PDMPs we consider are defined on the
space £ £ R? x B, where B is a finite set. Let A € CO(E,RE) and let F' €
CY(E,R%) be such that for each § € B, F(-,0) is a smooth vector field for which
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the differential equation dyxy = F(xy,6) with initial condition zo = x has a unique
global solution. For ¢ € C(FE), the standard differential operator V,¢(z,0) €
R? is given by (V.¢(z,0)); £ g—i(aj,ﬁ) for i € [d] and the discrete differential
operator Vyo(z,0) € RE is given by (Vod(z,0))s = ¢(x,0") — ¢(x,0). The PDMP
(Xt,©¢)1>0 determined by the pair (F, A) has infinitesimal generator

AF7A¢: F-V.p+ A -Vyo.

We consider the cases when either or both of A and F' are approximated (in the
case of ZZP, only A is approximated while F'is exact). The details of the polynomial
contractivity condition depend on which parts of (F, A) are approximated. We
use the same notation for the true and approximating PDMPs with, respectively,
infinitesimal generators Ar 4 and Ay ;, as we did for the ZZPs in Section 6.

Assumption D.2 (PDMP error and polynomial contractivity).
(1) There exist ep,es > 0 such that ||[F — Fl|ly < ep and ||[A — A||; < ea.
(2) For each (x,0) € E, let g9 denote the law of the PDMP (X;.0.4,04.0.)
with generator Ap a. There exist constants o > 1 and 8 > 0 and a function
B € C(E x E,R,) such that for all v, 2’ € R? and 0,0’ € B,

dW(,uw,G,tv ,U'w’ﬂ’,t) S B(x7 97 J,‘/, 0/)(t + B)ia'

Furthermore, if ep > 0, then there exists Cp > 0 such that B(z,0,2',0)
Crllx—2'||2 and if es > 0, then there exists Ca > 0 such that B(x,0,z,0")
Ca. If ep =0 take Cp =0 and if e4 = 0 take C4 = 0.

ININ

We also require some regularity conditions similar to those for diffusions.

Assumption D.3 (PDMP regularity conditions). Let m and 7 denote the
stationary distributions of the PDMPs with, respectively, infinitesimal generators
Ap a and -ARA'

(1) The stationary distributions m and T exist.
(2) The target density satisfies [, x*m(dz,df) < co.
(3) If a function ¢ € C(E,R) is w-integrable then it is 7-integrable.

Theorem D.1 (PDMP error bounds). If Assumptions D.2 and D.3 hold, then
Crep + Caey
(= 1)pat
Proof sketch. For h € Cp(R%), we need to solve
h—7(h) = Ar,au.

Similarly to before, the solution is
un(,6) 2 [ (k) ~ BBz 0]
0

which can be verified as in the diffusion case using Assumptions D.2(2) and D.3.
Furthermore, for z,2’ € R% and 6,6’ € B, by Assumption D.2(2),

WM%@—quﬂHSHWL/ Crllz — 2/||a(t + B) dt
0
.

= —— g lr =22

(a —1)po—

dw(m, ) <
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and
Callh|lL
(= 1)B—1"
We bound dyy(m,7) as in Theorem 3.4, but now using the fact that for u = up,
h € Op(R%), we have
AFVAuh — AF,Auh = (F — F) -Vaup + (A — A) -Voup,
<|IF = Fllaol|Vaunllz + | A = Al[1][Voun|oo
Crep + Cpen
T (a=1pet

o (2.0) = un(a, ) < [l [ Calt+ )~ de =

]

D.1. Hamiltonian Monte Carlo. We can write an idealized form of Hamiltonian
Monte Carlo (HMC) as a PDMP (X, P,);>0 by having the momentum vector P, €
R? refresh at a constant rate X\. Let R; be a compound Poisson process with rate
A > 0 and jump size distribution N(0, M), where M € R?*9 is a positive-definite
mass matrix. That is, if 'y is a homogenous Poisson (counting) process with rate
A and J; ~ N(0, M), then

Iy
Ry~
i=1
We can then write the HMC dynamics as
dX; = M~'Pdt
dPt = V10g 7T(XT) dt + th
The infinitesimal generator for (X, P;):>o is

AA,M,W¢($7p)
= M- V(e p) + Viogn(x) - Vyb(z,p) + A < [ otesmntan) - ¢<x,p>> ,

where vy is the density of N(0, M). Let g ¢ denote the law of (Xy 4, Prp,t)
with generator Ay as». The proof of the following theorem is similar to that for
Theorem D.1:

Theorem D.2 (HMC error bounds). Assume that:
(1) |[Viegm — Vieg7ll2 <e.
(2) there exist constants C > 0 and 0 < p < 1 such that

dw (B p,ts o) < Cllp = ll20"

(3) The stationary distributions of the PDMPs with, respectively, infinitesimal
generators Ax pr and Ax vz, exist (they are, respectively, m X par and
X funr).

(4) The target density satisfies [, x*m(dz) < oc.

(5) If a function ¢ € C(R% R) is m-integrable then it is 7-integrable.

