Xiangru Huang , Ian E.H. Yen

. Ruohan Zhang '

7 Proof Roadmap

The key in proving Theorem 1 and 2 is to establish
bounds on the primal-dual progress Af + Al — Al=1 —
Af[l. As intermediate steps, the two lemmas below
bound the dual-progress A% — A" and the primal-
progress Al —Al~! with respect to the primal variables
{z!'} and the optimal primal variables {z'} at each
iteration.

Lemma 1 (Dual Progress).
bounded as

The dual progress is upper

Al — AL < (M2 (MzY. (14)

Lemma 2 (Primal Progress).
upper bounded as

The primal progress is

AL - AL < £ ) -
+ | M2? -

L(z', p')
n(Mz' Mz")

By combining results of Lemma 1 and 2, we obtain an
intermediate upper bound on the primal-dual progress:

Aj— AT AL - A
<nl|Mz" = ME? -l ME? (15)
+ Lz pt) = L(2 )

The following four lemmas provide upper bounds on
the three sub-terms in (15), ie., [[Mz'! — Mzt
—n[[Mz?, and L(z'*1, ut) — L(2%, '), where the
bounds on the last term are algorithm-dependent and
therefore are tackled by Lemma 5 and Lemma 19 for
Algorithm 1 and Algorithm 2 respectively.

Lemma 3.

2
I3 = M2 < 200 t) - £ ). (16)
Lemma 4 (Hong and Luo 2012).
7 > 0 such that

There is a constant

Ag(p) < 7|[Mz ()| (17)
for any p in the dual domain and any primal mini-
mizer z(w) satisfying (13).

Lemma 5. The descent amount of Augmented La-
grangian function produced by one pass of FCEW (in
Algorithm 1) has

L(z ) = L(2", u")
M t oty prst ot
< 2|]_.|Q(ﬁ(z,/~t) L(z' pn'))

where Q = p|| M|

Lemma 6. The descent amount of Augmented La-
grangian function produced by iterations of Algorithm
2 has

L(z" pt) — L(z', p)

—m _ (19)
< Q - (‘C(ztvll't) - l:(ztal-‘l‘t))
where Qmae = Maxrer Q5 and
1
my = (20)

max{160; AL0, 26, (1 + 4L2)/p, 6}

is the generalized strong convexity constant for func-
tion L(.,p). Here ALY is a bound on L(2° pt) —
L(z°, pt), Ly is local Lipschitz-continuous constant of
the function g(x) = ||z||?, and 6, is the Hoffman con-
stant depending on the geometry of optimal solution
set.

Now we are ready to prove Theorem 1 and 2.

Proof of Theorem 1. Let x = man/(|F|Q). By

lemma 5 and (15), we have
Af— AT+ A A
—k -
S].-'- (‘C(ztwu't) _[’(ztau’t)) (21)

2
+ j(ﬂ(z ph) = L(z4, ut)) — | Mz

Then by choosing n < we have guaranteed de-

2(1-‘,—5)’
scent on A —|—Ad for each GDMM iteration. By choos-
ing n < 4(1+H) we have
(D +A)) — (AT + ALY
—K
< L t .t - L >t ) M—t 2

—K t 77At

TR
§min<<1+&> )(A +A)

where the second inequality is from Lemma 4. We thus
obtain a recursion of the form

1
AL+ Al < — AlZT 4 ALY
p 1+m1n(2(1+n)7;) ( . P )
which then leads to the conclusion. O

The proof of Theorem 2 is the same as above except
that the definition of k is changed to m1/Qmaer and
Lemma 5 is replaced by Lemma 19.



Xiangru Huang , Ian E.H. Yen

. Ruohan Zhang '

8 Proof of Lemmas

Proof of Lemma 1.
AG— A =L ) - L2 i)
<L) - L= )
= (u'7! - pt, M2
= —n(Mz", Mz")
where the first inequality follows from the optimality of

z!=! for the function £(z, u'~!) defined by u!~!, and
the last equality follows from the dual update (9). O

Proof of Lemma 2.

At _ Atfl
=L(z" p") — Lz ") = (d(p) — d(p'))
<Lz ph) — L(2 pt) + L(Z w) — L(25 p' )
+ (d(p' ") = d(ph)
<L(z pt) — L(2' ph) + nl|M 2" — n(Mz', M2")

where the last inequality uses Lemma 1 on d(pu!~!) —
d(pt) = AL, — AL O

Proof of Lemma 3. Introduce

£z, 1) = h(z) + G(M2),
where 0
G(Mz) = £Mz)?,
and
h(Z) = <—97Z> + </1,,MZ> + IzEM-
Here
I [0 zeM,
2EM =) oo otherwise.

