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Appendix A. Exponential contractivity

A natural generalization of the strong concavity case is to assume that log π is
strongly concave for x and x′ far apart and that log π has “bounded convexity”
when x and x′ are close together. It turns out that in such cases Assumption 2.A
still holds. More formally, the following assumption can be used even when the
drift is not a gradient. For f : X → Rd and r > 0, let

κ(r) , inf

{
−2

(f(x)− f(x′)) · (x− x′)
r2

: x, x′ ∈ X , ‖x− x′‖2 = r

}
.

Define the constant R0 = inf{R ≥ 0 : κ(r) ≥ 0 ∀r ≥ R}.

Assumption A.1 (Strongly log-concave tails). For the function f ∈ C1(X ,Rd),
there exist constants R, ` ∈ [0,∞) and k ∈ (0,∞) such that

κ(r) ≥ −` for all r ≤ R and κ(r) ≥ k for all r > R.

Furthermore, κ(r) is continuous and
∫ 1

0
rκ(r)−dr <∞.

Theorem A.1 (Eberle [7], Wang [12]). If Assumption A.1 holds for f = b then
Assumption 2.A holds for

C = exp

(
1

4

∫ R0

0

rκ(r)ds

)
1

log(1/ρ)
≤

{
3e
2 max(R2, 8k−1) if `R2

0 ≤ 8

8
√

2π R−1`−1/2(`−1 + k−1)e`R
2/8 + 32R−2k−2 otherwise.

For detailed calculations for the case of a mixture of Gaussians model, see Gorham
et al. [9].

Appendix B. Proofs of the main results in Section 3

We state all our results in the more general case of a diffusion on a convex space
X ⊆ Rd. We begin with some additional definitions. Any set G ⊆ C(X ) defines an
integral probability metric (IPM)

dG(µ, ν) = sup
φ∈G
|µ(φ)− ν(φ)|,

where µ and ν are measures on X . The Wasserstein metric dW corresponds to
W , {φ ∈ C(X ) | ‖φ‖L ≤ 1}, The set H , {φ ∈ C1(X ) | ‖h‖L ≤ 1} will be used to
define an IPM dH. For a set Z ⊆ Rn, we use ∂Z to denote the boundary of Z.
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2 J. H. HUGGINS AND J. ZOU

Suppose ‖b− b̃‖2 ≤ ε. We first state several standard properties of the Wasser-
stein metric and invariant measures of diffusions. The proofs are included here for
completeness.

Lemma B.1. For any µ, ν ∈ P(X ), dH(µ, ν) = dW(µ, ν).

Proof sketch. The result follows since any Lipschitz function is continuous and a.e.-
differentiable, and continuously differentiable functions are dense in the class of
continuous and a.e.-differentiable functions. �

We use the notation (Xt)t≥0 ∼ Diff(b,Σ) if Xt is a diffusion defined by

dXt = b(Xt) dt+ ΣdWt − ntL(dt).

A diffusion Xt is said to be strong Feller if its semigroup operator (πtφ)(x) ,
E[φ(Xx,t)], φ ∈ C(X ), satisfies the property that for all bounded φ, πtφ is bounded
and continuous.

Proposition B.2. Assume Assumption 2.B(1) holds and let (Xt)t≥0 ∼ Diff(b, I).
Then for each x ∈ X , Xx,t has the invariant density π and is strong Feller.

Proof. The existence of the diffusions follows from Tanaka [11, Theorem 4.1], the
strong Feller property follows from Ethier and Kurtz [8, Ch. 8, Theorems 1.5 & 1.6],
and the fact that π is the unique stationary measure follows since A∗bπ = 0. �

By the same proof as Proposition B.2, we have

Proposition B.3 (Diffusion properties). For f ∈ C0(X ,Rd) with ‖f‖L < ∞, the
diffusion (Xt)t≥0 ∼ Diff(f, I) exists and has an invariant distribution πf .

