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Supplementary Material For Conjugate-Computation Variational Inference

A Definition of Conjugacy

The following definition is taken from Chapter 2 of Gelman et al. (2014). Suppose F is the class of data distributions
p(y|z) parameterized by z, and P is the class of prior distributions for z, then the class P is conjugate for F if

p(z|y) ∈ P, ∀p(·|θ) ∈ F and p(·) ∈ P (21)

B Variational Inference in the GP Model and Issues with the SGD Algorithm

To derive the lower bound we substitute the joint-distribution (4) in the lower bound (3) and simplify:

L(q) := Eq[log p(y, z)− log q(z)] (22)

= Eq

[
N∑
n=1

log p(yn|zn) + logN (z|0,K)− logN (z|m,V)

]
(23)

=
∑
n

Eq [log p(yn|zn)]− DKL[N (z|m,V) ‖N (z|0,K)] (24)

=
∑
n

Eq [log p(yn|zn)] + 1
2

[
log |V| − Tr

(
K−1V

)
−mTK−1m

]
+ constant (25)

We can see the special structure of the lower bound. The first term here might be intractable, but the second term (the
KL divergence term) and its gradients have a closed-form expression when q is Gaussian. Therefore we do not need
stochastic-gradient approximations for this term. A naive SGD implementation might ignore this.

There are at least three alternate parameterizations of the posterior N (z|m,V) in this case. We could use the natural
parameters {V−1m,− 1

2V
−1}, or the mean parameters {m,V +mmT }, or simply use {m,V} itself. Different parame-

terization lead to different updates whose computational efficiency differ drastically. For example, if we choose to update
the inverse of covariance V−1, we get the following updates:

V−1
t+1 = V−1

t +
ρt
2

[
∂

∂V−1

∑
n

Eq [log p(yn|zn)]

∣∣∣∣∣
V=Vt

− 1
2Vt + 1

2VtK
−1Vt

]
(26)

On the other hand, if we choose to update the covariance V instead, we get the following update:

Vt+1 = Vt +
ρt
2

[
∂

∂V

∑
n

Eq [log p(yn|zn)]

∣∣∣∣∣
V=Vt

+ 1
2V
−1
t − 1

2K
−1

]
(27)

The two updates are quite different. The second update involves less computation than the first one because the last term
in the first update involves multiplication of three matrices. Both of these steps require explicitly forming the matrix V
and V−1, which might be infeasible for large N (e.g. a million data points). In addition, they both compute inverse of K
which might be ill-conditioned.

The above parameterization requires O(N2) memory, however, it is well known that for the GP model, there are only
O(N) free parameters (Opper and Archambeau, 2009). Choosing any of the three parameterizations discussed earlier will
lead to an algorithm that is an order of magnitude slower than the best option.

Our CVI method completely avoids this re-parameterization issue by expressing the gradient steps as a conjugate com-
putation step. Our updates naturally only have O(N) free variational parameter which are obtained by using stochastic-
gradients of the non-conjugate terms Eq[log p(yn|zn)]. We can reduce the number of gradients to be computed in each
iteration t to O(1) by using a doubly-stochastic scheme.

B.1 Stochastic Gradients with respect to the Mean Parameters

In this section, we explain the computation of the gradient of fn = Eq[log p(yn|zn)] with respect to the following mean
parameter of the Gaussian distribution q(zn) = N (zn|mn, Vnn):

µ(1)
n := mn, µ(2)

n := Vnn +m2
n (28)
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According to (Opper and Archambeau, 2009), the gradient with respect to the mean, mn and the variance, Vnn are:

∂fn
∂mn

= Eq
[
∂fn
∂zn

]
,

∂fn
∂Vnn

= 1
2Eq

[
∂2fn
∂z2
n

]
(29)

Therefore, we can easily approximate these gradients by using the Monte Carlo method. By using the chain rule, we can
express the gradient with respect to the mean parameters in terms of the gradients with respect to mn and Vnn and then use
Monte Carlo. We derive these expressions below.

