Supplementary material for
A Learning Theory of Ranking Aggregation

A Optimality
A.0.1 Proof of Remark 6

Suppose P satisfies the strongly stochastically transitive condition. According to Theorem 5, there
exists o* € &, satisfying (9) and (11). We already know that o* is a Kemeny consensus since
it minimizes the loss with respect to the Kendall’s 7 distance. Then, Copeland’s method order
the items by the number of their pairwise victories, which corresponds to sort them according to
the mapping s* and thus ¢* is a Copeland consensus. Finally, the Borda score for an item is:
(i) = X_yee, 0(i)P(0). Firstly observe that for any o € &y,

> Ho(k) <ol(i)} =Y Ho(k) > o(i)} = a(i) — 1 — (n— 0(i)) = 20(i) — (n+1). (1)
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According to (1), we have the following calculations:
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Let ¢, j such that p; ; > 1/2 (& s*(i) < s*(j) under stochastic transitivity).

s(j) — s(i) = Zpk,j - Zpk,i
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= Z Dk,j — Z Dk, + Pij — Dji
k#i,j k#i,j
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With (2p; ; — 1) > 0. Now we focus on the first term, and consider k # 1, j.



(i) First case: pj > 1/2. The strong stochastic transitivity condition implies that :

Pik = max(pij, pjk)
1 — pr,; > max(p; j, pjk)
Dk,j — Pk, > Pk,j — 1 +max(p; j, pjx)
Ph,j — Phyi > —Pjk + max(p; j,pj k)
Pk,j — Pk, = max(pi; — pjk,0)
Pk,j — Pk,i = 0.

(if) Second case: py; > 1/2. If pr; < 1/2, pi; — pk,i > 0. Now if pg; > 1/2, having p, ; > 1/2,

the strong stochastic transitivity condition implies that py ; > maz(pg i, pij)-
Therefore in any case, Vk # 4,5, pr; — pr,; > 0 and s(j) — s(¢) > 0.
B Empirical consensus

B.1 Universal rates

We can obtain upper bounds using (16) and some calculations on L as follows. First notice that
same as in (7) one has for any o € &,,:

Ento) = () EHo0) > o)} + (1= Ag)i{o) < o)
so that
Ex(o) - 260} = (3 ) Elig - mo)Hol0) > 001} = Gig — )ttt < o]

n ~
< (2)]&& [lpij — Pijl] -

B.1.1 Proof of Proposition 9

(i) By the Cauchy-Schwartz inequality,

Eijllpig —pisll < \/]Ei,j [(pis = P13)°] = \/Var(ﬁi,j)~

Since Ei,j [pi,j — Z/Q\i,j] =0. Then, fori < j, N}/?\i,j ~ B(N,pi)j)) SO Var(ﬁi,j) = W S ﬁ
Finally, we can upper bound the expectation of the excess of risk as follows:
n) 1 n(n —1)
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E(L@) - [7] < 2K [mbx (o) - L<o>] < 2(



(ii) By (16) one has for any ¢ > 0

Pﬁ@w%4ﬁ>%spﬁ(@Euwu—mm>ﬁ=P{ > sl 5} @

1<i<j<n

and the other hand, it holds that

P{ > Apij—Disl > %} < IF’{ U {|Pi,j—@,j| > 2(5}} < Y ]P’{|Pi,j—]3i,j\ > 2(2)}

1<i<j<n 1<i<j<n 1<ici<n
(3)
Now, Hoeffding’s inequality to p; ; = (1/N) Zt 1 I{X (i) < ()} gives
t n
P{|pz’,j *ﬁi,j > —n} < 26*2N(t/2(2))2_ (4)
2(3)

Therefore, combining (2), (3) and (4) we get
~ * n 2(71)2
— < .

P{L(UN) L* > t} < 2<2>e 2

N2
Setting 6 = 2(;)6 2(3)" one obtains that with probability greater than 1 — §,

L(Gn) - L* < (;l) \/210g(n(]7; 1)/8)

N2

B.1.2 Proof of Proposition 11

In the following proof, we follow Le Cam’s method, see section 2.3 in Tsybakov (2009).

