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Abstract

Originally formulated in Social Choice the-
ory, Ranking Aggregation, also referred to as
Consensus Ranking, has motivated the devel-
opment of numerous statistical models since
the middle of the 20th century. Recently,
the analysis of ranking/preference data has
been the subject of a renewed interest in
machine-learning, boosted by modern appli-
cations such as meta-search engines, giving
rise to the design of various scalable algo-
rithmic approaches for approximately com-
puting ranking medians, viewed as solutions
of a discrete (generally NP-hard) minimiza-
tion problem. This paper develops a statisti-
cal learning theory for ranking aggregation in
a general probabilistic setting (avoiding any
rigid ranking model assumptions), assessing
the generalization ability of empirical ranking
medians. Universal rate bounds are estab-
lished and the situations where convergence
occurs at an exponential rate are fully char-
acterized. Minimax lower bounds are also
proved, showing that the rate bounds we ob-
tain are optimal.

1 INTRODUCTION

In ranking aggregation, the goal is to summarize a col-
lection of rankings over a set of alternatives by a single
(consensus) ranking. This problem has been the sub-
ject of a good deal of attention in various fields: start-
ing from elections in social choice theory (see Borda,
1781; Condorcet, 1785), it has been applied to meta-
search engines (see for instance Desarkar et al., 2016;
Dwork et al., 2001; Renda and Straccia, 2003), compe-
titions ranking (see for instance Davenport and Lovell,
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2005; Deng et al., 2014) or bioinformatics (see for in-
stance Kolde et al., 2012; Patel et al., 2013) among
others.

Two main approaches have emerged in the literature
to state the rank aggregation problem. The first one,
originating from the seminal work of Condorcet in the
18th century (Condorcet, 1785), considers a generative
probabilistic model on the rankings and the problem
then consists in maximizing the likelihood of a can-
didate aggregate ranking. This MLE approach has
been widely used in machine-learning and computa-
tional social choice, see e.g. Conitzer et al. (2009);
Conitzer and Sandholm (2005); Truchon (2008). Al-
ternatively, the metric approach consists in choosing
a (pseudo-) distance on the set of rankings and then
finding a barycentric/median ranking, i.e. a ranking
at minimum distance from the observed ones. It en-
compasses numerous methods, including the popular
Kemeny aggregation, which the present paper focuses
on. These two approaches can be related in certain
situations however. Indeed, Kemeny aggregation can
be given a statistical interpretation: it is equivalent to
the MLE approach under the noise model intuited by
Condorcet (see Young, 1988) then formalized as the
Mallows model (see definition in Remark 7).

Consensus ranking has given rise to a wide variety
of results, much too numerous to be listed exhaus-
tively. In particular, Kemeny aggregation has been
shown to satisfy many desirable properties (see for
instance Young and Levenglick, 1978) but also to be
NP-hard to compute (Bartholdi et al., 1989), even for
four votes (Dwork et al., 2001). This has led to dif-
ferent approaches to apprehend the complexity of this
problem: bounds on the cost of approximation pro-
cedures have been obtained by Diaconis and Graham
(1977), Coppersmith et al. (2006) or Sibony (2014),
whereas Conitzer et al. (2006) and Davenport and
Kalagnanam (2004) obtained approximation bounds
that can be computed based on the ranking data (from
the pairwise majority graph namely) and developed
greedy procedures. Approximation of the Kemeny ag-
gregation under polynomial complexity cost was also
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considered in several papers, among which one finds
Ailon et al. (2008), Van Zuylen and Williamson (2007)
or Betzler et al. (2008). In Saari and Merlin (2000)
consistency relationships between Kemeny aggregation
and the Borda Count have been exhibited, while Pro-
caccia et al. (2012) considered the recovery of the top-k
alternatives.

Concerning the metric approach, much effort has been
devoted to developing efficient algorithms for the com-
putation of a median permutation related to a given
collection of rankings, whereas statistical issues about
the generalization properties of such empirical medi-
ans have been largely ignored as far as we know. The
sole statistical analyses of ranking aggregation have
been carried out in the restrictive setting of parametric
models. Hence, in spite of this uninterrupted research
activity, the generalization ability of ranking aggrega-
tion rules has not been investigated in a formal prob-
abilistic setup, with the notable exception of Soufiani
et al. (2014), where a decision-theoretic framework is
introduced and the properties of Bayesian estimators
for parametric models are discussed (as popular ax-
ioms in social choice). In this paper, we develop a
general statistical framework for Kemeny aggregation,
on the model of the probabilistic results developed for
pattern recognition (see Devroye et al., 1996), the flag-
ship problem in statistical learning theory. Precisely,
conditions under which optimal elements can be char-
acterized are exhibited, universal rate bounds for em-
pirical Kemeny medians are stated and shown to be
minimax. A low noise property is also introduced that
allows to establish exponentially fast rates of conver-
gence, following in the footsteps of the results obtained
in Koltchinskii and Beznosova (2005) for binary clas-
sification.

