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A Proof of Proposition 4.3

Proof. Given that a no-regret online learning algorithm A running on sequence of loss ‖h(xt)− yt‖2, we have can
easily see that Eqn. 4 holds as:

T∑
t=1

‖ht(xt)− yt‖2 ≤ min
h∈H

T∑
t=1

‖h(xt)− yt‖2 +RA(T ), (11)

where RA(T ) is the regret of A and is o(T ). To prove Proposition 4.3, we only need to show that Eqn. 5 holds for
some γ ∈ (0, 1]. This is equivalent to showing that there exist a hypothesis h̃ ∈ H (‖h̃‖ = 1), such that 〈h̃, f∗〉 > 0.
To see this equivalence, let us assume that 〈h̃, f∗/‖f∗‖〉 = ε > 0. Let us set h∗ = ε‖f∗‖h̃. Using Pythagorean
theorem, we can see that ‖h∗ − f∗‖2 = (1− ε2)‖f∗‖2. Hence we get γ is at least ε2, which is in (0, 1].

Now since we assume that f∗ 6⊥ span(H), then there must exist h′ ∈ H, such that 〈f∗, h′〉 6= 0, otherwise
f∗ ⊥ H. Consider the hypothesis h′/‖h′‖ and −h′/‖h′‖ (we assume H is closed under scale), we have that either
〈h′, f∗〉 > 0 or 〈−h′, f∗〉 > 0. Namely, we find at least one hypothesis h such that 〈h, f∗〉 > 0 and ‖h‖ = 1.
Hence if we pick h̃ = arg maxh∈H,‖h‖=1〈h, f∗/‖f∗‖〉, we must have 〈h̃, f∗/‖f∗‖〉 = ε > 0. Namely we can find a

hypothesis h∗ ∈ H, which is ε‖f∗‖h̃, such that there is non-zero γ ∈ (0, 1]:

‖h∗ − f∗‖2 ≤ (1− γ)‖f∗‖2. (12)

To show that we can extend this γ to the finite sample case, we are going to use Hoeffding inequality to relate
the norm ‖ · ‖ to its finite sample approximation.

Applying Hoeffding inequality, we get with probability at least 1− δ/2,

| 1
T

T∑
t=1

‖yt‖2 − 〈f∗, f∗〉| ≤ O
(√F 2

T
ln(4/δ)

)
, (13)

where based on assumption that f∗(·) is bounded as ‖f∗(·)‖ ≤ F . Similarly, we have with probability at least
1− δ/2:

| 1
T

T∑
t=1

‖h∗(xt)− f∗(xt)‖2 − ‖h∗ − f∗‖2| ≤ O
(√F 2

T
ln(4/δ)

)
, (14)

Apply union bound for the above two high probability statements, we get with probability at least 1− δ,

| 1
T

T∑
t=1

y2t − 〈f∗, f∗〉| ≤ O
(√F 2

T
ln(4/δ)

)
, and,

| 1
T

T∑
t=1

(h∗(xt)− f∗(xt))2 − ‖h∗ − f∗‖| ≤ O
(√F 2

T
ln(4/δ)

)
. (15)

Now to prove the theorem, we proceed as follows:

1

T

T∑
t=1

‖h∗(xt)− f∗(xt)‖2

≤ ‖h∗ − f∗‖+O
(√F 2

T
ln(4/δ)

)
≤ (1− γ)‖f∗‖2 +O

(√F 2

T
ln(4/δ)

)
≤ (1− γ)

1

T

T∑
t=1

y2t + (1− γ)O
(√F 2

T
ln(4/δ)

)
+O

(√F 2

T
ln(4/δ)

)
. (16)
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Hence we get with probability at least 1− δ:

T∑
t=1

‖h∗(xt)− f∗(xt)‖2 ≤
T∑
t=1

‖yt‖2 + (2− γ)O
(√

T ln(1/δ)
)
. (17)

Set R(T ) = RA(T ) + (2− γ)O
(√

T ln(1/δ)
)

, we prove the proposition.

B Proof of Theorem 5.1

An important property of λ-strong convexity that we will use later in the proof is that for any x and x∗ =
arg minx l(x), we have:

‖∇l(x)‖2 ≥ 2λ(l(x)− l(x∗)). (18)

We prove Eqn. 18 below.

