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Abstract

Blackwell approachability is an online learn-
ing setup generalizing the classical prob-
lem of regret minimization by allowing for
instance multi-criteria optimization, global
(online) optimization of a convex loss, or on-
line linear optimization under some cumula-
tive constraint. We consider partial monitor-
ing where the decision maker does not nec-
essarily observe the outcomes of his decision
(unlike the traditional regret/bandit litera-
ture). Instead, he receives a random signal
correlated to the decision—outcome pair, or
only to the outcome.

We construct, for the first time, approach-
ability algorithms with convergence rate of
order O(T~1/2) when the signal is indepen-
dent of the decision and of order O(T~1/3)
in the case of general signals. Those rates
are optimal in the sense that they cannot be
improved without further assumption on the
structure of the objectives and /or the signals.

1 Introduction

Online learning has become a standard topic, espe-
cially through regret minimisation [Cesa-Bianchi and
Lugosi, 2006, Shalev-Shwartz, 2011, Bubeck and Cesa-
Bianchi, 2012]: the decision maker aims at controlling
some cumulative loss against any possible sequence
of loss functions that Nature can generate. However,
there exists more general frameworks [Rakhlin et al.,
2011], such as Blackwell approachability [Blackwell,
1956], which is the focus of the present work: the
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decision maker recieves vector-valued payoffs (instead
of scalar payoffs/losses) and his goal is to make the
average payoff converge to a given target set. Black-
well approachability contains regret minimization as
a special case, as well as many of its variants: in-
ternal /swap regret, online combinatorial optimization,
etc. (see e.g. [Kwon, 2016]). Further applications are
mentionned in Section 2.2.

The full information setting, which corresponds to the
case where the decision maker does observe his vector-
valued payoffs, is well understood and has a worst-case
convergence rate of order O(T~'/2) (see e.g. [Perchet,
2014]) We here study the partial monitoring setting,
where the decision maker does not necessaritly observe
his (vector-valued) payoffs. Instead, he recieves a ran-
dom signal, whose law may depend on his decision and
on the state of Nature.

The partial monitoring setting was first studied in the
special case of regret minimization. Unlike the full
information setting, the decision maker may not be
able to minimize the regret, depending on the signaling
structure. This has given rise to two main directions
of research.

The first one, initiated by Piccolboni and Schindel-
hauer [2001] identifies the signaling structures which
allow the average regret to be minimized and aims at
constructing algorithms in those cases: Piccolboni and
Schindelhauer [2001] constructed an algorithm guaran-
teeing a convergence rate of order O(T~'/4) and Cesa-
Bianchi et al. [2006] proposed an improved algorithm
with a O(T~1/3) guarantee as well as a general lower
bound of the same order. Later, Bartok et al. {2010,
2014] gave a classification of signaling structures ac-
cording to convergence rates: they established that the
optimal convergence rate is either O(T~1/2), O(T~1/3)
or O(1)—this last rate corresponds to the case where
the average regret cannot be minimized.

The second line of research was proposed by Rustichini
[1999] focus on the case where average regret cannot
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be minimized. In that case, he introduced a weaker
variant of the regret, which involves the best perfor-
mance that the Decision Maker could have achieved in
hindsight (had he known the sequence of signal laws,
but not the sequence of decisions of Nature), for a
given signalling structure. His notion of regret, how-
ever, coincide with the standard average regret when
the latter can be minimized. Rustichini [1999] how-
ever did not provide an explicit algorithm nor conver-
gence rates. Mannor and Shimkin [2003] constructed
approachability-based algorithms in the special case
where the law of the signal only depends on Nature’s
decision (the so-called outcome-dependent case). Lu-
gosi et al. [2008] proposed algorithms with convergence
rates of order O(T~'/*\/log T) in the case of outcome-
dependent signals and of order O(T~1/%,/log T) in the
case of general signals. The optimal rate of order
O(T~'/3) in the case of general signals was achieved
by Perchet [2011Db] using calibration-based algorithms.