The paper is organized as follows. In section 2, key
notions of consensus ranking are briefly recalled and
the statistical framework considered through the pa-
per is introduced at length, together with the main
notations. Section 3 is devoted to the characteriza-
tion of optimal solutions for the Kemeny aggregation
problem, while section 4 provides statistical guarantees
for the generalization capacity of empirically barycen-
tric rankings in the form of rate bounds in expecta-
tion/probability. The sketch of technical proofs is de-
ferred to the Appendix section, see the Supplementary
Material for further details.

2 BACKGROUND

We start with a rigorous formulation of (the met-
ric approach of) consensus ranking and describe next
the probabilistic framework for ranking aggregation we
consider in this paper. Here and throughout, the in-

dicator function of any event E is denoted by I{E},
the Dirac mass at any point a by δa, and we set
sgn(x) = 2I{x ≥ 0} − 1 for all x ∈ R. At last, the
set of permutations of the ensemble JnK = {1, . . . , n},
n ≥ 1 is denoted by Sn.

2.1 Consensus Ranking

In the simplest formulation, a (full) ranking on a set
of items JnK is seen as the permutation σ ∈ Sn that
maps an item i to its rank σ(i). Given a collection of
N ≥ 1 permutations σ1, . . . , σN , the goal of ranking
aggregation is to find σ∗ ∈ Sn that best summarizes it.
A popular approach consists in solving the following
optimization problem:

min
σ∈Sn

N∑
i=1

d(σ, σi), (1)

where d(., .) is a given metric on Sn. Such a barycen-
tric permutation, referred to as a consensus/median
ranking sometimes, always exists, since Sn is finite,
but is not necessarily unique. In the most studied ver-
sion of this problem, termed Kemeny ranking aggre-
gation, the metric considered is equal to the Kendall’s
τ distance (see Kemeny, 1959): ∀(σ, σ′) ∈ S2

n,

dτ (σ, σ′) =
∑
i<j

I{(σ(i)− σ(j))(σ′(i)− σ′(j)) < 0},

i.e. the number of pairwise disagreements between
σ and σ′. Such a consensus has many interesting
properties, but is NP-hard to compute. Various al-
gorithms have been proposed in the literature to com-
pute acceptably good solutions in a reasonable amount
of time, their description is beyond the scope of the
paper, see for example Ali and Meila (2012) and the
references therein.

2.2 Statistical Framework

In the probabilistic setting we consider here, the col-
lection of rankings to be aggregated is supposed to
be composed of N ≥ 1 i.i.d. copies Σ1, . . . , ΣN of
a generic random variable Σ defined on a probability
space (Ω, F , P) drawn from an unknown probability
distribution P on Sn (i.e. P (σ) = P{Σ = σ} for any
σ ∈ Sn). With respect to a certain metric d(., .) on
Sn (e.g. the Kendall τ distance), a (true) median of
distribution P w.r.t. d is any solution of the minimiza-
tion problem:

min
σ∈Sn

L(σ), (2)

where L(σ) = EΣ∼P [d(Σ, σ)] denotes the expected dis-
tance between any permutation σ and Σ and shall
be referred to as the risk of the median candidate



Anna Korba, Stephan Clémençon, Eric Sibony

σ throughout the paper. The objective pursued is
to recover approximately a solution σ∗ of this mini-
mization problem, plus an estimate of this minimum
L∗ = L(σ∗), as accurate as possible, based on the ob-
servations Σ1, . . . , ΣN . The minimization problem
(2) always has a solution since the cardinality of Sn

is finite (however exploding with n) but can be multi-
modal, see Section 3. A median permutation σ∗ can be
interpreted as a central value for P , a crucial location
parameter, whereas the quantity L∗ can be viewed as
a dispersion measure. However, the functional L(.) is
unknown in practice, just like distribution P (in order
to avoid any ambiguity, we write LP (.) when needed).
We only have access to the dataset {Σ1, . . . , ΣN} to
find a reasonable approximant of a median and would
like to avoid rigid assumptions on P such as those stip-
ulated by the Mallows model, see Mallows (1957) and
Remark 7. Following the Empirical Risk Minimization
(ERM) paradigm (see e.g. Vapnik, 2000), one replaces
the quantity L(σ) by a statistical version based on the
sampling data, typically the unbiased estimator

L̂N (σ) =
1

N

N∑
i=1

d(Σi, σ). (3)

It is the goal of the subsequent analysis to assess the
performance of solutions σ̂N of

min
σ∈Sn

L̂N (σ), (4)

by establishing (minimax) bounds for the excess of risk
L(σ̂N )− L∗ in probability/expectation, when d is the
Kendall’s τ distance. In this case, any solution of prob-
lem (2) (resp., of problem (4)) is called a Kemeny me-
dian (resp., an empirical Kemeny median) throughout
the paper.