For notation simplicity, we drop n from now and refer to mn and Vnn as m and v, respectively. We first express m and v
in terms of the mean parameters: m = µ(1) and v = µ(2) − (µ(1))2. By using the chain rule, we express the gradient with
respect to the mean parameters in terms of the gradients with respect to m and v:

∂f

∂µ(1)
=

∂f

∂m

∂m

∂µ(1)
+
∂f

∂v

∂v

∂µ(1)
=

∂f

∂m
− 2

∂f

∂v
m (30)

∂f

∂µ(2)
=

∂f

∂m

∂m

∂µ(2)
+
∂f

∂v

∂v

∂µ(2)
=
∂f

∂v
(31)

C Basics of Exponential Families

We summarize a few results regarding exponential family. Details of these results can be found in Chapter 3 of Wainwright
and Jordan (2008). We assume that q(z|λ) takes the following exponential form:

q(z|λ) = h(z) exp {〈λ,φ(z)〉 −A(λ)} (32)

where φ := [φ1, φ2, . . . , φM ] is a vector of sufficient statistics, λ := [λ1, λ2, . . . , λM ]T is a vector of natural parameters,
〈a,b〉 is an inner product, and A(λ) is the log-partition function. The set of natural parameters is denotes by Ω := {λ ∈
RM |A(λ) <∞}.

We call the above representation minimal when there does not exist a nonzero vector a ∈ RM such that the linear com-
bination 〈a,φ〉 is equal to a constant. Minimal representation implies that each distribution q(z|λ) has a unique natural
parametrization λ.

We define the mean parameter associated with a sufficient statistic φm as follows:

µm := Eq [φm(z)] (33)

We denote the vector of parameter by µ. The set of valid mean parameters is defined as shown below:

M := {µ ∈ RM |∃ p s.t. Eq[φm(z)] = µm, ∀m} (34)

It is easy to show that A(λ) is convex, and the mean parameter can be obtained by simply differentiating it, i.e., µ =
∇A(λ). The mapping∇A is one-to-one and onto iff the representation is minimal. This property allows us to switch back
and forth between Ω andM.

Since∇A is convex, we can find its convex conjugate as follows:

A∗(µ) := sup
λ∈Ω
{〈µ,λ〉 −A(λ)} (35)

It is easy to see that λ = ∇A∗(µ), therefore the pair of operators (∇A,∇A∗) lets us switch back and forth between Ω and
M.

Bregman divergences associated with functions A and A∗ is defined as follows:

BA∗(λ1‖λ2) := A(λ1)−A(λ2)− 〈λ1 − λ2,∇λA(λ2)〉 (36)
BA∗(µ1‖µ2) := A∗(µ1)−A∗(µ2)− 〈µ1 − µ2,∇µA∗(µ2)〉 (37)
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D Proof of Theorem 1

To simplify the notation, we will refer to p̃c(y, z) and p̃nc(y, z) by simply p̃c and p̃nc respectively. Similarly, we will
refer to q(z|λ) and q(z|λt) by q and qt respectively. Using this notation and the split of the joint distribution given in
Assumption 2, the variational lower bound can be written as follows:

L̃(µ) = L(λ) = Eq[log p̃nc] + Eq[log(p̃c/q)] (38)

We prove Theorem 1 by proving several lemmas. We start with the following lemma which shows that the linear approxi-
mation of the second term (the conjugate part) in (38) simplifies to the term itself plus a KL divergence term.

Lemma 1. For the conjugate part of the lower bound, we have the following property:

〈µ,∇µEq[log(p̃c/q)]|µ=µt
〉 = Eq [log(p̃c/q)] + Eq [log(q/qt)] + c (39)

where c is a constant that does not depend on µ (or λ).