As feasibility is strictly enforced during primal up-
dates, we have

Lz p') =Lz u'), L(z'p') =L u'). (22)

As 2" is a critical point of £(z, u*), and by definition,
L(z,p') < L(z,p'), we obtain,

0€d.L(z, ut) = Oh(zh) + MTVG(MzY).
Note that h(-) is convex, it follows that
h(z") — h(z") > (v, 2" — 2"), Vv € Oh(z"). (23)

Moreover,
G(M(=") - G(M (") (24)
= L(lnz" |2 - gz )

— g(zt _ Zt)TMTM(Zt -I—Zt)
= p(zt — 2T MT Mz + g(zt

)azt _2t> +

_ Et)TMTM(Zt _ Zt)
= (MTVG(Mz! — Mz

(25)

Llarz"

Combing (22), (23), and (25), we arrive at

L(z',p') = L(2", ") > *IIM( =M.

O

Proof of Lemma 4. This is a lemma adapted from
[22]. Since our primal objective (2) is a linear function
with each block of primal variables x; (or y;) con-
strained in a simplex domain, it satisfies the assump-
tions A(a)—A(e) and A(g) in [22]. Then Lemma 3.1
of [22] guarantees that, as long as ||Vd(u)]|| is always
bounded, there is a constant 7 > 0 s.t.

Aq(p) < 7[[Vd()|* = [IMZ(w)]*

for all g in the dual domain. Note our problem satisfies
the condition of bounded gradient magnitude since

V()| = [M2z(p)]| < [MZ(w)l:

< Ml flz(w)ll < (max Yy (7] + VD)
where the last inequality is because each block of vari-
ables in Z(u) lie in a simplex domain. O

Proof of Lemma 5. Recall that the Augmented La-
grangian £(z, ) is of the form

L(z, p) =

where M is the matrix that encodes all constraints of
the form

(=0 +M"p, 2) +G(Mz) ,YicV (26)

z
Mifzf_zi:[Mif —Iljl|:zf:|20
1
and function G(w) = §||wl|* is strongly convex with
parameter p. Let

H(z):=L(z,p). (27)

Since we are minimizing the function subject to a con-
vex, polyhedral domain M, by Theorem 10 of [23],
we have the generalized geometrical strong convexity
constant mq of the form

ma = m(PWidth(M))? (28)

where PWidth(M) > 0 is the pyramidal width of the
simplex domain M and m is the generalized strong
convexity constant of function (26) (defined by Lemma
9 of [23]). By definition of the geometric strong con-
vexity constant, we have

2
< Jrw. (29)

H(z)— H" <
mm

from (23) in [23], where gpw := (VH(2),vpw —va4).
vrw is the greedy Frank-Wolfe (FW) direction

vpw = arg min(VH(z),v) (30)
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and v 4 is the away direction

V4= arg %aMX<VH(z), v) (31)
where
ka{(z) _ { ka(Z), Zk 7& 0
—00, 0.w.

Then let m = |F| be the number of factors. For each
inner iteration s of the Fully-Corrective FW, by min-
imizing subproblem (5) w.r.t. an active set that con-
tains the FW direction and also the away direction (by
the definition (31)), we have, for any Vv € [0, 1],

H(z'"") — H(2") < vglw +m@Qy?.  (32)

t
Suppose the minimizer of (32) v* = — gfnvé has v* < 1,
we have

£2
H(2t1) — H (2t < _9rw 33
() - H(z) < ()
Otherwise, let v* = 1, we have
H(z'") — H(2")
t £2 £2
9rw 9rw 9rw

<dt < < — < —
S grw +mQ = 75 2mQ = 4mQ’

where the second inequality holds since —gg—w > 1.

Combining with the error bound (29), we have

- (s < U E) Z 1)

H(=") - 2mQ

(34)
O

Proof of Lemma 19.

For problem of the form (13), the optimal solution
is profiled by the polyhedral set S = {z | Mz =
t', ATz = 5%, 2z € M} for some t*, s*. Denoting
z :=IIs(z), we can bound the distance of any feasible
point z to its projection IIg(2) to set S by

12— 2130 = (3 11z — 24l2)?
feF (35)
<o (|Mz -2 + | ATz - 5" |?)

where 6, is a constant depending on the set S, using
the Hoffman’s inequality [37].