Remark 1 (Alternative dispersion measure)
An alternative measure of dispersion which can be
more easily estimated than L∗ = L(σ∗) is given by

γ(P ) =
1

2
E[d(Σ,Σ′)], (5)

where Σ′ is an independent copy of Σ. One may easily
show that γ(P ) ≤ L∗ ≤ 2γ(P ). The estimator of (5)
with minimum variance among all unbiased estimators
is given by the U -statistic

γ̂N =
2

N(N − 1)

∑
i<j

d(Σi,Σj). (6)

In addition, we point out that confidence intervals for
the parameter γ(P ) can be constructed by means of
Hoeffding/Bernstein type deviation inequalities for U -
statistics and a direct (smoothed) bootstrap procedure
can be applied for this purpose, see Lahiri (1993). In

contrast, a bootstrap technique for building CI’s for L∗

would require to solve several times an empirical ver-
sion of (2) based on bootstrap samples.

Remark 2 (Alternative framework) Since the
computation of Kendall’s τ distance involves pairwise
comparisons only, one could compute empirical ver-
sions of the risk functional L in a statistical frame-
work stipulating that the observations are less com-
plete than {Σ1, . . . , ΣN} and formed by i.i.d. pairs
{(ek, εk), k = 1, . . . , N}, where the ek = (ik, jk)’s
are independent from the Σk’s and drawn from an un-
known distribution ν on the set En such that ν(e) > 0
for all e ∈ En and εk = sgn(Σk(jk) − Σk(ik)) with
ek = (ik, jk) for 1 ≤ k ≤ N . Based on these ob-
servations, an estimate of the risk EνEΣ∼P [I{e =
(i, j), ε(σ(j) − σ(i)) < 0}] of any median candidate
σ ∈ Sn is given by:

∑
i<j

1

Ni,j

N∑
k=1

I{ek = (i, j), εk(σ(j)− σ(i)) < 0},

where Ni,j =
∑N
k=1 I{ek = (i, j)}, see for instance Lu

and Boutilier (2014) or Rajkumar and Agarwal (2014)
for ranking aggregation results in this setting.

2.3 Connection to Voting Rules

In Social Choice, we have a collection of votes under
the form of rankings PN = (σ1, . . . , σN ). Such a col-
lection of votes PN ∈ SN

n is called a profile and a
voting rule, which outputs a consensus ranking on this
profile, is classically defined as follows:

σPN = argmin
σ∈Sn

g(σ, PN )

where g : Sn ×
⋃∞
t=1 S

t
n → R. This definition can be

easily translated in order to be applied to any given
distribution P instead of a profile. Indeed, the authors
of Prasad et al. (2015) define a distributional rank ag-
gregation procedure as follows:

σP = argmin
σ∈Sn

g(σ, P )

where g : Sn × Pn → R where Pn is the set of all
distributions on Sn. Many classic aggregation proce-
dures are naturally extended through this definition
and thus to our statistical framework, as we have seen
for Kemeny ranking aggregation previously. To detail
some examples, we denote by pi,j = P{Σ(i) < Σ(j)} =
1 − pj,i for 1 ≤ i 6= j ≤ n and define the associated

empirical estimator by p̂i,j = (1/N)
∑N
m=1 I{Σm(i) <

Σm(j)}. The Copeland method (Copeland, 1951) con-
sists on PN in ranking the items by decreasing or-
der of their Copeland score, calculated for each one
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as the number of items it beats in pairwise duels mi-
nus the number of items it looses against: sN (i) =∑
k 6=i I{p̂i,k ≤ 1/2} − I{p̂i,k > 1/2}. It thus nat-

urally applies to a distribution P using the scores
s(i) =

∑
k 6=i I{pi,k ≤ 1/2} − I{pi,k > 1/2}. Sim-

ilarly, Borda aggregation (Borda, 1781) which con-
sists in ranking items in increasing order of their score
sN (i) =

∑N
t=1 σt(i) when applied on PN , naturally ex-

tends to P using the scores s(i) = EP [Σ(i)].