More recently, the problem of approachability with
partial monitoring has been considered by Perchet
[2011a]. The regret minimization problem from Rus-
tichini [1999] and the internal regret from Lehrer and
Solan [2007], Perchet [2011b] turn out to be special
cases of this very general framework. However, the
convergence rate of the algorithm provided in Perchet
[2011a] had the drawback of deteriorating quickly with
the dimension of the payoff space, as it scales as
O(T~YU+3)) where I is the number of actions of
the decision maker. A dimension-free rate of order
O(T~1/5) was given in Mannor et al. [2014b]—see
also Mannor et al. [2013]. However, the optimal rate of
convergence was conjectured to be of order O(T~1/3),
as for regret minimization.

Main contributions and Outline

We construct, for the first time, approachability algo-
rithms for polytope target sets with convergence rates
of order O(T~'/3) in the case of general signals and
of order O(T~'/2) in the case of outcome-dependent
signals. Those rates are known to be unimprovable
without further assumption on the target set or the sig-
nalling structure: in the case of general signals, a lower
bound of order O(T~1/3) was given in Cesa-Bianchi
et al. [2006], and the O(T~'/?) rate is already opti-
mal in the full information setting (since they both
hold in the case where standard average regret can
be minimized, these lower bounds hold for both lines
of research on partial monitoring). It therefore es-
tablishes the optimal convergence rates for those two
cases. Moreover, the proposed algorithms are compu-
tationally efficient.

In Section 2, we present the model of repeated deci-
sion process with vector payoffs and with partial mon-

itoring; we recall some well-known results on Black-
well approachability (with full and partial monitoring)
that will be useful. In Section 3, we first introduce an
auxiliary full information game which we then use to
construct the algorithm for the initial game. The effi-
ciency of the algorithm is discussed. In Section 4.2 we
state and prove Theorem 4.1 which is our main result.
It establishes an O(T~'/3) rate of convergence for the
algorithm. In Section 4.3, we deal with the special case
of outcome-dependent signals for which we propose a
modified algorithm which is proved in Theorem 4.3 to
guarantee an O(T~1/?) rate of convergence.

2 Framework

We consider a repeated decision process between the
decision maker and Nature. The finite set of deci-
sions of the decision maker (resp. Nature) is denoted
by Z (resp. J). It is usually necessary in adversarial
settings to consider random algorithms; we denote by
A(Z) the simplex of probability distributions over Z,
ie.,

zGIGR

A(Z) = {m = (@

> ot _1}

€L
and A(J) is defined similarly.

At each stage t > 1, the decision maker and Nature
simultaneously choose decisions i; € Z and j; € J,
possibly at random according to the probability dis-
tributions z; € A(Z) and y; € A(J). These choices
generate a vectorial payoff g; := g(is, j;) € R? to the
decision maker. The mapping g is extended bi-linearly

to A(Z) x A(J) by:

g(x,y) :=EBivs 806, 4)] = >_ 2'y’g(i, 5)
Y i€
JjET

where z = (2%);ez € A(I) and y = (y/)jcq € A(T),
and we define ||g|, := maX;‘g?j g7, 5) I,
j

It remains to describe the overall objectives, introduc-
ing the concept of Blackwell approachability.

2.1 Blackwell Approachability

Given a fixed, closed and convex target set C C R,
the overarching aim of the decision maker is to guar-
antee that the average vector payoff gr := % Zthl Gt
converges to C. This set is said to be approachable by
the decision maker if he has a algorithm such that

E[dz (g7, C)] P 0,

uniformly with respect to the choices of Nature, where
da(-, C) denotes the Euclidean distance to C, and
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where the expectation corresponds to the randomiza-
tion introduced by the algorithm of the decision maker.

Before introducing the partial monitoring setup, we re-
call some useful results with full monitoring, i.e., when
the decision maker gets to observe j; (or at least g;)
at the end of stage t.