Proof. By substituting the definitions of p̃c and q, we get the following:

〈µ,∇µEq[log(p̃c/q)]|µ=µt
〉 = 〈µ,∇µEq[〈φ(z),η − λ〉+A(λ)]|µ=µt

〉 = 〈µ,∇µ[〈µ,η − λ〉+A(λ)]|µ=µt
〉 (40)

We derive the gradient w.r.t. µ below:

∇µ [〈µ,η − λ〉+A(λ)] = η − λ− 〈µ,∇µλ〉+∇µA(λ) = η − λ−C−1
λ µ + C−1

λ µ = η − λ (41)

where Cλ is the Fisher-information matrix and we use the fact that the gradient w.r.t. µ is equal to C−1
λ times the gradient

w.r.t. λ (this is explained in Appendix F. Substituting this back,

〈µ,∇µEq[log(p̃c/q)]|µ=µt
〉 = 〈µ,η − λt〉 (42)

= Eq [〈φ(z),η − λt〉+A(λt)] + c (43)
= Eq [log(p̃c/qt)] + c (44)
= Eq [log(p̃c/q)] + Eq [log(q/qt)] + c (45)

The following lemma shows that the Bregman divergence is equal to the KL divergence which has a convenient form.

Lemma 2. For all q and qt satisfying Assumption 1, we have the following relationships:

BA∗(µ‖µt) = BA(λt‖λ) = Eq[log(q/qt)] (46)

Proof. The following equivalence holds between the two Bregman divergences defined using A and A∗ (see Raskutti and
Mukherjee (2015), for example): BA(λt‖λ) = BA∗(µ‖µt). The last equality can be proved as follows:

Eq[log(q/qt)] = Eq [〈φ(z),λ〉 −A(λ)− 〈φ(z),λt〉+A(λt)] (47)
= A(λt)−A(λ)− 〈λt − λ,∇A(λ)〉 (48)
= BA(λt‖λ) = BA∗(µ‖µt) (49)

Denoting the gradient of the non-conjugate term by gt := ∇̂µEq[log p̃nc]|µ=µt
, the following lemma shows that using

Lemma 1 and 2 we can get a closed-form solution for (10).

Lemma 3. The solution of (10) is equal to the mean µt+1 of the following distribution:

qt+1 ∝
{
e〈φ(z),gt〉p̃c

}βt

(qt)
1−βt (50)
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Proof. Using (38), we get the following expression for the first term in (10) which we simplify in the second line using
Lemma 1:

〈µ, ∇̂µL̃(µt)〉 = 〈µ, ∇̂µEq[log p̃nc] + ∇̂µEq[log(p̃c/q)]〉 (51)

= 〈µ, ∇̂µEq[log p̃nc]〉+ Eq[log(p̃c/q)] + Eq[log(q/qt)] + c (52)

Plugging this in (10) and using Lemma 2, we get the following objective function:

〈µ, ∇̂µEq[log p̃nc]〉+ Eq[log(p̃c/q)] + Eq[log(q/qt)]−
1

βt
Eq[log(q/qt)] (53)

= 〈µ, ∇̂µEq[log p̃nc]〉+ Eq[log(p̃c/q)]−
1− βt
βt

Eq[log(q/qt)] (54)

= Eq
[
〈φ(z), ∇̂µEq[log p̃nc]〉+ log(p̃c/q)−

1− βt
βt

log(q/qt)

]
(55)

= Eq

log
exp

{
〈φ(z), ∇̂µEq[log p̃nc]〉

}
p̃cq

(1−βt)/βt

t

q1+(1−βt)/βt

 (56)

= Eq

log
exp

{
〈φ(z), ∇̂µEq[log p̃nc]〉

}
p̃cq

(1−βt)/βt

t

q1/βt

 (57)

=
1

βt
Eq

log

(
exp

{
〈φ(z), ∇̂µEq[log p̃nc]〉

}
p̃c

)βt

q
(1−βt)
t

q

 (58)

The numerator is an unnormalized exponential family distribution which takes the same exponential family form as q (note
that the base measure h(z) is present in both p̃c and qt which sums to h(z) due to convex combination). The normalizing
constant of this distribution does not depend on µ, therefore the minimum is obtained when the numerator is equal to the
denominator (minimum of the KL divergence). This proves the lemma.

Finally, the following lemma uses recursion to express the solution as a Bayesian inference in a conjugate model.

Lemma 4. Given the conditions of Theorem (1), the distribution qt+1 is equal to the posterior distribution of the following
model: qt+1 ∝ exp(〈φ(z), λ̃t〉) p̃c.