Proposition B.4 (Expectation of the generator). For f ∈ C0(X ,Rd), let the
diffusion (Xt)t≥0 ∼ Diff(f, I) have invariant density πf and assume that linear
functions are πf -integrable. Then for all φ ∈ C2(X ) such that ‖φ‖L <∞ and Afφ
is πf -integrable, πf (Afφ) = 0.

Proof. Let Pt be the semigroup operator associated with (Xt)t≥0:

(Ptφ)(x) = E[φ(Xx,t)].

Since by hypothesis linear functions are πf -integrable and φ is Lipschitz, φ is πf -
integrable. Thus, Ptφ is πf -integrable and by the definition of an invariant measure
(see [1, Definition 1.2.1] and subsequent discussion),

πf (Ptφ) = πfφ. (B.1)

Using the fact that ∂tPt = PtAf [1, Eq. (1.4.1)], differentiating both size of
Eq. (B.1), applying dominated convergence, and using the hypothesis that Afφ
is πf -integrable yields

0 = ∂tπf (Ptφ) = πf (∂tPtφ) = πf (PtAfφ) = πf (Afφ).

�

We next show that the solution to Eq. (4.1) is Lipschitz continuous with a Lips-
chitz constant depending on the mixing properties of the diffusion associated with
the generator.
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Proposition B.5 (Differential equation solution properties). If Properties 2.A and
Assumption 2.B(1) hold, then for any h ∈ C1(X ) with ‖h‖L <∞, the function

uh(x) ,
∫ ∞

0

(π(h)− E[h(Xx,t)]) dt

exists and satisfies

‖uh‖L ≤
C

log(1/ρ)
‖h‖L (B.2)

(Abuh)(x) = h(x)− π(h). (B.3)

Proof. We follow the approach of Mackey and Gorham [10]. By Assumption 2.A
and the definition of Wasserstein distance, we have that there is a coupling between
Xx,t and Xx′,t such that

E[‖Xx,t −Xx′,t‖2] ≤ C‖x− x′‖2ρt.

The function uh is well-defined since for any x ∈ X ,∫ ∞
0

|π(h)− E[h(Xx,t)]|dt =

∫ ∞
0

∣∣∣∣∫
X

(E[h(Xx′,t)]− E[h(Xx,t)])π(x′) dx′
∣∣∣∣ dt

≤ sup
z∈X
‖∇h(z)‖2

∫ ∞
0

∫
X
E[‖Xx,t −Xx′,t‖2]π(x′) dx′ dt

= sup
z∈X
‖∇h(z)‖2

∫ ∞
0

∫
X
‖x− x′‖2Cρtπ(x′) dx′ dt

≤ ‖h‖L EX∼π[‖x−X‖2]

∫ ∞
0

Cρt dt

<∞,

where the first line uses the property that π(h) =
∫
X E[h(Xx′,t)]π(x′)dx′ and the

final inequality follows from Assumption 2.B(2) and the assumption that 0 < ρ < 1.
Furthermore, uh has bounded Lipschitz constant since for any x, x′ ∈ X ,

|uh(x)− uh(x′)| =
∣∣∣∣∫ ∞

0

E[h(Xx,t)− h(Xx′,t)] dt

∣∣∣∣
≤ sup
z∈X
‖∇h(z)‖2

∫ ∞
0

E[‖Xx,t −Xx′,t‖2] dt

≤ ‖h‖L‖x− x′‖2
∫ ∞

0

Cρt dt

=
C‖h‖L

log(1/ρ)
‖x− x′‖2.