Characterization of approachability with full
monitoring A closed convex set C C R? is approach-
able by the decision maker [Blackwell, 1956] if and only
if one of the following properties hold.

() Vg € R 3z € A(),Yy € A(J), (glzy) -
Pc(9)|lg—Pc(g)) <0, where P¢ denotes the pro-
jection on C;

(ii) Vy € A(J), Fz € A(D), g(z,y) eC.

If C is a closed convex cone, the above is equivalent to
(i) Vz € C°, Jw € A(Z) Vy € A(T), (g(z,y)lz) <0,

where C° is the polar cone of C—see Appendix C.

We emphasize that A(Z) and A(J) being simplices
is irrelevant. The same result holds with any bilinear
reward function g : X x Y — R? defined over two
convex compact sets X' and ) of any Euclidean space.
The special case where C is a closed convex cone will
be of particular importance in the subsequent sections,
we hence gather a few well-known facts on the topic
in Appendix C.

2.2 Possible applications of Blackwell
approachability

Regret minimization can be easily recast as an ap-
proachability problem—see Blackwell [1954], Aber-
nethy et al. [2011], Perchet [2014]. We here men-
tion some other possible applications of Blackwell ap-
proachability.

Regret minimization with adversarial con-
straints & global cost In the setting of regret
minimization with long term constraints (see Jenat-
ton et al. [2016]), the sequence of decisions i; must
not only minimize the average loss but also satisfy,
asymptotically, some external constraints as in linear
programming. Typically, the benchmark of an algo-
rithm is the following

O
iy (i 2 o Ave <Br)

where Ay = % ZtT:1 A e RF*T and by = % Zthl b, €
R*, and where the inequality is to be understood

component-wise. The sequences of matrices A; and
vectors b; that define the constraint set are chosen se-
quentially by Nature.

The approachable equivalent target is naturally de-
fined as

{(y,z, A,b) € RIFIHRxTIHE. 5 < min
2€A(T),Axz<b

f(x,y)}

This set is not necessarily convex and a decision maker
might not be able to compete with the best decision in
hindsight that satisfies the average constraints; there
are ways to circumvent that issue (by considering a
convex super-set that contains it or other techniques
Bernstein et al. [2013], Mannor et al. [2014a]).

This problem is actually strongly related to the global
cost minimization Even-Dar et al. [2009]. In that set-
ting, the global regret is defined as

1 & RS
ﬁ(f Zg($t7jt)) 71213{})5(? Zg(ﬂc,jﬁ),
t=1 t=1

where g : A(Z) x A(J) — R? is some vectorial reward
and £ : R? — R is some non-linear loss mapping.

Varying stage duration Another application of
Blackwell approachability is when stages have different
duration or weights Mannor and Shimkin [2008]. At
stage t > 1, the decisions ¢; € Z and j; € J generate a
reward vector g(is,j;) € RY, but some of them might
be more important than others (or last longer); this is
represented by a scalar w(i¢, j;) € Ry. Given a target
set C C R?, the goal of the decision maker is that the
weighted average reward vector converges to C:

T . .
> i wit, 31)git, ji)
T A
Zt=1 w(it, jt)
This can be rewritten as a traditional approach-

ability problem where the reward vector is
(g(it, ji)w(it, ji),w(it, ji)) and the target set is

T—+o00

1
cv — {(z,w) eRHL ~;e c},
w
which is a convex cone as soon as C is convex.

Other applications Approachability can also be
seen as a powerful generic tool to solve other online
learning problems such as constructing calibrated pre-
dictions [Foster, 1999, Foster et al., 2011, Perchet,
2014| as well as constructing optimal algorithms in
repeated zero-sum games with imperfect information
[Aumann and Maschler, 1995] or as a building block in
constructing Nash equilibria in repeated multi-players
games [Tomala, 2013].
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2.3 Partial Monitoring

With partial monitoring (as well as in the classical
multi-armed bandit scenario), the decision maker does
not necessarily observe j; nor g; at the end of stage ¢
but he instead receives some signal s; € S, where S
is a finite set. More precisely, there exists a mapping
s : ZxJ — A(S), which is known to the decision
maker, that indicates the (conditional) law of signal s;
as a function of decisions i; and j;, i.e., s; is drawn
according to probability distribution s(it, j;) € A(S).
s is also bilinearly extended to A(Z) x A(J).