From the λ-strong convexity of l(x), we have:

l(y) ≥ l(x) +∇l(x)(y − x) +
λ

2
‖y − x‖2. (19)

Replace y by x∗ in the above equation, we have:

l(x∗) ≥ l(x) +∇l(x)(x∗ − x) +
λ

2
‖x∗ − x‖2

⇒2λl(x∗) ≥ 2λl(x) + 2λ∇l(x)(x∗ − x) + λ2‖x∗ − x‖2

⇒− 2λ∇l(x)(x∗ − x)− λ2‖x∗ − x‖2 ≥ 2λ(l(x)− l(x∗))
⇒‖∇l(x)‖2 − ‖∇l(x)‖2 − 2λ∇l(x)(x∗ − x)− λ2‖x∗ − x‖2 ≥ 2λ(l(x)− l(x∗))
⇒‖∇l(x)‖2 − ‖∇l(x) + λ(x∗ − x)‖2 ≥ 2λ(l(x)− l(x∗))
⇒‖∇l(x)‖2 ≥ 2λ(l(x)− l(x∗)). (20)

B.1 Proofs for Lemma 4.2

Proof. Complete the square on the left hand side (LHS) of Eqn. 3, we have:∑
‖yt‖2 − 2yTt ht(xt) + ‖ht(xt)‖2 ≤ (1− γ)

∑
t

‖yt‖2 +R(T ). (21)

Now let us cancel the
∑
y2t from both side of the above inequality, we have:∑
−2yTt ht(xt) ≤

∑
−2yTt ht(xt) + ‖ht(xt)‖2 ≤ −γ

∑
‖yt‖2 +R(T ). (22)

Rearrange, we have: ∑
2yTt ht(xt) ≥ γ

∑
‖yt‖2 −R(T ). (23)

B.2 Proof of Theorem 5.1

We need another lemma for proving theorem 5.1:

Lemma B.1. For each weak learner Ai, we have:∑
t

‖hit(xt)‖2 ≤ (4− 2γ)
∑
t

‖∇`t(yi−1t )‖2 + 2R(T ). (24)
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Proof of Lemma B.1. For
∑
t(h

i
t(xt))

2, we have:∑
t

‖hit(xt)‖2 =
∑
t

‖hit(xt)−∇`t(yi−1t ) +∇`t(yi−1t )‖2

≤
∑
t

‖hit(xt)−∇`t(yi−1t )‖2 +
∑
t

‖∇`tyi−1t ‖2 +
∑
t

2(hit(xt)−∇`t(yt)i−1)T∇`t(yi−1t )

≤
∑
t

2‖hit(xt)−∇`t(yi−1t )‖2 +
∑
t

2‖∇`t(yi−1t ‖2

≤ 2(1− γ)
∑
t

‖∇`t(yi−1t ‖2 + 2R(T ) + 2
∑
t

‖∇`t(yi−1t ‖2

(By Weak Onling Learning Definition)

≤ (4− 2γ)
∑
t

‖∇`t(yi−1t ‖2 + 2R(T ). (25)

Proof of Theorem 5.1. For 1 ≤ i ≤ N , let us define ∆i =
∑T
t=1(`t(y

i
t) − `t(f∗(xt))). Following similar proof

strategy as shown in (Beygelzimer et al., 2015a), we will link ∆i to ∆i−1. For ∆i, we have:

∆i =

T∑
t=1

(`t(y
i
t)− `t(f∗(xt))) =

∑
t

`t(y
i−1
t − ηhit(xt))−

∑
t

`t(f
∗(xt))

≤
∑
t

[
`t(y

i−1
t )− η∇`t(yi−1t )Thit(xt) +

βη2

2
‖hit(xt)‖2

]
−
∑
t

`t(f
∗(xt))

(By β-smoothness of `t)

≤
∑
t

[
`t(y

i−1
t )− ηγ

2
‖∇`t(yi−1t )‖2 +

ηR(T )

2
+
βη2

2
‖hit(xt)‖2

]
−
∑
t

`t(f
∗(xt))

(By Lemma 4.2)

≤
∑
t

[
`t(y

i−1
t )− ηγ

2
‖∇`t(yi−1t )‖2 +

ηR(T )

2
+ βη2(2− γ)‖∇`t(yi−1t )‖2 + βη2R(T )− `t(f∗(xt))

]
(By Lemma B.1)

= ∆i−1 − (
ηγ

2
− βη2(2− γ))

∑
t

‖∇`t(yi−1t )‖2 + (
η

2
+ βη2)R(T )