Finally, we show that (Abuh)(x) = h(x) − π(h). Recall that for h ∈ C(X ), the
semigroup operator is given by (πth)(x) = E[h(Xx,t)]. Since Xx,t is strong Feller
for all x ∈ X by Proposition B.2, for all t ≥ 0, its generator satisfies [8, Ch. 1,
Proposition 1.5]

h− πth = Ab
∫ t

0

(π(h)− πsh) ds. (B.4)
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Hence,

|h(x)− π(h)− [h(x)− (πth)(x)]|

=

∣∣∣∣∫
X
E[h(Xx,t)]− E[h(Xx′,t)]π(x′) dx′

∣∣∣∣
≤ sup
z∈X
‖∇h(z)‖2

∫
X
E[‖Xx′,t −Xx,t‖2]π(x′) dx′

≤ ‖h‖L EX∼π[‖x−X‖2]Cρt.

Thus, conclude that the left-hand side of Eq. (B.4) converges pointwise to h(x) −
π(h) as t → ∞. Since Ab is closed [8, Ch. 1, Proposition 1.6], the right-hand side
of Eq. (B.4) limits to Abuh. Hence, uh solves Eq. (B.3). �

We can now prove the main result bounding the Wasserstein distance between
the invariant distributions of the original and perturbed diffusions.
Proof of Theorem 3.1. By Proposition B.3 and Assumption 2.B, the hypotheses of
Proposition B.4 hold for f = b̃. Let F , {uh |h ∈ H}. Then

dW(π, π̃) = sup
h∈H
|π(h)− π̃(h)| by definition and Assumption 2.B

= sup
h∈H
|π(Abuh)− π̃(Abuh)| by Eq. (B.3)

= sup
h∈H
|π̃(Abuh)| by Proposition B.4

= sup
u∈F
|π̃(Abu)| by definition of F

= sup
u∈F
|π̃(Abu−Ab̃u)| by Proposition B.4

= sup
u∈F
|π̃(∇u · b−∇u · b̃)| by definition of Ab

≤ sup
u∈F
|π̃(‖∇u‖2‖b− b̃)‖2)|

≤ Cε

log(1/ρ)
by Eq. (B.2) and ‖b− b̃‖2 ≤ ε.

�

A similar analysis can be used to bound the Wasserstein distance between π and
π̃ when the approximate drift b̃ is itself stochastic.

Proof of Theorem 3.4. We will need to consider the joint diffusions Zt = (Xt, Yt)

and Z̃t = (X̃t, Ỹt) on Z , X × Rd, where

dZt = (b(Xt), baux(Yt)) dt+ (
√

2 dWX
t ,Σ dWY

t )− ntL(dt)

dZ̃t = (b̃(X̃t, Ỹt), baux(Ỹt)) dt+ (
√

2 dW̃X
t ,Σ dW̃Y

t )− ntL̃(dt).

Notice that Xt and Yt are independent and the invariant distribution of Xt is π.
Let πZ and π̃Z be the invariant distributions of Zt and Z̃t, respectively. Also note
that the generators for Zt and Z̃t are, respectively,

AZφ(z) = ∇φ · (b(x), baux(y)) + ∆φx(z) + Σ>Σ : Hφy(z)

AZ̃φ(z) = ∇φ · (b̃(x, y), baux(y)) + ∆φx(z) + Σ>Σ : Hφy(z).

where H is the Hessian operator.
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By Proposition B.3 and 2.B, the hypotheses of Proposition B.4 hold for f(x, y) =

(b̃(x, y), baux(y)). Let HZ , {h ∈ C1(Z) | ‖h‖L ≤ 1} and FZ , {uh |h ∈ HZ}.
Also, for z = (x, y) ∈ Z, let idY (z) = y. Then, by reasoning analogous to that in
the proof of Theorem 3.1,

dW(π, π̃) ≤ dW(πZ , π̃Z)

= sup
h∈HZ

|πZ(h)− π̃Z(h)|

= sup
u∈FZ

|π̃Z(AZu−AZ̃u)|

= sup
u∈FZ

|π̃Z(∇u · b−∇u · b̃)|

= sup
u∈FZ

|E[∇u(X̃, Ỹ ) · E[b(X̃)− b̃(X̃, Ỹ ) | X̃]]|

≤ sup
u∈FZ

|E[‖∇u(X̃, Ỹ )‖2‖E[b(X̃)− b̃(X̃, Ỹ ) | X̃]‖2]|

≤ C π̃(ε)

log(1/ρ)
.