The special case where the law of the signal s(4, j) does
not depend on i is called outcome-dependent, and will
be treated in its dedicated Section 4.3.

A crucial concept with partial monitoring is flags. The
flag function f : A(J) — A(S)7 is defined by

f(y) = (s(4, y))ieI )

and f; := f(y;) denotes the flag associated with y;.
Although the decision maker does not directly observe
it, he can, as will be shown, estimate it. As a matter
of fact, it is the maximal information available: two
random choices y,y’ € A(J) that generate the same
flag are absolutely indistinguishable by the decision
maker.

We denote by F = £(A(J)) the set of all possible flags,
which is a polytopial subset of RS*Z. Moreover, for
any x € A(Z) and f € F, let

m(z, f) := gz, 7 (f))

be the set of all payoffs that are compatible with
random decision x and flag f. The set-valued map
m : A(Z) x F = R will be essential in the statement
of the characterization of approachable sets (Proposi-
tion 1) and in the construction of the algorithms.

y € A(T),

Characterization of approachability with par-
tial monitoring Perchet [2011a] A closed convex
set C C R? is approachable by the decision maker if
and only if

VfeF, 3z € A(Z), m(z, f)CC. (1)

Notice that with full monitoring, and with bandit mon-
itoring in the case of regret minimization, the flag func-
tion is fully informative in the sense that F = A(J)
and f(y) = y. As a consequence, in those cases,
(z, f(y)) = {g(z,y)} and thus the above characteri-
zation and the original one of Blackwell coincide.

Examples of partial monitoring There are many
examples where the feedback of the decision maker (or

available to any algorithm) is neither full nor bandit.
Consider a repeated task, where the decision maker
has access to several basic algorithms (or experts) but
where it is costly to observe the outcome of any of
them, as in the apple tasting problem, or label effi-
cient prediction [Cesa-Bianchi et al., 2005]. Practical
examples would be automatic subtitling of a video or
classification of a music, etc. The decision maker can-
not know whether an expert is correct or not unless he
asks a human to manually do the classification, which
obviously is costly and cannot be done to often.

Other examples of partial monitoring involve routing
in congested networks. A decision maker aims at send-
ing messages through the less congested path, however
the congestion is not observed, only the number of lost
packets (yet the probability of losing packet increase
with congestion). The same phenomenon actually oc-
curs in several instances of learning scenarii with cen-
sored or perturbed data.

3 From Partial to Full Monitoring

We focus on the case where the target set is the neg-
ative orthant C := R% and we assume it to be ap-
proachable. Since a polytope can be represented as
an orthant in a higher dimension space, the extension
to polytope target sets can be easily carried out as in
e.g. [Mannor et al., 2014b, Section 5.4.2].

Detailed proofs of our claims below can be found in
Appendix A.

The main difficulty of partial monitoring is that, even
if the flags f; were observed by the decision maker
(which is not the case), the only way to make sure
that gr converges to C is to ensure that the average
set & S°/_, m(iy, f;) is asymptotically contained in C.
This would require to handle and control averages of
set-valued mappings, which may be tedious'. Instead,
we introduce a single-valued mapping R that repre-
sents m, in the sense that

1 & 1 &
TE m CC <= TE R; CC,
t=1 t=1

or at least such that the left term is implied by the
right one. Moreover, if we manage to enforce that R
is linear, then we could apply the same techniques as
in the classical full monitoring case.

!The naive idea of representing a set of possible payoffs
by the compatible payoffs which is the farther away from
the target set C could lead to linear regret, see e.g. Mannor
et al. [2014D)]
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3.1 Bi-piecewise affinity

First, notice that the flag mapping f is affine? on F.