≤ ∆i−1 − (ηγλ− βη2λ(4− 2γ))
∑
t

(
`t(y

i−1
t )− `t(f∗(xt))

)
+ (

η

2
+ βη2)R(T )

(By Eqn. 18)

= ∆i−1
[
1− (ηγλ− βη2λ(4− 2γ))

]
+ (

η

2
+ βη2)R(T ) (26)

Due to the setting of η, we know that 0 < (1− (ηγλ− βη2λ(4− 2γ))) < 1. For notation simplicity, let us first
define C = 1− (ηγλ− βη2λ(4− 2γ)). Starting from ∆0, keep applying the relationship between ∆i and ∆i−1 N
times, we have:

∆N = CN∆0 + (
η

2
+ βη2)R(T )

N∑
i=1

Ci−1

= CN∆0 + (
η

2
+ βη2)R(T )

1− CN

1− C

≤ CN∆0 + (
η

2
+ βη2)R(T )

1

1− C
.

Now divide both sides by T , and take T to infinity, we have:

1

T
∆N = CN

1

T
∆0 ≤ CN2B, (27)
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where we simply assume that `t(y) ∈ [−B,B], B ∈ R+ for any t and y. Now let us go back to C, to minimize C,
we can take the derivative of C with respect to η, set it to zero and solve for η, we will have:

η =
γ

β(8− 4γ)
. (28)

Substitute this η back to C, we have:

C = 1− γ2λ

β(16− 8γ)
≥ 1− λ

8β
≥ 1− 1

8
=

7

8
. (29)

Hence, we can see that there exist a η = γ
β(8−4γ) , such that:

1

T
∆N ≤ 2B(1− γ2λ

β(16− 8γ)
)N ≤ 2B(1− γ2λ

16β
)N . (30)

Hence we prove the first part of the theorem regarding the regret. For the second part of the theorem where `t
and xt are i.i.d sampled from a fixed distribution, we proceed as follows.

Let us take expectation on both sides of the inequality 30. The left hand side of inequality 30 becomes:

1

T
E∆N = E

1

T

[ T∑
t=1

(`t(y
N
t )− `t(f∗(xt)))

]
=

1

T
E
[ T∑
t=1

`t(−µ
N∑
i=1

hit(xt))
]
− 1

T
E(`t,xt)∼D[`t(f

∗(xt))]

=
1

T

T∑
i=1

Et
[
`t(−µ

N∑
i=1

hit(xt))
]
− E(`,x)∼D`(f

∗(x)), (31)

where the expectation is taken over the randomness of xt and `t. Note that hit only depends on x1, `1, ..., xt−1, `t−1.
We also define Et as the expectation over the randomness of xt and `t at step t conditioned on x1, `1, ..., xt−1, `t−1.

Since `t, xt are sampled i.i.d from D, we can simply write Et[`t(−µ
∑N
i=1 h

i
t(xt))] as Et[`(−µ

∑N
i=1 h

i
t(x))]. Now

the above inequality can be simplied as:

1

T
E∆N =

1

T

T∑
t=1

Et[`(−µ
N∑
i=1

hit(x))]− E(`,x)∼D`(f
∗(x))

≥ E
[
`(−µ

N∑
i=1

1

T

T∑
t=1

hit(x))
]
− E(`,x)∼D`(f

∗(x))

= E
[
`(−µ

N∑
i=1

h̄i(x))
]
− E(`,x)∼D`(f

∗(x)) (32)

Now use the fact that 1/TE∆N ≤ 2B(1− γ2λ
16β )N , we prove the theorem.

C Proof of Theorem 5.2

Lemma C.1. In Alg. 2, if we assume the 2-norm of gradients of the loss w.r.t. partial sums by G (i.e.,
‖∇it‖ = ‖∇`t(yi−1t )‖ ≤ G), and assume that each weak learner Ai has regret R(T ) = o(T ), then we there exists a

constant c =
1−γ+

√
1−γ(1−R(T )

TG2 )

γ < 2
γ − 1 such that

T∑
t=1

‖∆t
i‖2 ≤ c2G2T and

T∑
t=1

‖hti(xt)‖2 ≤ (4− 2γ)(1 + c)2G2T + 2R(T ) ≤ 4c2G2T. (33)

Proof. We prove the first inequality by induction on the weak learner index i. When i = 0, the claim is clearly
true since ∆t