3 OPTIMALITY

As recalled above, the discrete optimization problem
(2) always has a solution, whatever the metric d cho-
sen. In the case of the Kendall’s τ distance however,
the optimal elements can be explicitly characterized
in certain situations. It is the goal of this section to
describe the set of Kemeny medians under specific con-
ditions. As a first go, observe that the risk of a per-
mutation candidate σ ∈ Sn can be then written as

L(σ) =
∑
i<j

pi,jI{σ(i) > σ(j)}

+
∑
i<j

(1− pi,j)I{σ(i) < σ(j)}. (7)

Remark 3 (Connection to binary classifica-
tion) Let (i, j) be a random pair defined on (Ω,F , P),
uniformly distributed on the set {(i, j) : 1 ≤ i <
j ≤ n} and independent from Σ. Up to the fac-
tor n(n − 1)/2, the risk (7) can be rewritten as the
expectation of the error made when predicting the
sign variable sgn(Σ(j)−Σ(i)) by the specific classifier
sgn(σ(j)− σ(i)):

L(σ) =
n(n− 1)

2
E [li,j(Σ, σ)] , (8)

where we set li,j(σ, σ
′) = I{(σ(i) − σ(j)) · (σ′(i) −

σ′(j)) < 0} for all i < j, (σ, σ′) ∈ S2
n. The r.v. pi,j

can be viewed as the posterior related to this classifi-
cation problem.

We deduce from (7) that L∗ ≥
∑
i<j min{pi,j , 1 −

pi,j}. In addition, if there exists a permutation σ with
the property that ∀i < j s.t. pi,j 6= 1/2,

(σ(j)− σ(i)) · (pi,j − 1/2) > 0, (9)

it would be necessarily a median for P (notice inci-
dentally that L∗ =

∑
i<j min{pi,j , 1 − pi,j} in this

case).

Definition 4 The probability distribution P on Sn is
said to be stochastically transitive if it fulfills the con-
dition: ∀(i, j, k) ∈ JnK3,

pi,j ≥ 1/2 and pj,k ≥ 1/2 ⇒ pi,k ≥ 1/2

In addition, if pi,j 6= 1/2 for all i < j, P is said to be
strictly stochastically transitive.

Let s∗ : JnK→ JnK be the mapping defined by:

s∗(i) = 1 +
∑
k 6=i

I{pi,k <
1

2
} (10)

for all i ∈ JnK, which induces the same ordering as the
Copeland method (see Subsection 2.3). Observe that,
if the stochastic transitivity is fulfilled, then: pi,j <
1/2 ⇔ s∗(i) < s∗(j). Equipped with this notation,
property (9) can be also formulated as follows: ∀i < j
s.t. s∗(i) 6= s∗(j),

(σ(j)− σ(i)) · (s∗(j)− s∗(i)) > 0. (11)

The result stated below describes the set of Ke-
meny median rankings under the conditions intro-
duced above, and states the equivalence between the
Copeland method and Kemeny aggregation in this set-
ting.

Theorem 5 If the distribution P is stochastically
transitive, there exists σ∗ ∈ Sn such that (9) holds
true. In this case, we have

L∗ =
∑
i<j

min{pi,j , 1− pi,j} (12)

=
∑
i<j

{
1

2
−
∣∣∣∣pi,j − 1

2

∣∣∣∣} ,
the excess of risk of any σ ∈ Sn is given by

L(σ)− L∗ =

2
∑
i<j

|pi,j − 1/2| · I{(σ(j)− σ(i))(pi,j − 1/2) < 0}

and the set of medians of P is the class of equivalence
of σ∗ w.r.t. the equivalence relationship:

σRPσ′ ⇔ (σ(j)− σ(i))(σ′(j)− σ′(i)) > 0

for all i < j such that pi,j 6= 1/2. (13)

In addition, the mapping s∗ belongs to Sn iff P is
strictly stochastically positive. In this case, s∗ is the
unique median of P .

The proof is detailed in the Appendix Section. Be-
fore investigating the accuracy of empirical Kemeny
medians, a few remarks are in order.

Remark 6 (Borda consensus) We say that the
distribution P is strongly stochastically transitive if
∀(i, j, k) ∈ JnK3:

pi,j ≥ 1/2 and pj,k ≥ 1/2⇒ pi,k ≥ max(pi,j , pj,k).
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Then under this condition, and for i < j, pi,j 6= 1
2 ,

there exists a unique σ∗ ∈ Sn such that (9) holds
true, corresponding to the Kemeny and Borda consen-
sus both at the same time (see the Supplementary Ma-
terial for the proof).