�

Proof of Theorem 3.5. The proof is very similar to that of Theorem 3.1, the only
difference is in the Lipshitz coefficient of the differential equation solution uh(x) in
B.5. Using polynomial contractivity, we have

|uh(x)− uh(x′)| =
∣∣∣∣∫ ∞

0

E[h(Xx,t)− h(Xx′,t)] dt

∣∣∣∣
≤ sup
z∈X
‖∇h(z)‖2

∫ ∞
0

E[‖Xx,t −Xx′,t‖2] dt

≤ ‖h‖L‖x− x′‖2
∫ ∞

0

C(t+ β)−α dt

=
C‖h‖L

(α− 1)βα−1
‖x− x′‖2.

Plugging in this Lipschitz constant, we have

dW(π, π̃) ≤ Cε

(α− 1)βα−1
.

�

Appendix C. Checking the Integrability Condition

The following result gives checkable conditions under which Assumption 2.B(3)

holds. Let BR , {x ∈ Rd | ‖x‖2 ≤ R}.

Proposition C.1 (Ensuring integrability). Assumption 2.B(3) is satisfied if b =

∇ log π, b̃ = ∇ log π̃, ‖b− b̃‖2 ≤ ε, and either

(1) there exist constants R > 0, B > 0, δ > 0 such that for all x ∈ X \ BR,

‖b(x)− b̃(x)‖2 ≤ B/‖x‖1+δ
2 ; or

(2) there exists a constant R > 0 such that for all x ∈ X\BR x·(b(x)−b̃(x)) ≥ 0.
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Proof. For case (1), first we note that since
∫
X (π(x)−π̃(x)) dx = 0, by the (general-

ized) intermediate value theorem, there exists x∗ ∈ X such that π(x∗)− π̃(x∗) = 0,
and hence log π(x∗)− log π̃(x∗) = 0. Let p[x∗, x] be any path from x∗ to x. By the
fundamental theorem of calculus for line integrals,

| log π(x)− log π̃(x)| =
∣∣∣ log π̃(x∗)− log π(x∗) +

∫
γ[x∗,x]

(b(r)− b̃(r)) · dr
∣∣∣

=
∣∣∣ ∫
γ[x∗,x]

(b(r)− b̃(r)) · r′(t) dt
∣∣∣

≤
∫
γ[x∗,x]

‖b(r)− b̃(r)‖2‖r′(t)‖2 dt.

First consider x ∈ X ∩BR. Choosing p[x∗, x] to be the linear path γ[x∗, x], we have

| log π(x)− log π̃(x)| ≤ ε
∫
γ[x∗,x]

‖r′(t)‖2 dt

= ε‖x− x∗‖2
≤ (R+ `∗)ε, (C.1)

where `∗ , ‖x∗‖2.

Next consider x ∈ X \BR. Let ` , ‖x‖2 and x′ = R
` x. Choose p[x∗, x] to consist

of the concatenation of the linear paths γ[x∗, 0], γ[0, x′], and γ[x′, 0], so∫
p[x∗,x]

‖b(r)− b̃(r)‖2‖r′(t)‖2 dt

=

∫
γ[x∗,0]

‖b(r)− b̃(r)‖2‖r′(t)‖2 dt+

∫
γ[0,x′]

‖b(r)− b̃(r)‖2‖r′(t)‖2 dt

+

∫
γ[x′,x]

‖b(r)− b̃(r)‖2‖r′(t)‖2 dt.