Proof. Denote the gradient of the non-conjugate term by gt := ∇̂µEq[log p̃nc]|µ=µt
, If we initialize q1 ∝ p̃c and λ̃0 := 0,

we can apply recursion to express qt+1 as a conjugate model. We demonstrate this for q1, q2, and q3 below:

q1 ∝ (p̃c)
β0(p̃c)

1−β0 = p̃c (59)

q2 ∝ exp 〈φ(z), β1g1〉(p̃c)β1(q1)1−β1 (60)

= exp 〈φ(z), β1g1〉(p̃c)β1 p̃1−β1
c

= exp 〈φ(z), β1g1〉p̃c (61)

= exp 〈φ(z), λ̃1〉p̃c (62)

q3 ∝ exp 〈φ(z), β2g2〉(p̃c)β2(q2)1−β2 (63)

= exp 〈φ(z), β2g2 + (1− β2)λ̃1〉p̃c (64)

= exp 〈φ(z), λ̃2〉p̃c (65)

Proceeding as above, we get the required result.
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E Examples of CVI

E.1 Example: Generalized Linear Model

A GLM assumes the following joint distribution:

p(y, z) :=

[
N∏
n=1

p(yn|x̃Tnz)

]
︸ ︷︷ ︸

p̃nc(y,z)

N (z|0, δI) (66)

where x̃n = [1,xTn ]T . For a Gaussian distribution q := N (z|m,V), the data terms p(yn|x̃Tnz) are the non-conjugate terms.
We define ηn := x̃Tnz and use its mean parameters in a similar way as GPs to obtain the natural parameter approximations
λ̃

(1)
n,t and λ̃(2)

n,t of the data term p(yn|x̃Tnz). In step 3 of Algorithm 1, these are updated as follows:

λ̃
(i)
n,t = (1− βt)λ̃(i)

n,t−1 + βt∇̂µ(i)
n
Eqt [log p(yn|ηn)]|µ=µt

where µ(i)
n is the i’th mean parameter of q(ηn).

Using the above parameters for the approximations, we can write Step 4 as a conjugate computation in the following
Bayesian linear regression:

qt+1 ∝

[
N∏
n=1

N (ỹn,t|x̃Tnz, σ̃2
n,t)

]
N (z|0, δI)

where ỹn,t = σ̃2
n,tλ

(1)
n,t, σ̃

2
n,t = −1/(2λ̃

(2)
n,t),

E.2 Example: Kalman Filters with GLM Likelihoods

We seek a Gaussian approximation q(z) = N (z|m,V) to the following time-series model (we denote time by k to
differentiate it from the iteration t):

p(y, z) = N (z0|0, 1)

K∏
k=1

N (zk|zk−1, σ
2)

K∏
k=1

p(yk|zk)︸ ︷︷ ︸
p̃c(y,z)

(67)

The likelihood terms p(yk|zk) are non-conjugate to q and by using our method we can approximate them by
N (ỹk,t|zk−1, σ̃

2
k,t) where ỹk,t = σ̃2

k,tλ
(1)
k,t , σ̃

2
k,t = −1/(2λ̃

(2)
k,t), and λ̃(i)

k,t are updated as follows:

λ̃
(i)
k,t = (1− βt)λ̃(i)

k,t−1 + βt∇̂µ̃(i)
k

Eqt [log p(yk|zk)]|µ=µt

with µ̃(i)
k being the i’th mean parameter of q(zk).

E.3 Example: A Gamma Distribution Model

We consider a simple non-conjugate Gamma distribution model discussed by Knowles (2012). We use the following
definition of the Gamma distribution: Ga(x|α, β) ∝ xα−1e−xβ , where x, α, and β are all non-negative scalars.