0 = 0 for all t. Now we assume the claim is true for some i ≥ 0, and prove it for i+ 1. We first note

that by the inequality 1
T

∑T
t=1 at ≤

√∑
t a

2
t

T for all sequence {at}t, we have

1

T
(
∑
t

‖∆t
i‖)2 ≤

∑
t

‖∆t
i‖2 ≤ c2G2T (34)
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⇒(
∑
t

‖∆t
i‖)2 ≤ c2G2T 2 (35)

⇒
∑
t

‖∆t
i‖ ≤ cGT (36)

Then by the assumption that weak learner Ai has an edge γ with regret R(T ), we have from step 14 of Alg. 2:∑
t

‖∆t
i+1‖2 =

∑
t

‖∆t
i +∇ti+1 − hti+1(xt)‖2 ≤ (1− γ)

∑
t

‖∆t
i +∇ti+1‖2 +R(T ) (37)

≤ (1− γ)
∑
t

(
‖∆t

i‖+G
)2

+R(T ) (38)

≤ (1− γ)

(∑
t

‖∆t
i‖2 + 2G

∑
t

‖∆t
i‖+G2T

)
+R(T ) (39)

≤ (1− γ)(1 + c)2G2T +R(T ) (40)

= c2G2T (41)

We have the last equality because c is chosen as the positive root of the quadratic equation: γc2 + (2γ − 2)c+

(γ − 1− R(T )
TG2 ) = 0, which is equivalent to c2G2T = (1− γ)(c+ 1)2G2T +R(T ).

The second inequality of the lemma can be derived from a similar argument of Lemma B.1 by expanding
‖
(
∆t
i−1 +∇ti − hti(xt)

)
−
(
∆t
i−1 +∇ti

)
‖2 and then applying edge assumption.

We now use the above lemma to prove the performance guarantee of Alg. 2 as follows.

Proof of Theorem 5.2. We first define the intermediate predictors as: f t0(x) := h0(x), f̂ ti (x) := f t−1(x)− ηihti(x),

and f ti (x) := P (f̂ ti (x)). Then for all i = 1, ..., N we have:

‖f ti (xt)− f∗(xt)‖2 ≤ ‖f̂ ti (xt)− f∗(xt)‖2 = ‖f ti−1(xt)− ηihti(xt)− f∗(xt)‖2 (42)

= ‖f ti−1(xt)− f∗(xt)‖2 + η2i ‖hti(xt)‖2 − 2ηi
〈
f ti−1(xt)− f∗(xt), hti(xt)−∆t

i−1 −∇ti
〉

− 2ηi
〈
f ti−1(xt)− f∗(xt),∆t

i−1 +∇ti
〉

(43)

Rearanging terms we have:〈
f∗(xt)− f ti−1(xt),∇ti

〉
(44)

≥ 1

2ηi
‖f ti (xt)− f∗(xt)‖2 −

1

2ηi
‖f ti−1(xt)− f∗(xt)‖2 −

ηi
2
‖hti(xt)‖2

−
〈
f∗(xt)− f ti−1(xt), h

t
i(xt)−∆t

i−1 −∇ti
〉
−
〈
f∗(xt)− f ti−1(xt),∆

t
i−1
〉

(45)

Using λ-strongly convex of `t and applying the above equality and ∆t
i = ∆t

i−1 +∇ti − hti(xt), we have:

`t(f
∗(xt)) ≥ `t(f ti−1(xt)) +

〈
f∗(xt)− f ti−1(xt),∇ti

〉
+
λ

2
‖f∗(xt)− f ti−1(xt)‖2 (46)

≥`t(f ti−1(xt)) +
1

2ηi
‖f ti (xt)− f∗(xt)‖2 −

1

2ηi
‖f ti−1(xt)− f∗(xt)‖2 −

ηi
2
‖hti(xt)‖2

+
〈
f∗(xt)− f ti−1(xt),∆

t
i

〉
−
〈
f∗(xt)− f ti−1(xt),∆

t
i−1
〉

+
λ

2
‖f∗(xt)− f ti−1(xt)‖2 (47)

Summing over t = 1, ..., T and i = 1, ..., N we have:

N

T∑
t=1

`t(f
∗(xt))
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≥
N∑
i=1

T∑
t=1

[
`t(f

t
i−1(xt)) +

〈
f∗(xt)− f ti−1(xt),∇ti

〉
+
λ

2
‖f∗(xt)− f ti−1(xt)‖2

]
(48)