This yields (see [Rambau and Ziegler, 1996, Proposi-
tion 2.4]) the existence of a simplicial decomposition
of F such that f~! is affine on each of those simplices.

More precisely, there exists a finite family (F*)pex of
simplices such that 7 = (J,cc F* and £71 is affine
on each F*. Moreover, if we denote by B* the set of
vertices of F* and B = |J; c,c B then for all f € FF,

there exists a unique p = (u®)pep € A(B) such that

= Z pb b and, moreover, suppp C BX,  (2)
beB

where supp p is the support of u.

From now on, we assume being given such a decompo-
sition.

Example in small dimension Before, describing
the algorithms and results in the general case, we first
give some intuitions on the above statements in smaller
dimension. Assume that Nature has 3 actions, so that
A(J) is a triangle, for instance with vertices (0;0),
(0.5;1) and (1;0), see e.g., Figure 1, page 219, Ram-
bau and Ziegler [1996]. More over, we are going to
assume that mixed actions on a vertical segment are
undistinguishable to the decision maker.

The undistinguishable actions sets are therefore not
linear over the whole horizontal segment [0,1] but are
linear on [0,0.5] and [0.5,1]. The name of piecewise
affine mapping comes from this property. Rambau and
Ziegler [1996] would call “chamber” the two segments
[0,0.5] and [0.5,1], of respectives vertices set 0;0.5 and
0.5;1, and the linearity of inverse mappings on a cham-
ber is a consequence of the very last equation page 221
(stated as a Minkowski sum). Proposition 2.4 of Ram-
bau and Ziegler generalizes this toy example to any
polytopes and any linear mapping (i.e., projections).

Notice that, because of this lack of linearity, observing
0 half of the stages and 1 on the other half of the
stages is intrinsically different than observing 1/2 at
all stages. However, since the chambers have only 3
vertices {0,0.5,1}, it is possible to lift the segment
[0,1] into a 2 dimension simplex to recover linearity.
This is precisely the objectives of the next section in
higher dimension.

Back to the general case We now explain how we
can reduce the problem of approachability with par-
tial monitoring, without linearity, to another auxiliary

2We recall that a set-valued function a : i = V is affine

if for all w,u’ € U and A € [0,1], a(Au+ (1 — Mu') =
Aa(u) + (1 — Na(u).

approachability problem, in a lifted space of higher
dimension, but with linearity.

We first construct a map r = (r")1g<ngqd component-
wise, and first on A(Z) x B before extending it to
A(Z) x F. Denote by (g8")1<n<d the components of
payoff function g. For € A(Z) and b € B, we set
r"(x,b) as the largest element in the set g™ (x, f=1(b)):

r"(z,b) ;= maxg" (z, £ (b)). (3)

This construction ensures that, for any y € f~1(b),
g(x,y) € R as soon as r(x,b) is also in R .

We then extend r to A(Z) x F as follows. Recall that
a given flag f € F can be uniquely written as

f:Z:U’b'ba

beB

and that the support of p is contained in one of the
polytopes F*. We then use the above coefficients
(1)pes to define

r(z, f) = Z,ub -1 (z,b). (4)
beB
This construction gives the existence of a finite fam-
ily of polytopes (X%)sc, covering A(Z) satisfying the
following properties.

Proposition 3.1 (i) For all x € A(Z), y € A(T)
and 1 < n < d, we have g"(x,y) < r™(z,f(y));

(i) For all f € F, there exists x € A(Z) such that
r(z, f) € R%;

(ii) For all x € A(T), rv(x, -) is affine on each F*;
(iv) For all f € F, x(-, f) is affine on each X*.

We denote by A the set of all vertices of polytopes X*.