Remark 7 (Mallows model) The Mallows model
introduced in the seminal contribution Mallows (1957)
is a probability distribution Pθ on Sn parametrized by
θ = (σ0, φ) ∈ Sn × [0, 1]: ∀σ ∈ Sn,

Pθ0(σ) =
1

Z
φdτ (σ0,σ), (14)

where Z =
∑
σ∈Sn φ

dτ (σ0,σ) is a normalization con-
stant. One may easily show that Z is independent from
σ and that Z =

∏n−1
i=1

∑i
j=0 φ

j. Observe firstly that
the smallest the parameter φ, the spikiest the distribu-
tion Pθ (equal to a Dirac distribution for φ = 0). In
contrast, Pθ is the uniform distribution on Sn when
φ = 1. Observe in addition that, as soon as φ < 1,
the Mallows model Pθ fulfills the strict stochastic tran-
sitivity property. Indeed, it follows in this case from
Corollary 3 in Busa-Fekete et al. (2014) that for any
i < j, we have:

(i) σ0(i) < σ0(j) ⇐ pi,j ≥ 1
1+φ > 1

2 with equality

holding iff σ0(i) = σ0(j)− 1,

(ii) σ0(i) > σ0(j) ⇐ pi,j ≤ φ
1+φ < 1

2 with equality

holding iff σ0(i) = σ0(j) + 1,

(iii) pi,j >
1
2 iff σ0(i) < σ0(j) and pi,j <

1
2 iff σ0(i) >

σ0(j).

This directly implies that for any i < j:

|pi,j −
1

2
| ≥ |φ− 1|

2(1 + φ)

Therefore, according to (12), we have in this setting:

L∗Pθ ≤
n(n− 1)

2

φ

1 + φ
. (15)

The permutation σ0 of reference is then the unique
mode of distribution Pθ, as well as its unique median.

Remark 8 (Bradley-Terry-Luce-Plackett
model) The Bradley-Terry-Luce-Plackett model
(Bradley and Terry, 1952; Luce, 1959; Plackett,
1975) assumes the existence of some hidden prefer-
ence vector w = [wi]1≤i≤n, where wi represents the
underlying preference score of item i. For all i < j,
pij = wi

wi+wj
. If w1 ≤ · · · ≤ wn, we have in this

case L∗Pθ =
∑
i<j wi/(wi + wj). Observe in addition

that as soon as for all i < j, wi 6= wj, the model
fulfills the strict stochastic transitivity property. The
permutation σ0 of reference is then the one which
sorts the vector w in decreasing order.

4 EMPIRICAL CONSENSUS

Here, our goal is to establish sharp bounds for the ex-
cess of risk of empirical Kemeny medians, of solutions
σ̂N of (4) in the Kendall’s τ distance case namely. Be-
yond the study of universal rates for the convergence
of the expected distance L(σ̂N ) to L∗, we prove that,
under the stochastic transitivity condition, exponen-
tially fast convergence occurs, if the pi,j ’s are bounded
away from 1/2, similarly to the phenomenon exhib-
ited in Koltchinskii and Beznosova (2005) for binary
classification under extremely low noise assumption.

4.1 Universal Rates

Such rate bounds are classically based on the fact that
any minimizer σ̂n of (4) fulfills

L(σ̂N )− L∗ ≤ 2 max
σ∈Sn

|L̂N (σ)− L(σ)|. (16)

As the cardinality of the set Sn of median candi-
dates is finite, they can be directly derived from
bounds (tail probabilities or expectations) for the

absolute deviations of i.i.d. sample means L̂N (σ)

from their expectations, |L̂N (σ) − L(σ)|. Let p̂i,j =

(1/N)
∑N
m=1 I{Σm(i) < Σm(j)} and pi,j the r.v. de-

fined in Remark 3. First notice that same as in (7)
one has for any σ ∈ Sn:

L̂N (σ) =
n(n− 1)

2
E [p̂i,jI{σ(i) > σ(j)}

+ (1− p̂i,j)I{σ(i) < σ(j)}] (17)

which, combined with (16), gives

|L̂N (σ)− L(σ)| ≤ n(n− 1)

2
Ei,j [|pi,j − p̂i,j|] . (18)

This leads to the bounds in expectation and probabil-
ity for ERM in the context of Kemeny ranking aggre-
gation stated below, unsurprisingly of order O(1/

√
N).

Proposition 9 Let N ≥ 1 and σ̂N be any Ke-
meny empirical median based on i.i.d. training data
Σ1, . . . , ΣN , i.e. a minimizer of (3) over Sn with
d = dτ . The excess risk of σ̂N is upper bounded:

(i) In expectation by

E [L(σ̂N )− L∗] ≤ n(n− 1)

2
√
N

(ii) With probability higher than 1−δ for any δ ∈ (0, 1)
by

L(σ̂N )− L∗ ≤ n(n− 1)

2

√
2 log(n(n− 1)/δ)

N
.
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The proof is given in the Appendix section.

Remark 10 As the problem (4) is NP-hard in gen-
eral, one uses in practice an optimization algorithm
to produce an approximate solution σ̃N of the origi-
nal minimization problem, with a control of the form:
L̂N (σ̃N ) ≤ minσ∈Sn L̂N (σ)+ρ, where ρ > 0 is a toler-
ance fixed in advance, see e.g. Jiao et al. (2016). As
pointed out in Bottou and Bousquet (2008), a bound
for the expected excess of risk of σ̃N is then obtained
by adding the quantity ρ to the estimation error given
in Proposition 9.