Given a Gamma distributed scalar observation y, we place a Gamma prior on the shape parameter z, as shown below:

p(y, z) = Ga(y|z, 1)︸ ︷︷ ︸
p̃nc(y,z)

Ga(z|a, b) (68)

The rate of the likelihood is fixed to 1, and the prior parameters a and b are known. Our goal is to find the posterior
distribution p(z|y) which we will approximate with a Gamma distribution: q(z) = Ga(z|α, β). Clearly, the likelihood is
non-conjugate to q.
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The sufficient statistics and mean parameters of a Gamma distribution are as follows:

φ1(z) = z, µ1 := Eq[φ1(z)] = ψ(α)− log β

φ2(z) = log z, µ2 := Eq[φ2(z)] = α/β (69)

where ψ is the digamma function. Using these in the CVI updates we get the following update:

qt+1 ∝ e
[
zλ̃

(1)
t +(log z)λ̃

(2)
t

]
Ga(z|a, b) (70)

where λ̃(i)
t are updated as follows for i = 1, 2:

λ̃
(i)
t = (1− βt)λ̃(i)

t−1 + βt∇̂µ̃iEqt [log p(y|z)]|µ=µt (71)

The approximated term is conjugate to the Gamma distribution and therefore it is straightforward to compute the posterior
parameters.

F Gradient with respect to µ for exponential family

For some distributions in the exponential family, it may be difficult to directly compute the gradient with respect to µ.
We propose to express the gradient w.r.t. µ in terms of the Fisher information matrix and the gradient w.r.t. the natural
parameter, by using the chain rule. Given the following function of interest f(µ) = Eq(z) [h(z)], we can formally express
this as follows:

∂f

∂µ
=

[
∂2A(λ)

∂λ2

]−1
∂f

∂λ
(72)

Since each of these quantities can be written as expectations, as shown below, we can use the re-parametrization trick
Kingma and Welling (2013) along with the Monte Carlo method to approximate them.

∂2A(λ)

∂λ2 =
∂µ

∂λ
=
∂Eq(z)[φ(z)]

∂λ
(73)

∂f

∂λ
=
∂Eq(z)[h(z)]

∂λ
(74)

where φ(z) is the sufficient statistics of q(z).

G Derivation of the CVI Algorithm for Mean-Field

We rewrite the objective function which naturally splits over i:

max
µ

M∑
i=1

[〈
µi, ∇̂µi

L̃(µt)
〉
− 1

βt
BA∗(µi‖µi,t)

]
(75)

We can optimize each µi parallely or use a doubly-stochastic method to optimize.

In the following, µ/i denotes the mean-parameter vector without µi.

To optimize with respect to a µi, we need to express the lower bound as a function of µi. By using Assumption 4, the
lower bound with respect to µi can be expressed as a sum over non-conjugate and conjugate parts. We show this below in
(76) which is obtained by replacing the joint distribution by the conditional of zi. The second step afterwards is obtained
by substituting (18) from Assumption 4. The third step is obtained by using the definition of qi(zi|λi) given in (17) in



Khan, Lin

Assumption 3. The fourth step is obtained by taking the expectation inside.

L̃(µi,µ/i) = Eq
[
log p(zi|x/i)− log qi(zi|λi)

]
+ constant (76)

= Eq

[
log hi(zi) +

∑
a∈Ni

log p̃a,inc (zi,xa/i) +
∑
a∈Ni

〈φi(zi),ηa,i(xa/i)〉 − log qi(zi|λi)

]
+ constant (77)

= Eq

[∑
a∈Ni

log p̃a,inc (zi,xa/i) +
∑
a∈Ni

〈φi(zi),ηa,i(xa/i)− λi〉+Ai(λi)

]
+ constant (78)

=
∑
a∈Ni

Eq{log p̃a,inc (zi,xa/i)}+ 〈µi,
∑
a∈Ni

Eq/i{ηa,i(xa/i)} − λi〉+Ai(λi) + constant (79)

This is similar to (38) since the first term is non-conjugate while the rest of the terms correspond to conjugate parts in the
model. We rewrite this below by using the notation η̃a,i := Eq/i,t{ηa,i(xa/i)}:

L̃(µi,µ/i) =
∑
a∈Ni

Eq[log p̃a,inc ] + 〈µi,
∑
a∈Ni

η̃ai − λi〉+Ai(λi) + constant (80)

=
∑
a∈Ni

Eq[log p̃a,inc ] + Eqi [log(p̃ic/qi)] + constant (81)

where p̃ic is a conjugate factor whose natural parameter is equal to
∑
a∈Ni

η̃ai. Therefore, we can simply use Lemma 1 to
3 to simplify.