Then for each iteration ¢ of the Algorithm 2, consider

the descent amount produced by the update w.r.t. the

selected factor satisfying (11). We have
H(z'"") - H(z")

Qmax

< min

V. . H d
ztf*+df*eAf*< ot ro)+

=5 lld-|I?

= min
zt+deM

SOV, Hodg) + 22 (S |

fer feF
(36)

where the second equality is from the definition (11)
of f*.

Then we have

H(Y) - H(:)
< (S + (5 dfn)

feF

)+ % (5 gt )

feF

Qmaxﬂ (Z ||zf _ zf”)

feFr
2
o L
(37)
where z! = IIg(z') is the projection of 2! to the op-
timal solution set S. The second and last inequality
is due to convexity, and the third inequality is due to
a confinement of optimization domain. Then let L,
be the local Lipschitz-continuous constant of function
G(Mz) = §||Mz|? in the bounded domain of Mz.
We discuss two cases in the following.

Case 1: 4L2||M 2zt — t*||> < (AT 2! — 57)2.

In this case, we have

2" = 2°[13,, < Ou(IM=" — t]* + (AT2° —5")?)

1 *
SOz DTS )
<20, (AT 2t — 5*)?,
(38)
and
|AT 2! — 5% > 2L || M2 — t*|| > 2|G(M=z") — G(t")|
by the definition of Lipschitz constant L,. Note

AT 2! — s* is non-negative since otherwise, H(z') —
H* = G(Mz') — G(t*) + (ATz! — s*) < |G(Mz!) —
Gt — |[AT2t — s*| < —3|AT2! — s*| < 0, which
leads to contradiction. Therefore, we have

H(z") — H*
=G(Mz") - G@t*) + (AT 2! — 5¥)
> —|G(M2") - G(t7)] + (AT — 57 (39)

Y

1
S(ATZ =),
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Combining (37), (38) and (39), we have

H(z'Y) — H(2Y)

. 6 T _t 2@771(1369162
< (ATt gy SEmacID
S i A e T
_ _1/(16Qmax91) ; 1/(4p91(ATZt - 5*)) < 1
N —i(ATozs —s*) , o.w.

(Ath _ S*)Q

Furthermore, we have

1 1
— < —
16Qma191 - 16Qmam91 (HO — H*)

(H(z") - HY)

where H = H(2"), and

1

JAT -5 < —é(H(zt) — Y

since H(2") — H* < |G(Mz') — G(t*)|+ ATzt —s* <
%(Ath — s*). In summary, for Case 1 we obtain

mo

Qmam

H(z)] — B < (1— ") (H(2) ~ H)  (40)

where

1
~ max {166, (H° — H*) , 6}

(41)

Case 2: 4L2||Mzt — t*[|> > (AT 2! — 5)2.
In this case, we have

|zt — 2% < 6, (1+4L§) | Mzt —t¥|?, (42)
and by strong convexity of G(.),
H(z") - H* >
AT (2! — 2°) + VGt )T M(Z - 24) + §||Mzt — 2.
Now let h(a) be a function that takes value 0 when
z is feasible and takes value oo otherwise. Adding

inequality 0 = h(z') — h(z") > (o*, 2" — 2*) for some
o* € Oh(z') to the above gives

H(z') — H* >

[N

Mz~ (43)

since 0* + A+ VGt )M = 6*+VH(2') = 0. Com-
bining (37), (42), and (43), we obtain

H(z') — H(2Y)

. ty * 01(1 + 4L§)Qmamﬁ2
< min, B(H(2") — H") + %

_ p o

C200(1 4 4L2)Qman (H(z) ~ )

(44)

Combining results of Case 1 (40) and Case 2 (44), we
have

H(z'*Y) — H(z!) < -1

where

1
max{166;AL0,26, (1 + 4L2)/p, 6}

my =

This leads to the conclusion.

9 Active set size statistics for all

experiments
Dataset | F| E,|A%|
MultiLabel 7544670 | 6128.2
Dataset | V¢l By p | A%
Segmentation 441 4.9
ImageAlignment 6889 2.4
Protein 163216 12.7
GraphMatching | 1069156 1.66

Table 3: Run time statistics for GDMM active set. For
multilabel dataset, we use Algorithm 2, thus |F| and
E:|A%| are compared, where E;|A%| is the expected
size of Ax over all iterations. For other datasets, we
use Algorithm 1, thus |V¢| and E; ¢|.A%| are compared,
the latter is the expected size of Ay over all iterations
and bigram factors.

(H(z') - H")