3.2 From bi-piecewise affinity to linearity

In this section, we construct the linear map R :
(RSXI))CXA_”Rd_

First, we claim (see Proposition A.2) that the con-
struction of R would be easy if we only consider the
restriction of the affine mappings r(z,-) to F*. In-
deed, since F* is included in A(S)Z, it would be suffi-
cient to extend those mapping linearly to RS*Z. The
intuition might be clearer in the trivial case where
|Z|= d = 1. In that case, consider an affine map-
ping ¢ : A(S) — R. Then the mapping ¢* : R‘i — R
defined by ¢*(z) = (7 )llz[l1 is linear on RS and
can easily extended into a linear mapping on the whole
space R?.

In the general case, for every k € I, there exists a map
rl® . A(T) x RS*T — R? such that
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(i) for all x € A(Z), the map r!¥l(z,

is linear;

(ii) for all x € A(Z) and f € F*, vlFl(z, f) = r(a, f).

~):RSXI—>Rd

Given rl®l, we now define the linear map Ry
(REXT)A 5 RY as follows

Ry ((gka)aeA> =

Z (K] ( ~ka)
acA

for all (§**)aea € (RS*T)A. Finally, we define the
linear map R : (RS*Z)XxA 5 Re by setting

=R ((0),00) = X X )

ke ke acA

for all

g — (gka)kelc c (RSXI)ICX.A.
acA

The following proposition shows that R can indeed be
used as a replacement for r.

Proposition 3.2 Let x € X* C A(Z), f € FFo C F,
for some £ € L and ky € K. Moreover, let

A9, A
a::z/\a-a where (A)aca € (A)e
= supp(A*)aca C X*.

be an expression of x as a conver combination of the
vertices of X*. Then,

R ((]l{ko—k}/\a : f)];gi) = I‘(:Z}, f)

This formulation allows us to represent the original de-
cision process with partial monitoring as another one
with full monitoring (with respect to R).

3.3 An auxiliary approachability problem
with full monitoring

We now construct an auxiliary approachability prob-
lem. The payoff space is (RS*Z)X*A and an element
g € (RS*T)EXA will often be written as

ka c RSXI.

§=(3"")rex, where §
A

ac
Thus, if 2 = (z*

ac
the scalar product (g|z) and the Euclidean norm can
be decomposed into:

Jrex also belongs to (RS*T)KxA

(@2) =3 (g*|2) and gl =" (3%
kek kek
acA acA

The auxiliary problem is the following. Let I x A be
the set of decisions for the decision maker and F be the

convex decision set for Nature. The payoff function g
takes values in (RS*%)**A and is defined, for (k,a) €
K xAand f € F, by

g(<k7 a)7 f) = (]l{k:k’}]l{a:a’} : f)k’e)C € (RSXI)KXA'

a' €A

This payoff function is bilinearly extended to A(K x
A) xRS*T. For each k € K, let FF := Ry FF = (Fk)°°
be the smallest closed convex cone containing the con-
vex compact set F* (see Appendix C for definitions
and properties about closed convex cones), and con-
sider the following subset of (RS*T)4:

c* R_ R4) N

(]:k) C (RSXI)A.

We then define the target set Cas:

o

ke

C (RSxI)AxIC.

Proposition 3.3 (i) The sets C* and C are closed

coOnvex cones.

(i) C C R7YRE) N ([Tere (FHA).

(i) C is approachable in the auziliary approachability
problem. In other words, for all Z € C° (the polar
cone of C), there exists & = %(2) € AK x A)
such that

VieF, (& f)Z) <0

4 Back to the original approachability
problem

4.1 The algorithm for the initial problem

The learning algorithm we will construct in the original
problem with partial monitoring is based on the ap-
proachability algorithm of the auxiliary problem with
full monitoring. It depends on two parameters n > 0
and 0 < v < 1. Let Z:=C°N By where By denotes
the closed unit Euclidean ball on (RS*Z)XxA,

At stage t, follow the three following steps:

(i) compute 2z, := P (7725 lgs), where P s de-
notes the Euclidean projection onto Z, and then
Ty = % (%) € A(K x A), where X is defined in
Proposition 3.3;