Using the results of Lemma 3, we get the following expression:

qi,t+1 ∝

[
exp

{〈
φi(zi),

∑
a∈Ni

∇̂µi
Eq[log p̃a,inc ]|µ=µt

〉}
p̃ic

]βt

(qi,t)
1−βt (82)

=

[
exp

{〈
φi(zi),

∑
a∈Ni

[
∇̂µi

Eq[log p̃a,inc ]|µ=µt
+ η̃ai

]〉}]βt

(qi,t)
1−βt (83)

We define the natural parameter of the approximation term in the exponential:

λ̃i,t =
∑
a∈Ni

[
η̃ai + ∇̂µiEqt [log p̃a,inc ]|µ=µt

]
(84)

The natural parameter of qt+1 is obtained by taking a convex combination of λ̃i,t and the natural parameter of qt, i.e., λi,t:

λi,t+1 = βtλ̃i,t + (1− βt)λi,t (85)

G.1 Equivalence to NC-VMP

We can show that NC-VMP is equivalent to our method under these conditions: the gradients w.r.t. the mean are exact and
the step-size is set to 1, i.e., βt = 1. We now present a formal proof.

We rewrite the lower bound w.r.t. µi shown in (80):

L̃(µi,µ/i) =
∑
a∈Ni

Eq[log p̃a,inc ] +

〈
µi,

∑
a∈Ni

η̃ai − λi

〉
+Ai(λi) + constant (86)

By taking the derivative w.r.t. µi using (41), we get the first line below.

∇µiL̃(µi,µ/i) =
∑
a∈Ni

∇µiEq[log p̃a,inc ] +
∑
a∈Ni

η̃ai − λi (87)

We define the conjugate factor with natural parameter η̃ai by p̃aic . We use the property that the gradient of a conjugate-
exponential term, such as Eq[log p̃aic ] w.r.t. µi is equal to the term itself. We derived this while proving Lemma 1 in
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Appendix D (although it is easy to prove by simply substituting the definition of p̃aic ). Therefore in the second term, we
can simply substitute the gradient of Eq[log p̃aic ] to get the following:

∇µiL̃(µi,µ/i) =
∑
a∈Ni

∇µiEq[log p̃a,inc ] +
∑
a∈Ni

∇µiEq[log p̃a,ic ]− λi (88)

=
∑
a∈Ni

∇µi
Eq[log p(xa|xpaa)]− λi (89)

where the last line is obtain by using Assumption 4.

We also note that the derivative of the Bregman divergence term BA∗
i
(µi‖µi,t) is equal to λi − λi,t.

∇µi
BA∗

i
(µi‖µi,t) = ∇µi

[
A∗i (µi)−A∗i (µi,t)− 〈µi − µi,t,∇A∗i (µi,t)〉

]
(90)

= ∇µi
A∗i (µi)−∇µi

A∗i (µi,t) (91)

= λi − λi,t (92)

When we use βt = 1, mirror descent reduces to the following:

max
µi

〈
µi, ∇̂µiL̃(µt)

〉
− BA∗(µi‖µi,t) (93)

Taking the derivative w.r.t. µi and setting it to zero, we get:

λi,t+1 =
∑
a∈Ni

∇µiEq[log p(xa|xpaa)]|µ=µt =
∑
a∈Ni

C−1
i,t ∇λiEq[log p(xa|xpaa)]|λ=λt (94)

where Ci,t is the Fisher information matrix of qi,t. This is exactly the message used in NC-VMP.

H Dataset Details

Datasets for Bayesian logistic regression is available at https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/
datasets/binary.html, for gamma factor model can be found at https://github.com/davidaknowles/gamma_
sgvb, and for Gaussian-process classification can be obtained from https://github.com/emtiyaz/prox-grad-svi.

For all experiments, we first use grid search to tune model hyper-parameters and then fix them during our experiments.
The statistics of the datasets and the model hyper-parameters used are given in Table 1.