Now, we bound each term:∫
γ[x∗,0]

‖b(r)− b̃(r)‖2‖r′(t)‖2 dt ≤ `∗ε∫
γ[0,x′]

‖b(r)− b̃(r)‖2‖r′(t)‖2 dt ≤ Rε∫
γ[x′,x]

‖b(r)− b̃(r)‖2‖r′(t)‖2 dt ≤ (`−R)B

∫ 1

0

1

(R+ (`−R)t)1+δ

= (`−R)B

[
1

(`−R)Rδ
− 1

(`−R)`δ

]
≤ B

Rδ
.

It follows that there exists a constant B̃ > 0 such that for all x ∈ X , | log π(x) −
log π̃(x)| < B̃. Hence B̃−1π < π̃ < B̃π, so φ is π-integrable if and only if it is
π̃-integrable.

Case (2) requires a slightly more delicate argument. Let x∗ and `∗ be the same
as in case (1). For x ∈ X ∩ BR, it follows from Eq. (C.1) that

log π(x)− log π̃(x) ≥ −(R+ `∗)ε.
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For x ∈ X \ BR, arguing as above yields

log π(x)− log π̃(x) =

∫
p[x∗,x]

(b(r)− b̃(r)) · dr

≥ −
∫
p[x∗,r′]

‖b(r)− b̃(r)‖2‖r′(t)‖2 dt

+

∫
γ[x′,x]

(b(r)− b̃(r)) · r′(t) dt

≥ −(R+ `∗)ε+

∫
γ[x′,x]

(b(q(t)x)− b̃(q(t)x)) · axdt

≥ −(R+ `∗)ε,

where we have used the fact that r(t) = q(t)x for some linear function q(t) with
slope a > 0. Combining the previous two displays, conclude that for all x ∈ X ,
π̃(x) ≤ e(R+`∗)επ(x), hence Assumption 2.B(3) holds. �

We suspect Proposition C.1 continues to hold even when b 6= ∇ log π and b̃ 6=
∇ log π̃. Note that condition (1) always holds if X is compact, but also holds for
unbounded X as long as the error in the gradients decays sufficiently quickly as
‖x‖2 grows large. Given an approximate distribution for which ‖b − b̃‖2 ≤ ε/2, it
is easy to construct a new distribution that satisfies condition (2):

Proposition C.2. Assume that π̃ satisfies ‖b− b̃‖2 ≤ ε/2 and let

fR(x) , − εx

2‖x‖2
{(2‖x‖2/R− 1)1[R/2 ≤ ‖x‖2 < R] + 1[‖x‖2 ≥ R]} .

Then the distribution

π̃R(x) ∝ π̃(x)efR(x)

satisfies condition (2) of Proposition C.1.

Proof. Let b̃R , ∇ log π̃R. First we verify that ‖b − b̃R‖2 ≤ ε. For x ∈ X ∩ BR/2,

π̃R(x) = π̃(x), so ‖b(x) − b̃R(x)‖2 ≤ ε/2. Otherwise x ∈ X \ BR/2, in which case

since ‖fR(x)‖ ≤ ε/2 it follows that ‖b(x) − b̃R(x)‖2 ≤ ε. To verify condition (2),
calculate that for x ∈ X \ BR,

x · (b(x)− b̃R(x)) = x ·
(
b(x)− b̃(x)− εx

2‖x‖2

)
≥ ε‖x‖2

2
− x · εx

2‖x‖2
= 0.

�

By taking R very large in Proposition C.2, we can ensure the integrability con-
dition holds without having any practical effect on the approximating drift since
b̃R(x) = b̃(x) for all x ∈ BR/2. Thus, it is safe to view Assumption 2.B(3) as a mild
regularity condition.