Then
Ce

= log(1/7)’

dyy(m, )
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APPENDIX E. ANALYSIS OF COMPUTATIONAL—STATISTICAL TRADE-OFF

In this section we prove Theorem 5.1. In order to apply results on the approxi-
mation accuracy of ULA [3-5], we need the following property to hold for the exact
and approximate drift functions.

Assumption E.4 (Strong log-concavity). There exists a positive constant ks > 0
such that for all x,2’ € X,

(f(z) = f(2") - (x — ') < —kyllz —2’[[3.

We restate the convexity smoothness requirements given in Assumption 5.D with
some additional notations.

Assumption E.5.
(1) The functionlogmy € C3(R? R) is ky-strongly concave, Ly = ||V log mo | <
00, and ||H[0;logmolll« < Mo < oo forj=1,...,d.
(2) There exist constants k4, Ly, and My such that for i = 1,...,N, the
function ¢; € C3(R,R) is kg-strongly concave, ||¢;||, < Ly < oo, and
167" oo < My < 00.

Note that under Assumption E.4, there is a unique z* € R such that f(2*) = 0.
Our results in this section on based on the following bound on the Wasserstein
distance between the law of ULA Markov chain and :

Theorem E.1 ([5, Theorem 3|, [6, Corollary 3|). Assume that E.4 holds and the
Ly £ ||fllL < oo. Let ky = 2kgLy/(kg + Ly) and let iy 7 denote the law of X/, 1.
Take v; = y11~® with a € (0,1) and set
T
—2(1 — a)r; 1 (2/T) log | =oL— ).
=201 = ey /1) tog (5
If i <1/(ky + Ly), then

, 9 _3 1 HfT
dyy (Ha,r,my) < 16(1 — a)Lyr;"dT™" log (2(1—C¥)) '

For simplicity we fix a = 1/2, though the same results hold for all « € (0,1),
just with different constants. Take {7;}5°; as defined in Theorem E.1. Let a* =
argmax, £(z), let Sy = vazl llyill5, and let A = Zil vy, . The drift for this
model is

N

b(z) £ VL(x) = Viogmo(w) + Z (T - i) yi-

i=1
By Taylor’s theorem, the j-th component of b(z) can be rewritten as
bj(z) = 9;logmo(x*) + VO, logmo(z*) - (x — 2*) + R(0; log mp, )

N
+ G y)yi + ¢ (@ vy - (0 — 2) + RO i)y @)
=1
= VO, log my(z*) - (x — =*) + R(9; log mo, x)

a E.1
+ Z O (@™ - yi)yijyi - (x — %) + R(&5(- - yi)Yij» ), (B
i=1
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where
1
R(f,z) = ||z - w*ll%/o (I -t)Hf(z" +t(x —2"))dt.

Hence we can approximate the drift with a first-order Taylor expansion around x*:
3 N
b(x) £ (Hlogmo)(x*) (@ — %) + > & («* - yi)ysyy (x — a*).
i=1

Observe that Assumption E.4 is satisfied for f = b and f = b with ky = kn =
ko+ke| All«. Furthermore, Assumption 2.B is satisfied with ||b||, < Ly £ Lo+LyS2
and ||bl|z < Ly as well since
67 (21 - ya)yi — di(@2 - yi)yilla < |5 (x1 - yi) — di(z2 - ya)l[lyill2
< Lglwy - yi — x2 - yil|yill2
< Lyllysll3lla1 — w2ll2-
Thus, b and b satisfy the same regularity conditions.

We next show that they cannot deviate too much from each other. Using
Eq. (E.1) and regularity assumptions we have

d N 2
Ib(z) = b(x)]5 = <R(8j logmo, ) + > R((-- yi)yij,x)>

j=1 i=1

d N 2
<o —a2*5) (Mo + ZM¢”yi”§yij>

j=1 i=1
N 2
< dlle — "3 <M0 + My Y |yi||§’> :
i=1
It follows from [5, Theorem 1(ii)] that
(b = bll2) < d*/2Mnky',

where MN = Mo + M¢53
Putting these results together with Theorems 3.1 and E.1 and applying the
triangle inequality, we conclude that

2kn L
d2 (M* 71') < (kN+LN)3d 10g<kNJ:]FL11VvT)

2kn L T
&y (jis, ) < 2(ky + Ly)*d 18 (kNﬁL’fv T) L 2EME
WA=k Ly T KL

In order to compare the bounds we must make the computational budgets of the
two algorithms equal. Recall that we measure computational cost by the number of
d-dimensional inner products performed, so ULA with b costs TN and ULA with b
costs (T + N)d. Equating the two yields T = N(T/d — 1), so we must assume that
T > d. For the purposes of asymptotic analysis, assume also that S;/N is bounded
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from above and bounded away from zero. Under these assumptions, in the case of
kg > 0, we conclude that

iy (i, m) = O 4 and  d},(is,m) =0 di+di
v TN WA NeT N2 )

establishing the result of Theorem 5.1. For large N, the approximate ULA with b
is more accurate.
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