Table 1: A list of models and datasets. NTrain is the number of training data. K is the number of factors. The last column
shows the values of hyperparameters. The details of the hyperparameters can be found in Appendix E. For GP classification
σf and l are hyperparameters of the squared-exponential kernel.

Model Dataset N D NTrain Hyperparameters

Bayesian Logistic Regression
a1a 32,561 123 1,605 δ = 2.8072
a7a 32,561 123 16,100 δ = 5.0
Colon-cancer 62 2000 31 δ = 596.3623
Australian-scale 690 14 345 δ = 10−5

Breast-cancer-scale 683 10 341 δ = 1.0
Covtype-binary-scale 581,012 54 290,506 δ = 0.002

Gamma Factor Model Cytof 522,656 40 300,000 σ2 = 0.1, K = 40, a = b = 1.0

Gamma Matrix Factorization MNIST 70,000 784 60,000 a(z0) = b(z0) = a(w0) = 0.1
b(z0) = 0.3, K = 100

Gaussian Process Classification USPS3vs5 1,781 256 884 log(σf ) = 5.0, log(l) = 2.5

I Algorithmic Details and Additional Results

In this section, we include 3 additional methods in our comparisons. We compare to a method called PG-SVI which is
similar to the PG-exact method but uses stochastic gradients are used. Similarly, we also compare to a method called

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://github.com/davidaknowles/gamma_sgvb
https://github.com/davidaknowles/gamma_sgvb
https://github.com/emtiyaz/prox-grad-svi
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CVI-exact which is similar to CVI but uses exact gradients. For GP classification, we compare to expectation propagation
(EP).

Table 2 gives the details of algorithmic parameters used in our experiments.

Table 2: Algorithmic Parameters and Model Parameters
Model Datasets step size MC samples

CVI-exact, PG-exact, CVI, S&K Alg2, S&K FG (β = w
1+w )

Colon-cancer w = 0.3 10
Bayesian Logistic Regression Australian-scale w = 0.4 10

a1a w = 0.4 10
a7a w = 0.4 10
Breast-cancer-scale w = 0.3 10
Covtype-scale w = 0.3 10

Knowles, CVI, where w0 denotes the initial step size in Knowles (Ada-delta)
w0 = 10.0 (Knowles)

Gamma Factor Model Cytof β = 5× 10−5 (CVI) 50
ADAM, CVI, where w0 denotes the initial step size in ADAM

w0 = 0.5 (ADAM)
Gamma Matrix Factorization MNIST β = 0.02 (CVI) 10

CVI-exact, PG-exact, CVI, PG-SVI (β = w
1+w )

w = 1.0 (CVI-exact, PG-exact)
Gaussian Process Classification USPS3vs5 w = 0.3 (CVI,PC-SVI ) 100

I.1 Additional Results

We compare Bayesian logistic regression on seven real datasets. The results are summarized in Table 3. All methods reach
the same performance. Chol is the slowest method. WhenD > N S&K-FG is supposed to perform better than S&K-Alg2,
but the situation is reversed when N > D. PG-Exact and CVI-exact are expected to have the same performance. CVI is
expected to be a faster than them because stochastic gradients might be cheaper to compute. It is also expected to perform
well for both N > D regime and D > N regime.

Additional results for the gamma factor model and gamma matrix factorization model are in Table 4 and 5 respectively.

For GP Classification, we present results below where we compare our method (CVI) to the following methods: expectation
propagation (EP), explicit optimization with LBFGS using Cholskey factorization (Chol), Proximal gradient methods (PG-
SVI). For PG-SVI and CVI, we use MC approximation to compute gradient while for CVI-exact, we use exact gradient.
Figure 2 shows the result of Gaussian Process Classification.

J Details of the Gamma Factor Model

We consider the model discussed by Knowles (2015). In this model, observations yi ∈ RD, i = 1 . . . N are modeled as

p(Y,Z|σ2, a, b) = p(Y|Z)p(Z) =

[
N∏
i=1

p(yi|Z, σ2)

] D∏
j=1

K∏
k=1

p(Zjk|a, b)

 (95)

where each column of Y follows p(yi|Z, σ2) = N (yi|0,ZZ
T + σ2I) and each element of Z follows p(Zjk|a, b) =

Ga(Zjk|a, b) with the following parameterization Ga(x|α, β) ∝ xα−1e−xβ .