Appendix D. Approximation Results for Piecewise Deterministic
Markov Processes

In the section we obtain results for a broader class of PDMPs which includes
the ZZP a special case [2]. The class of PDMPs we consider are defined on the

space E , Rd × B, where B is a finite set. Let A ∈ C0(E,RB+) and let F ∈
C0(E,Rd) be such that for each θ ∈ B, F (·, θ) is a smooth vector field for which
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the differential equation ∂txt = F (xt, θ) with initial condition x0 = x has a unique
global solution. For φ ∈ C(E), the standard differential operator ∇xφ(x, θ) ∈
Rd is given by (∇xφ(x, θ))i ,

∂φ
∂xi

(x, θ) for i ∈ [d] and the discrete differential

operator ∇θφ(x, θ) ∈ RB is given by (∇θφ(x, θ))θ′ , φ(x, θ′)− φ(x, θ). The PDMP
(Xt,Θt)t≥0 determined by the pair (F,A) has infinitesimal generator

AF,Aφ = F · ∇xφ+A · ∇θφ.

We consider the cases when either or both of A and F are approximated (in the
case of ZZP, only A is approximated while F is exact). The details of the polynomial
contractivity condition depend on which parts of (F,A) are approximated. We
use the same notation for the true and approximating PDMPs with, respectively,
infinitesimal generators AF,A and AF̃ ,Ã, as we did for the ZZPs in Section 6.

Assumption D.2 (PDMP error and polynomial contractivity).

(1) There exist εF , εA ≥ 0 such that ‖F − F̃‖2 ≤ εF and ‖A− Ã‖1 ≤ εA.
(2) For each (x, θ) ∈ E, let µx,θ,t denote the law of the PDMP (Xx,θ,t,Θx,θ,t)

with generator AF,A. There exist constants α > 1 and β > 0 and a function
B ∈ C(E × E,R+) such that for all x, x′ ∈ Rd and θ, θ′ ∈ B,

dW(µx,θ,t, µx′,θ′,t) ≤ B(x, θ, x′, θ′)(t+ β)−α.

Furthermore, if εF > 0, then there exists CF > 0 such that B(x, θ, x′, θ) ≤
CF ‖x−x′‖2 and if εA > 0, then there exists CA > 0 such that B(x, θ, x, θ′) ≤
CA. If εF = 0 take CF = 0 and if εA = 0 take CA = 0.

We also require some regularity conditions similar to those for diffusions.

Assumption D.3 (PDMP regularity conditions). Let π and π̃ denote the
stationary distributions of the PDMPs with, respectively, infinitesimal generators
AF,A and AF̃ ,Ã.

(1) The stationary distributions π and π̃ exist.
(2) The target density satisfies

∫
E
x2π(dx, dθ) <∞.

(3) If a function φ ∈ C(E,R) is π-integrable then it is π̃-integrable.

Theorem D.1 (PDMP error bounds). If Assumptions D.2 and D.3 hold, then

dW(π, π̃) ≤ CF εF + CAεA
(α− 1)βα−1

.

Proof sketch. For h ∈ CL(Rd), we need to solve

h− π(h) = AF,Au.
Similarly to before, the solution is

uh(x, θ) ,
∫ ∞

0

(π(h)− E[h(Xx,θ,t)]) dt,

which can be verified as in the diffusion case using Assumptions D.2(2) and D.3.
Furthermore, for x, x′ ∈ Rd and θ, θ′ ∈ B, by Assumption D.2(2),

|uh(x, θ)− uh(x′, θ)| ≤ ‖h‖L
∫ ∞

0

CF ‖x− x′‖2(t+ β)−α dt

=
C‖h‖L

(α− 1)βα−1
‖x− x′‖2
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and

|uh(x, θ)− uh(x, θ′)| ≤ ‖h‖L
∫ ∞

0

CA(t+ β)−α dt =
CA‖h‖L

(α− 1)βα−1
.

We bound dW(π, π̃) as in Theorem 3.4, but now using the fact that for u = uh,
h ∈ CL(Rd), we have

AF,Auh −AF̃ ,Ãuh = (F − F̃ ) · ∇xuh + (A− Ã) · ∇θuh
≤ ‖F − F̃‖2‖∇xuh‖2 + ‖A− Ã‖1‖∇θuh‖∞

≤ CF εF + CAεA
(α− 1)βα−1

.