We now establish the tightness of the upper bound for
empirical Kemeny aggregation stated in Proposition 9.
Precisely, the next theorem provides a lower bound of
order O(1

√
N) for the quantity below, referred to as

the minimax risk,

RN
def
= inf

σN
sup
P

EP [LP (σN )− L∗P ] , (19)

where the supremum is taken over all probability dis-
tributions on Sn and the infimum is taken over all
mappings σN that maps a dataset (Σ1, . . . , ΣN ) com-
posed of N independent realizations of P to an empir-
ical median candidate .

Proposition 11 The minimax risk for Kemeny ag-
gregation is lower bounded as follows:

RN ≥
1

16e
√
N
.

The proof of Proposition 11 relies on the classical Le
Cam’s method, it is detailed in the Supplementary Ma-
terial. The result shows that no matter the method
used for picking a median candidate from Sn based on
the training data, one may find a distribution such that
the expected excess of risk is larger than 1/(16e

√
N).

If the upper bound from Proposition 9 depends on n,
it is also of order O(1/

√
N) when N goes to infinity.

Empirical Kemeny aggregation is thus optimal in this
sense.

Remark 12 (Dispersion estimates) In the
stochastically transitive case, one may get an estima-
tor of L∗ by plugging the empirical estimates p̂i,j into
Formula (12):

L̂∗ =
∑
i<j

min{p̂i,j , 1− p̂i,j} (20)

=
∑
i<j

{
1

2
−
∣∣∣∣p̂i,j − 1

2

∣∣∣∣} .
One may easily show that the related MSE is of or-
der O(1/N): E[(L̂∗ − L∗)2] ≤ n2(n − 1)2/(16N), see

the Supplementary Material. Notice also that, in the
Kendall’s τ case, the alternative dispersion measure
(5) can be expressed as γ(P ) =

∑
i<j pi,j(1− pi,j) and

that the plugin estimator of γ(P ) based on the p̂i,j’s
coincides with (6).

While Proposition 9 makes no assumption about the
underlying distribution P , it is also desirable to under-
stand the circumstances under which the excess risk of
empirical Kemeny medians is small. Following in the
footsteps of results obtained in binary classification,
it is the purpose of the subsequent analysis to exhibit
conditions guaranteeing exponential convergence rates
in Kemeny aggregation.

4.2 Fast Rates in Low Noise

The result proved in this subsection shows that the
bound stated in Proposition 9 can be significantly im-
proved under specific conditions. In binary classifica-
tion, it is now well-known that (super) fast rate bounds
can be obtained for empirical risk minimizers, see Mas-
sart and Nédélec (2006), Tsybakov (2004), and for cer-
tain plug-in rules, see Audibert and Tsybakov (2007).
As shown below, under the stochastic transitivity hy-
pothesis and the following low noise assumption (then
implying strict stochastic transitivity), the risk of em-
pirical minimizers in Kemeny aggregation converges
exponentially fast to L∗ and remarkably, with over-
whelming probability, empirical Kemeny aggregation
has a unique solution that coincides with a natural
plug-in estimator of the true median (namely s∗ in
this situation, see Theorem 5). For h > 0, we define
condition:

NA(h): mini<j |pi,j − 1/2| ≥ h.

Remark 13 (Low noise for parametric mod-
els ) Condition NA(h) is fulfilled by many para-
metric models. For example, the Mallows model
(14) parametrized by θ = (σ0, φ) ∈ Sn × [0, 1]
satisfies NA(h) iff φ ≤ (1 − 2h)/(1 + 2h). For
the Bradley-Terry-Luce-Plackett model with preference
vector w = [wi]1≤i≤n, condition NA(h) is satisfied iff
min1≤i≤n |wi − wi+1| ≥ (4h)/(1 − 2h), see Chen and
Suh (2015) where minimax bounds are obtained for the
problem of identifying top-K items.

This condition may be considered as analogous to that
introduced in Koltchinskii and Beznosova (2005) in bi-
nary classification, and was used in Shah et al. (2015)
to prove fast rates for the estimation of the matrix of
pairwise probabilities.

Proposition 14 Assume that P is stochastically
transitive and fulfills condition NA(h) for some h > 0.
The following assertions hold true.
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(i) For any empirical Kemeny median σ̂N , we have:
∀N ≥ 1,

E [L(σ̂N )− L∗] ≤ n2(n− 1)2

8
e
−N2 log

(
1

1−4h2

)
.