=

N∑
i=1

T∑
t=1

`t(f
t
i−1(xt))−

N∑
i=1

T∑
t=1

ηi
2
‖hti(xt)‖2

+

N∑
i=1

T∑
t=1

1

2ηi
‖f ti (xt)− f∗(xt)‖2 −

N∑
i=1

T∑
t=1

(
1

2ηi
− λ

2
)‖f ti−1(xt)− f∗(xt)‖2

+

N∑
i=1

T∑
t=1

〈
f∗(xt)− f ti−1(xt),∆

t
i

〉
−

N∑
i=1

T∑
t=1

〈
f∗(xt)− f ti−1(xt),∆

t
i−1
〉

(49)

=

N∑
i=1

T∑
t=1

`t(f
t
i−1(xt))−

N∑
i=1

T∑
t=1

ηi
2
‖hti(xt)‖2

+

N∑
i=1

T∑
t=1

1

2ηi
‖f ti (xt)− f∗(xt)‖2 −

N−1∑
i=0

T∑
t=1

(
1

2ηi+1
− λ

2
)‖f ti (xt)− f∗(xt)‖2

+

N∑
i=1

T∑
t=1

〈
f∗(xt)− f ti−1(xt),∆

t
i

〉
−
N−1∑
i=1

T∑
t=1

〈
f∗(xt)− (f ti−1(xt)− ηihti(xt)),∆t

i

〉
−

T∑
t=1

〈
f∗(xt)− f t0(xt),∆

t
0

〉
(We switched index and apply ∆t

0 = 0 next.) (50)

=

N∑
i=1

T∑
t=1

`t(f
t
i−1(xt))−

N∑
i=1

T∑
t=1

ηi
2
‖hti(xt)‖2 −

N−1∑
i=1

T∑
t=1

〈
ηih

t
i(xt),∆

t
i

〉
+

N−1∑
i=1

T∑
t=1

1

2
‖f ti (xt)− f∗(xt)‖2(

1

ηi
− 1

ηi+1
+ λ)−

T∑
t=1

(
1

2η1
− λ

2
)‖f t0(xt)− f∗(xt)‖2

+

T∑
t=1

[〈
f∗(xt)− f tN−1(xt),∆

t
N

〉
+

1

2ηN
‖f tN−1(xt)− ηNhtN (xt)− f∗(xt)‖2

]
(51)

(We next apply ηi =
1

λi
and complete the squares for the last sum.)

=

N∑
i=1

T∑
t=1

`t(f
t
i−1(xt))−

N∑
i=1

T∑
t=1

ηi
2
‖hti(xt)‖2 −

N−1∑
i=1

T∑
t=1

〈
ηih

t
i(xt),∆

t
i

〉
+

1

2ηN

T∑
t=1

‖
(
f tN−1(xt)− f∗(xt)

)
+ ηN (∆t

N − htN (xt))‖2

− ηN
2

T∑
t=1

(
‖∆t

N − htN (xt)‖2 − ‖htN (xt)‖2
)

(52)

(We next drop the completed square, and apply Cauchy-Schwarz)

≥
N∑
i=1

T∑
t=1

`t(f
t
i−1(xt))−

N∑
i=1

T∑
t=1

ηi
2
‖hti(xt)‖2 −

N∑
i=1

ηi

T∑
t=1

‖hti(xt)‖‖∆t
i‖ −

ηN
2

T∑
t=1

‖∆t
N‖2 (53)

(We next apply Cauchy-Schwarz again.)

≥
N∑
i=1

T∑
t=1

`t(f
t
i−1(xt))−

N∑
i=1

ηi
2

T∑
t=1

‖hti(xt)‖2 −
ηN
2

T∑
t=1

‖∆t
N‖2

−
N∑
i=1

ηi

√√√√ T∑
t=1

‖hti(xt)‖2
T∑
t=1

‖∆t
i‖2 (54)



Gradient Boosting on Stochastic Data Streams

Now we apply Lemma C.1 and replace the remaining ηi = 1
λi . Using

∑N
i=1

1
i ≤ 1 + lnN , we have:

N

T∑
t=1

`t(f
∗(xt))

≥
N∑
i=1

T∑
t=1

`t(f
t
i−1(xt))−

N∑
i=1

1

2iλ
4c2G2T − 1

2Nλ
c2G2T −

N∑
i=1

1

iλ
2c2G2T (55)

≥
N∑
i=1

T∑
t=1

`t(f
t
i−1(xt))−

4c2G2T

λ
(1 + lnN)− c2G2T

2Nλ
(56)

Dividing both sides by NT and rearrange terms, we get:

1

TN

N∑
i=1

T∑
t=1

[
`t(y

i
t)− `t(f∗(xt))

]
≤ 4c2G2

Nλ
(1 + lnN) +

c2G2

2N2λ
.