�

D.1. Hamiltonian Monte Carlo. We can write an idealized form of Hamiltonian
Monte Carlo (HMC) as a PDMP (Xt, Pt)t≥0 by having the momentum vector Pt ∈
Rd refresh at a constant rate λ. Let Rt be a compound Poisson process with rate
λ > 0 and jump size distribution N(0,M), where M ∈ Rd×d is a positive-definite
mass matrix. That is, if Γt is a homogenous Poisson (counting) process with rate
λ and Ji ∼ N(0,M), then

Rt ∼
Γt∑
i=1

Ji.

We can then write the HMC dynamics as

dXt = M−1Pt dt

dPt = ∇ log π(XT ) dt+ dRt.

The infinitesimal generator for (Xt, Pt)t≥0 is

Aλ,M,πφ(x, p)

= M−1p · ∇xφ(x, p) +∇ log π(x) · ∇pφ(x, p) + λ

(∫
φ(x, p′)νM (dp′)− φ(x, p)

)
,

where νM is the density of N(0,M). Let µx,p,t denote the law of (Xx,p,t, Px,p,t)
with generator Aλ,M,π. The proof of the following theorem is similar to that for
Theorem D.1:

Theorem D.2 (HMC error bounds). Assume that:

(1) ‖∇ log π −∇ log π̃‖2 ≤ ε.
(2) there exist constants C > 0 and 0 < ρ < 1 such that

dW(µx,p,t, µx,p′,t) ≤ C‖p− p′‖2ρt.

(3) The stationary distributions of the PDMPs with, respectively, infinitesimal
generators Aλ,M,π and Aλ,M,π̃, exist (they are, respectively, π × µM and
π̃ × µM ).

(4) The target density satisfies
∫
E
x2π(dx) <∞.

(5) If a function φ ∈ C(Rd,R) is π-integrable then it is π̃-integrable.

Then

dW(π, π̃) ≤ Cε

log(1/ρ)
.
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Appendix E. Analysis of computational–statistical trade-off

In this section we prove Theorem 5.1. In order to apply results on the approxi-
mation accuracy of ULA [3–5], we need the following property to hold for the exact
and approximate drift functions.

Assumption E.4 (Strong log-concavity). There exists a positive constant kf > 0
such that for all x, x′ ∈ X ,

(f(x)− f(x′)) · (x− x′) ≤ −kf‖x− x′‖22.

We restate the convexity smoothness requirements given in Assumption 5.D with
some additional notations.

Assumption E.5.

(1) The function log π0 ∈ C3(Rd,R) is k0-strongly concave, L0 , ‖∇ log π0‖L <
∞, and ‖H[∂j log π0]‖∗ ≤M0 <∞ for j = 1, . . . , d.

(2) There exist constants kφ, Lφ, and Mφ such that for i = 1, . . . , N , the
function φi ∈ C3(R,R) is kφ-strongly concave, ‖φ′i‖L ≤ Lφ < ∞, and
‖φ′′′i ‖∞ ≤Mφ <∞.

Note that under Assumption E.4, there is a unique x? ∈ Rd such that f(x?) = 0.
Our results in this section on based on the following bound on the Wasserstein
distance between the law of ULA Markov chain and πf :

Theorem E.1 ([5, Theorem 3], [6, Corollary 3]). Assume that E.4 holds and the

Lf , ‖f‖L <∞. Let κf , 2kfLf/(kf + Lf ) and let µx,T denote the law of X ′x,T .

Take γi = γ1i
−α with α ∈ (0, 1) and set

γ1 = 2(1− α)κ−1
f (2/T )1−α log

(
κfT

2(1− α)

)
.

If γ1 < 1/(kf + Lf ), then

d2
W(µx,T , πf ) ≤ 16(1− α)L2

fκ
−3
f dT−1 log

(
κfT

2(1− α)

)
.