This is a non-conjugate model since the data term p(y|Z) is not conjugate to the prior p(Z). We choose the following
mean-field approximation:

q(Z) =

N∏
i=1

D∏
j=1

q(Zj,k).

where each factor is a Gamma distribution.
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Figure 2: Comparison on Gaussian Process Classification.

K Details of the Gamma Matrix Factorization

Given the data matrix X of size V ×N , the Gamma matrix-factorization assumes the following joint-distribution:

p(X,W,Z) =

V∏
i=1

 N∏
j=1

p(Xi,j |wT
i zj)


×

[
V∏
i=1

K∏
k=1

Ga(wk,i|a(w0)
k,i , b

(w0)
k,i )

] N∏
j=1

K∏
k=1

Ga(zk,j |a(z0)
k,j , b

(z0)
k,j )

 (96)

where wi, zj are K dimensional latent vectors, W and Z are K × V and K × N matrices respectively. The likelihood
term p(Xi,j |wT

i zj) is a Poisson distribution. We use the following gamma posterior:

q(W,Z) =

[
V∏
i=1

K∏
k=1

Ga(wk.i|a(w)
k,i , b

(w)
k,i )

] N∏
j=1

K∏
k=1

Ga(zk,j |a(z)
k,j , b

(z)
k,j)

 (97)
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Table 3: A summary of the results obtained on Bayesian logistic regression. In all columns, a lower value implies better
performance. We report total time of convergence.

Dataset Methods Neg-Log-Lik Log Loss Time

a1a (N > D)

Chol 591.4 0.49 0.82s
S&K Alg2 590.5 0.49 0.07s
S&K FG 590.5 0.49 0.09s
PG-exact 591.6 0.49 0.15s
CVI-exact 590.5 0.49 0.10s
CVI 590.4 0.49 0.10s

a7a (N > D)

Chol 5,418.1 0.47 17.79s
S&K Alg2 5,416.4 0.47 0.74s
S&K FG 5,416.3 0.47 1.19s
PG-exact 5,418.0 0.47 1.35s
CVI-exact 5,416.3 0.47 1.17s
CVI 5,416.3 0.47 0.95s

Colon-cancer (D > N)

Chol 18.26 0.694 93.229s
S&K Alg2 18.26 0.693 6.142s
S&K FG 18.26 0.693 0.026s
PG-exact 18.25 0.696 0.052s
CVI-exact 18.26 0.698 0.012s
CVI 18.26 0.698 0.021s

Australian-scale (N > D)

Chol 191.62 0.473 0.193s
S&K Alg2 190.99 0.480 0.013s
S&K FG 190.95 0.479 0.034s
PG-exact 191.57 0.479 0.056s
CVI-exact 191.14 0.480 0.020s
CVI 191.30 0.478 0.011s

Breast-cancer-scale (N > D)

Chol 34.21 0.139 0.110s
S&K Alg2 34.20 0.139 0.014s
S&K FG 34.15 0.137 0.036s
PG-exact 34.18 0.138 0.063s
CVI-exact 34.24 0.138 0.032s
CVI 34.15 0.140 0.021s

Covtype-scale (N > D) but N is large

Chol 149,641 0.7404 198.1932s
S&K Alg2 149,623 0.7403 56.7972s
S&K FG 149,612 0.7403 20.309s
PG-exact 149,615 0.7403 42.6777s
CVI-exact 149,615 0.7403 39.5720s
CVI 149,616 0.7403 14.3319s

Table 4: Results obtained on Gamma factor model, a lower value implies better performance. CVI is much faster than
Knowles method.

Dataset Methods Log Loss Time

Cytof Knowles 52.25 210.03s
CVI 52.52 50.91s

Table 5: Results obtained on Gamma Matrix Factorization, a lower value implies better performance. CVI outperforms
ADAM.

Dataset Methods Test Loss Time

MNIST ADAM 0.000125 1776.83s
CVI 0.000119 1692.64s