(ii) draw (k¢ ar) ~ Z¢ and then iy ~ (1 — v)ar + yu,
where u := (\%I’ e ﬁ) is the uniform distribu-
tion over Z; receive signal s; ~ s(i, ji).
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3 Lgii=iy ) s
iii) Let = ("=, e RS*ZT,
i) L fo = (ptlg)
where 05, is the Dirac mass associated with

st € S, (Gi)e>1 is the filtration generated by
(k17a17i17817"‘7ktj17at717it717St717kt7at)7a'nd
set gy := &((k¢, ar), fr)-

The definition of the algorithm implies that

Pli,=i|G/] = (1—v)ai+|;—‘, ieL.
and thus, it is easy to see that (see Lemma A.4) f,

is unbiased, i.e., E [f; ‘ gt] = E|[f:| G|, with relatively

112
small variance E [HftH ‘ Qt} <2 /.
2

4.2 Main result

We now state our main result establishing the rate of
convergence of O(T~1/3) of the average payoff gr to
the negative orthant R% . The constants depend on L.,
the maximal Lipschitz constant of the maps r(z,-).

Theorem 4.1 Let T > 1 be an integer. Against any
choices of Nature, the algorithm defined in Section 4.1

run with n = /ﬁ and

11 L, |T 2/3
= min ( | K| |A|> 713 1
41gll,

12]lglly"* (Le [Z1 K] LAD*® | 2v/7 g,
T1/3 T1/2
 Gllgl" (Le T] K] LADY
T2/3 ’

guarantees that £ [dg (QT, R? )] s upper-bounded by

where da (-, RL) denotes the distance to R? .

Remark 4.2 Since L, scales linearly with ||g|,, so
does the dominant term of the above bound, as ex-
pected.

The proof is divided into several independent steps.

First, we need to introduce some notation. Let gr
be the average for t = 1,...,T of auxiliary payoffs
gt In the analysis we will partition the set of stages
{1,...,T} with respect to the realized values of k; € K
and a; € A. For k € K and a € A, let Np(k, a) be the
set of stages t € {1,...,T} where k; = k and a; = a,
and Ar(k,a) the corresponding proportion of stages:

Np(k,a) ={1<t<T|ki=k, ap =a}
_ [Na(kya)l

Ar(k,a) = =T

Then, for any sequence (u;)1<i<r, we denote @r(k, a)
its average over t € Nr(k,a):

1

N7 (k,a)] Z u; if Np(k,a) # @

tENT (k,a)
0 otherwise.

ur(k,a) ==

Here is an overview of the main steps and arguments.

1. gr is close to % Zthl glae, ye):
a; and y; are approximately the conditional law
of i; and j;; concentration inequalities and the
bilinearity of g yield that g(is,j:) and g(a¢,y:)
are close in expectation, see Lemma B.9.

2. which is equal to Y rex Ar(k,a) - g(a, gr(k,a)):
acA

This is a consequence of the definitions of Ar(k, a)
and gr(k,a), see Lemma B.8.

3. closer to R? than Z Ar(k, a)r(a, fr(k,a)):

kex
acA

it follows from Proposition 3.1, see Lemma B.7.
4. which is close to Spex Ar(k, a) - v (a, fr(k, a))
acA

concentration inequalities give that fT(k‘,a) is
close to fr(k,a) in expectation. Then, the
auxiliary average payoff being close the auxiliary
target set implies that fT(k,a) is close to FF
on which rl*l(a, -) and r(a, -) coincide. This
way, we prove that rl*(a, f)r(k,a) is close to
r(a, fr(k,a)). See Lemma B.6.

5. which is equal to R(gr):
this follows from the
Lemma B.3.

definition of R, see

6. which is close to R?:
this follows from the fact that if the average aux-
iliary payoff gr is close to the auxiliary target set
C then the average payoff gr is close to the target
R?. See Lemmas B.2 and B.1.