For simplicity we fix α = 1/2, though the same results hold for all α ∈ (0, 1),
just with different constants. Take {γi}∞i=1 as defined in Theorem E.1. Let x? =

arg maxx L(x), let Sk ,
∑N
i=1 ‖yi‖k2 , and let A ,

∑N
i=1 yiy

>
i . The drift for this

model is

b(x) , ∇L(x) = ∇ log π0(x) +

N∑
i=1

φ′i(x · yi)yi.

By Taylor’s theorem, the j-th component of b(x) can be rewritten as

bj(x) = ∂j log π0(x?) +∇∂j log π0(x?) · (x− x?) +R(∂j log π0, x)

+

N∑
i=1

φ′i(x
? · yi)yij + φ′′i (x? · yi)yijyi · (x− x?) +R(φ′i(· · yi)yij , x)

= ∇∂j log π0(x?) · (x− x?) +R(∂j log π0, x)

+

N∑
i=1

φ′′i (x? · yi)yijyi · (x− x?) +R(φ′i(· · yi)yij , x),
(E.1)
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where

R(f, x) , ‖x− x?‖22
∫ 1

0

(1− t)Hf(x? + t(x− x?)) dt.

Hence we can approximate the drift with a first-order Taylor expansion around x?:

b̃(x) , (H log π0)(x?)(x− x?) +

N∑
i=1

φ′′i (x? · yi)yiy>i (x− x?).

Observe that Assumption E.4 is satisfied for f = b and f = b̃ with kf = kN ,
k0+kφ‖A‖∗. Furthermore, Assumption 2.B is satisfied with ‖b̃‖L ≤ LN , L0+LφS2

and ‖b‖L ≤ LN as well since

‖φ′i(x1 · yi)yi − φ′i(x2 · yi)yi‖2 ≤ |φ′i(x1 · yi)− φ′i(x2 · yi)|‖yi‖2
≤ Lφ|x1 · yi − x2 · yi|‖yi‖2
≤ Lφ‖yi‖22‖x1 − x2‖2.

Thus, b and b̃ satisfy the same regularity conditions.
We next show that they cannot deviate too much from each other. Using

Eq. (E.1) and regularity assumptions we have

‖b(x)− b̃(x)‖22 =

d∑
j=1

(
R(∂j log π0, x) +

N∑
i=1

R(φ′i(· · yi)yij , x)

)2

≤ ‖x− x?‖42
d∑
j=1

(
M0 +

N∑
i=1

Mφ‖yi‖22yij

)2

≤ d‖x− x?‖42

(
M0 +Mφ

N∑
i=1

‖yi‖32

)2

.

It follows from [5, Theorem 1(ii)] that

π̃(‖b− b̃‖2) ≤ d3/2MNk
−1
N ,

where MN ,M0 +MφS3.
Putting these results together with Theorems 3.1 and E.1 and applying the

triangle inequality, we conclude that

d2
W(µ?T , π) ≤ (kN + LN )3d

k3
NLN

log
(

2kNLN

kN+LN
T
)

T

d2
W(µ̃?

T̃
, π) ≤ 2(kN + LN )3d

k3
NLN

log
(

2kNLN

kN+LN
T̃
)

T̃
+

2d3M2
N

k4
N

.

In order to compare the bounds we must make the computational budgets of the
two algorithms equal. Recall that we measure computational cost by the number of
d-dimensional inner products performed, so ULA with b costs TN and ULA with b̃
costs (T̃ +N)d. Equating the two yields T̃ = N(T/d− 1), so we must assume that
T > d. For the purposes of asymptotic analysis, assume also that Si/N is bounded
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from above and bounded away from zero. Under these assumptions, in the case of
kφ > 0, we conclude that

d2
W(µ?T , π) = Õ

(
d

TN

)
and d2

W(µ̃?
T̃
, π) = Õ

(
d2

N2T
+

d3

N2

)
,

establishing the result of Theorem 5.1. For large N , the approximate ULA with b̃
is more accurate.
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