(ii) With probability at least 1 − (n(n −

1)/4)e
−N2 log

(
1

1−4h2

)
, the mapping

ŝN (i) = 1 +
∑
k 6=i

I{p̂i,k <
1

2
}

for 1 ≤ i ≤ n belongs to Sn and is the unique solu-
tion of the empirical Kemeny aggregation problem
(4). It is then referred to as the plug-in Kemeny
median.

The technical proof is given in the Supplementary
Material. The main argument consists in show-
ing that, under the hypotheses stipulated, with very
large probability, the empirical distribution P̂N =
(1/N)

∑N
i=1 δΣi is strictly stochastically transitive and

Theorem 5 applies to it. Proposition 14 gives a rate
in O(e−αhN ) with αh = 1

2 log
(
1/(1− 4h2)

)
. Notice

that αh → +∞ as h→ 1/2, which corresponds to the
situation where the distribution converges to a Dirac
δσ since P is supposed to be stochastically transitive.
Therefore the greatest h is, the easiest is the prob-
lem and the strongest is the rate. On the other hand,
the rate decreases when h gets smaller. The next re-
sult proves that, in the low noise setting, the rate of
Proposition 14 is almost sharp in the minimax sense.

Proposition 15 Let h > 0 and define

R̃N (h) = inf
σN

sup
P

EP [LP (σN )− L∗P ] ,

where the supremum is taken over all stochastically
transitive probability distributions P on Sn satisfying
NA(h). We have: ∀N ≥ 1,

R̃N (h) ≥ h

4
e−N2h log( 1+2h

1−2h ). (21)

The proof of Proposition 15 is provided in the Sup-
plementary Material. It shows that the minimax
rate is lower bounded by a rate in O(e−βhN ) with
βh = 2h log((1+2h)/(1−2h)). Notice that αh ∼ βh/2
when h → 1/2. The rate obtained for empirical Ke-
meny aggregation in Proposition 14 is thus almost op-
timal in this case. The bound from Proposition 15 is
however too small when h → 0 as it goes to 0. Im-
proving the minimax lower bound in this situation is
left for future work.

4.3 Computational Issues

As mentioned previously, the computation of an empir-
ical Kemeny consensus is NP-hard and therefore usu-
ally not tractable in practice. Proposition 9 and 14
can therefore be seen as providing theoretical guaran-
tees for the ideal estimator σ̂N . Under the low noise
assumption however, Proposition 14 also has a prac-
tical interest. Part (ii) says indeed that in this case,
the Copeland method (ordering items by decreasing
score ŝN ), which has complexity in O(N

(
n
2

)
), out-

puts the exact Kemeny consensus with high proba-
bility. Furthermore, part (i) actually applies to any
empirical median σ̃N that is equal to σ̂N with proba-
bility at least 1−(n(n−1)/4)e−(N/2) log(1/(1−4h2)) thus
in particular to the Copeland method. In summary,
under assumption NA(h) with h > 0, the tractable
Copeland method outputs the exact Kemeny consen-
sus with high probability and has almost optimal ex-
cess risk convergence rate.

5 CONCLUSION

Whereas the issue of computing (approximately) rank-
ing medians has received much attention in the liter-
ature, just like statistical modelling of the variability
of ranking data, the generalization ability of practi-
cal ranking aggregation methods has not been studied
in a general probabilistic setup. By describing optimal
elements and establishing learning rate bounds for em-
pirical Kemeny ranking medians, this paper provides
a first statistical explanation for the success of these
techniques.

APPENDIX - PROOFS

In this section, we denote by
(
n
k

)
the binomial coef-

ficient indexed by n and k, by B(N, p) the binomial
distribution indexed by parameters N, p, by (i, j) the
transposition that swaps item i and j, and by K(P ||Q)
the Kullback-Leibler divergence between two probabil-
ity distributions P and Q.

Proof of Theorem 5

Suppose that distribution P is stochastically transi-
tive. The pairwise probabilities can be then repre-
sented as a directed graph on the n items with the
following definition: each item i is represented by a
vertex, and an edge is drawn from i to j whenever
pi,j >

1
2 (no edge is drawn if pi,j = 1

2 ). This graph is
thus a directed acyclic graph, since the stochastic tran-
sitivity prevents the occurrence of any cycle. Hence,
there exists a partial order on the graph (also referred
to as topological ordering, the vertices representing the
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items are sorted by their in-degree) and any permuta-
tion σ∗ extending this partial order satisfies (9). In
addition, under the stochastic transitivity condition,
for i < j, pi,j < 1/2⇔ s∗(i) < s∗(j). So s∗ belongs to
Sn iff P is stricly stochastically transitive and in this
case, s∗ is the unique median of P .