4.3 Outcome-dependent signals

This section studies the case where s(i,5) does not
depend on the decision 7 of the decision maker, i.e.,
s(i,j) =s(#',j) for all i,7' € T .

We aim at constructing an approachability algorithm
of the negative orthant RY with a O(T~'/2) conver-
gence rate. The algorithm from Section 3 will be mod-
ified in two ways. First, the estimate ft will be simpler
as exploration is unnecessary, and second, the random
decision of the decision maker will not be perturbed.
All previous notation and assumptions stand.

Let n > 0 be a parameter. For 1 <t < T}
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t—1

(1) let Zt = PZ” (nzgs>, i’t = i(gt) € A(’C X A)
s=1

(ii) draw (k¢,as) ~ &y and 4y ~ a; receive s; € S

(iif) Let f = (Js,)ser

€ RST, gy = g((ku, ar), fr).

The definition of the algorithm implies that the law of
iy knowing G; is a;. The new estimate is also unbiased

N ~ 112
E [ft ‘ gt} — E[f,|G] with fixed variance HftH2 - [7l.

Theorem 4.3 Let T > 1. Against any choices
of Nature, the above algorithm with parameter n =
(T'|Z|)~Y? guarantees

2y (llel + 2L /T 1A
E[dz (37, RZ)] < T1/2

The proof is omitted as it follows the same steps as
the one of Theorem 4.1. One can check that Lem-
mas B.2, B.3, B.7 and B.8 still hold. The modification
of the other lemmas is quite straightforward using the
simpler estimate ft, without exploration parameter ~.

5 Discussions

5.1 Computational efficiency

The first step of our algorithm is the computation of 2
which follows from projecting onto Z := C°NBg, which
can be done efficiently as C° is a polyhedral cone.

The second step is to compute Z; := %(Z;) which by
solving the following minimax problem:

sofnin | mmax (&(T, f)IZ) -

As A(K x A) and F are polytopes, this boils down to
a linear program. So, the per-step complexity is con-
stant and sums up to a projection and a linear pro-
gramming. The construction of the simplicial subdivi-
sions is tedious, but only needed once, before learning.

5.2 Almost-sure convergence

Theorem 4.1 only provides a convergence guarantee in
expectation. We quickly describe how to adapt the
analysis to obtain high probability guarantees.

The proof of Lemma B.1 can be modified in order to
obtain a high probability guarantee on dy(gr, C). We
can easily see that ((§:|2:))¢>1 is a bounded sequence of
super-martingale differences with respect to filtration
(H:):>1 and that (||ge]|5 — (1Z] /7))¢>1 is a bounded
sequence of super-martingale differences with respect

to (G)e>1. Applying the Hoeffding—Azuma inequality
then gives the high probability version of the lemma.

Modifications of Lemmas B.4 and B.9 are straightfor-
ward. We apply high probability versions of the con-
centration inequalities, Propositions E.1 and E.3.

The high probability versions of Lemmas B.5 and B.6
immediately follow from those of Lemma B.1, and
Lemmas B.4 and B.5, respectively. The almost-sure
convergence follow from a Borel-Cantelli argument.

5.3 Comparison with Mannor et al. [2014b]

The algorithm proposed in Mannor et al. [2014b] has a
dimension-independent convergence rate of O(T~1/%).
We highlight a few ideas already present in Mannor
et al. [2014b], and those we have introduced here to
obtain the optimal convergence rate of O(T~'/3).

Mannor et al. [2014Db] also used the single-valued map
r and the decomposition of F and A(Z) into poly-
topes, introduced by Perchet [2011b]. This allowed
them to get the piecewise-affinity of r. This funda-
mental property was then used in the averaging of the
flag estimates on time blocks of fixed lengths, on which
the decision maker uses the same random decision.

The algorithm constructed in Section 4.1 manages to
average the estimators and to approach the target at
the same time, without requiring such blocks, resulting
in an improved optimal rate of O(T~1/3).
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