Using Jensen’s inequality for the LHS of the above inequality, we get:

1

T

T∑
t=1

`t(
1

N

N∑
i=1

yit)− `t(f∗(xt)) ≤
4c2G2

Nλ
(1 + lnN) +

c2G2

2N2λ
,

which proves the first part of the theorem.

For stochastic setting, we can prove it by using similar proof techniques (e.g., take expectation on both sides of
Eqn. 57 and use Jensen inequality) that we used for proving theorem 5.1.

D Counter Example for Alg. 1

In this section, we provide an counter example where we show that Alg. 1 cannot guarantee to work for non-smooth
loss. We set y ∈ R2, and design a loss function `t(y) = 2|y[1]| + |y[2]|, where y[i] stands for the i’th entry of
the vector y, for all time step t. The subgradient of this non-smooth loss is [2, 1]T , or [2,−1]T , or [−2, 1]T , or
[−2,−1]T , depending on the position of y. We restricted the weak hypothesis class H to consist of only two types
of hypothesis: hypothesis h(x) = [α, 0]T , or hypothesis h(x) = [0, α]T , where α ∈ [−2, 2]. We can show that given
a sequence of training examples {(xτ , gτ )}tτ=1, where gt is the one of the gradient from the total four possible
subgradient of `t, the hypothesis that minimizes the accumulated square loss

∑t
τ=1(h(xτ )− gτ )2 is going to be

the type of h(x) = [α, 0]T .

Now we consider using Follow the Leader (FTL) as a no-regret online learning algorithm for each weak learner.
Based on the above analysis, we know that no matter what the sequence of training examples each weak learner
has received as far, the weak leaners always choose the hypothesis with type h(x) = [α, 0]T from H. So, for every
time step t, if we initialize y0t = [a, b]T , where a > 0 and b > 0, then the output yNt (computed from Line 8 in
Alg.1) always have the form of yNt = [η, b], where η ∈ R. Namely, all weak learners’ prediction only moves yt
horizontally and it will never be moved vertically. But note that the optimal solution is located at [0, 0]T . Since
for all t, yNt[2] is also b constant away from 0, the total regret accumulates linearly as bT , regardless of how many

weak learners we have.

E Details of Implementation

E.1 Binary Classification

For binary classification, following (Friedman, 2001), let us define feature x ∈ Rn, label u ∈ {−1, 1}. With xt and
ut, the loss function `t is defined as:

`t(y) = ln(1 + exp(−uty)) + λy2. (57)

where y ∈ R. In this setting, we have H : Rn → R. The regularization is to avoid overfitting: we can set
y =∞∗ sign(ut) to make the loss close to zero.
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The loss function `t(y) is twice differentiable with respect to y, and the second derivative is:

∇2`t(y) =
exp(uty)

(1 + exp(uty))2
(58)

Note that we have:

∇2`t(y) ≤ 1

1/ exp(uty) + 2 + exp(uty)
≤ 1

4
. (59)

Hence, `t(y) is 1/4-smooth.

Under the assumption that the output from hypothesis from H is bounded as |y| ≤ Y ∈ R+, we also have:

∇2`t(y) ≥ 1

2 + 2 exp(Y )
(60)

Hence, with boundness assumption, we can see that `t(y) is 1/(2 + 2 exp(Y ))-strongly convex and (1/4)-smooth.

The another loss we tried is the hinge loss:

`t(y) = max(0, 1− uty) + λy2. (61)

With the regularization, the loss `t(y) is still strongly convex, but no longer smooth.

E.2 Multi-class Classification

Follow the settings in (Friedman, 2001), for multi-class classification problem, let us define feature x ∈ Rn, and
label information u ∈ Rk, as a one-hot representation, where u[i] = 1 (u[i] is the i-th element of u), if the example
is labelled by i, and u[i] = 0 otherwise. The loss function `t is defined as:

`t(y) = −
k∑
i=1

ut[i] ln
exp(y[i])∑k
j=1 exp(y[j])

, (62)

where y ∈ Rk. In this setting, we let weak learner i pick hypothesis h from H that takes feature xt as input, and
output ŷi ∈ Rk. The online boosting algorithm then linearly combines the weak learners’ prediction to predict y.