Proof of Remark 6

With simple calculations, the Borda score of any item
i ∈ JnK can be written as s(i) = 1 +

∑
k 6=i pk,i. Sup-

pose that pi,j > 1/2 (⇔ s∗(i) < s∗(j) under stochastic
transitivity). We have s(j)−s(i) =

∑
k 6=i,j pk,j−pk,i+

(2pi,j−1) with 2pi,j−1 > 0. We prove that for any k 6=
i, j, we have pk,j−pk,i ≥ 0 under the strong stochastic
transitivity condition (by considering firstly the case
where pj,k ≥ 1/2 and next the case where pk,j > 1/2).
We obtain that (s(i)−s(j))(s∗(i)−s∗(j)) > 0, the scor-
ing functions s and s∗ yield exactly the same ranking
on the set of items.

Proof of Proposition 9

Apply first Cauchy-Schwarz inequality, so as to get

Ei,j [|pi,j − p̂i,j|] ≤
√
Ei,j [(pi,j − p̂i,j)2] =

√
V ar(p̂i,j),

since Ei,j [pi,j − p̂i,j] = 0. Then, for i < j, Np̂i,j ∼
B(N, pi,j)) and thus V ar(p̂i,j) ≤ 1

4N . Combining (18)
with the last upper bound on the variance finally gives
the upper bound stated.

A related probability bound can also be established as
follows. By (16) and (18), we have: for any t > 0,

P
{
L(σ̂N )− L∗ > t

}
≤ P

{∑
i<j

|pi,j − p̂i,j | >
t

2

}
.

On the other hand, we have:

P
{∑
i<j

|pi,j−p̂i,j | >
t

2

}
≤
∑
i<j

P
{
|pi,j−p̂i,j | >

t

n(n− 1)

}
.

The last step consists in applying Hoeffding’s inequal-
ity to each pi,j for i < j

P
{
|pi,j − p̂i,j | >

t

n(n− 1)

}
≤ 2e−2N( t

n(n−1)
)2 .

Combining the three preceding inequalities gives the
bound.

Proof of Proposition 11

The proof of the minimax lower bound is based on
Le Cam’s method, see section 2.3 in Tsybakov (2009).

Consider two Mallows models Pθ0 and Pθ1 where θk =
(σ∗k, φ) ∈ Sn × (0, 1) and σ∗0 6= σ∗1 . We clearly have:

RN ≥ inf
σN

|φ− 1|
2(1 + φ)

×

max
k=0, 1

∑
i<j

EPθk [I{(σN (i)− σN (j)(σ∗k(i)− σ∗k(j)) < 0}]

≥|φ− 1|
4

inf
σN

max
k=0, 1

EPθk [dτ (σN , σ
∗
k)] .

Following line by line Le Cam’s method, we obtain

RN ≥
|φ−1|

32
e−NK(Pθ0 ||Pθ1 ).

Some calculations show that K(Pθ0 ||Pθ1) = log( 1
φ )(1−

φ)/(1 +φ), for σ1 = (i, j)σ0 where i < j verify σ0(i) =
σ0(j) − 1. The desired lower bound is then obtained
by taking φ = 1 − 1/

√
N . More details can be found

in the Supplementary Material.

Proposition 14

Let AN =
⋂
i<j{(pi,j −

1
2 )(p̂i,j − 1

2 ) > 0}. On
the event AN , both distributions p and p̂ satisfy the
strong stochastic transitivity property, and agree on
each pair: σ̂N = σ and L(σ̂N ) − L∗ = 0. There-

fore we only have to bound P
{
AcN
}

. Since for i < j,

Np̂i,j ∼ B(N, pi,j)), we have

P
{
p̂i,j ≤

1

2

}
=

bN2 c∑
k=0

(
N

k

)
pki,j(1− pi,j)N−k. (22)

Then,
∑bN2 c
k=0

(
N
k

)
≤ 2N−1 and since pi,j > 1/2, for

k ≤ N
2 , we have

pki,j(1− pi,j)N−k ≤ p
N
2
i,j(1− pi,j)

N
2 ≤

(
1

4
− h2

)N
2

Finally, we have P
{
AcN
}
≤
∑
i<j P

{
p̂i,j ≤ 1

2

}
and the

desired bound is proved.

Proof of Proposition 15

Similarly to Proposition 11, we can bound by below
the minimax risk as follows

RN ≥ inf
σN

max
k=0, 1

hEPθk [dτ (σN , σ
∗)]

≥h
8
e−NK(Pθ0 ||Pθ1 ),

with K(Pθ0 ||Pθ1) = log( 1
φ )(1 − φ)/(1 + φ). Now we

take φ = (1 − 2h)/(1 + 2h) so that both Pθ0 and Pθ1
satisfy NA(h), and we have

K(Pθ0 ||Pθ1) = 2h log

(
1 + 2h

1− 2h

)
,

which finally gives us the bound.



Anna Korba, Stephan Clémençon, Eric Sibony
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