Consider two Mallows models Py, and Py, where 0, = (0},¢) € 6, x (0,1) and 0§ # of. We
clearly have:

Ry >inf max IEpsA |:LP9k (on) — L*Pek]

oN k=0,

oN k=0, 14—~
z<J

:mhmxgﬁhmPmJ—;xmwN@—GMﬂwyn—ﬁu»<m

¢ — N e
> inf | @MEE%Hhmm—mmwm%wm»<w
~ (1+ QS ) k= ke
¢ —1| .
>—— inf max Epe d-(on,0)],
2 onN k=0
using the fact that |p;; — 3| > 2(¢+¢ (based on Corollary 3 from Busa-Fekete et al. (2014), see

Remark 7). Set A =d,(0§,07) > 1, and consider the test statistic related to opy:

(X1, o5 XN) = Hdr (0w, 07) < dr(on, 05) }-



If ¢ = 1, by triangular inequality, we have:
A <d;(on,04) +d-(on,07) < 2d:(on,0F)-

Hence, we have

* X A

Epy, [dr(on:09)] 2 Epy, [dr(on, o5)l{y = +1}] = S Pa {y = +1}
and similarly
* « A
EP91 [d‘r(oNv (71)] > EF’el [dT(UN7 g1 )HW = 0}] > §]P)91 {¢ = 0}'

Bounding by below the maximum by the average, we have:

inf max Epe [dr(on,05)] > mf —= {IP’@1 { =0} + Py, {¢p = 1}}

on k=0
A . * * o __
= 7 Juin {Po, {7 = 0} + Po, {v" = 1}},

where the last inequality follows from a standard Neyman-Pearson argument, denoting by
N
Py, ()
(X, ..., 2n) =1 ! >1
the likelihood ratio test statistic. We deduce that

N N
Ry > % > min{Hpeo(m Hpgl(ai)},
=1 i=1

0iE€EG Y, 1<i<N

and with Le Cam’s inequality that:
Ry > A|<1¢’6 U - NE (s liPay),

where K(Pp,||Po,) = Y e, Poo(0)10g(Py,(0)/ Py, (o)) denotes the Kullback-Leibler divergence.

In order to establish a minimax lower bound of order 1/ V/N, one should choose 6, = (¢o,00) and
01 = (¢1,01) so that, for k € {0, 1}, pr. — 1 and K(Py,||Py,) — 0 as N — +o00 at appropriate rates.

We consider the special case where ¢g = ¢1 = ¢, which results in Zy = Z; = Z for the normalization
constant, and we fix o9 € &,,. Let i < j such that o¢(i) + 1 = 0¢(j). We consider o1 = (4, j)og
the permutation where the adjacent pair (4,j) has been transposed, so that o1(i) = o1(j) + 1 and
A =1. For any o € &,,, notice that

dr(00,0) — dr(01,0) = {(0(i) > ()} — (o (i) <o(5)} (5)

According to (14), the Kullback-Leibler divergence is given by

KM= 3 Folois (-+10)

ceS,



And combining it with (5) yields
K (Pyo|| Py, ) = log(¢) Z Py (0) {(o(2) > o(5)} = (o (i) <o(i)})

By denoting p}; = Py, [X(i) < (j)], this gives us

1 1.1-¢
_ 0 0y _ 0 _
K (Py,||Py,) = log(¢) (Pj,i *pi,j) = IOg(g) (2pi,j - 1) = IOg(g)m
Where the last equality comes from Busa-Fekete et al. (2014) (Corollary 3 for adjacent items in the
central permutation, see also Remark 7).

(6)

By taking ¢ = 1 — 1/v/N, we firstly have [¢ — 1| = 1/v/N and

1/vVN
K (Py,||Py,) = —log(1 - 1/VN)—"F——.
(PullPn) = ~log(1 =1 /VN) 200
Then, since for all z < 1, z # 0, —log(1—x) > z and for all N > 1, 2—\/% > 1, the Kullback-Leibler
divergence can be upper bounded as follows:
1 1 1
K(Py ||Pp,) € ——=.—= = —
( 90” 91) = \/N N N
and thus the exponential term e~ N5 (PeollPo1) is Jower bounded by e~'. Finally:
A 1
> mi —1le~NKE(Pogl1Poy) >
Ry 23 K=o, 1 [k = Lle L ey N

B.2 Fast Rates
B.2.1 Proof of Proposition 14

Let Ay = ;o {(pi; — 1)(®i,; — 3) > 0}. On the event AAN’ p and ﬁsatisflthe strongly stochastic
transitivity property, and agree on each pair, therefore 6y = o* and L(oy) — L* = 0. We can
suppose without loss of generality that for any i < j, % +h < p;; <1, and we have Np; ; ~
B(N,p; ;). We thus have:

%]
~ 1 . N N 3
P{pi,j < 5} = P{pr- < 5} => <k>pf,j(1 — i)V " (7)
k=0
As k— pﬁj(l —pij)N7F is an increasing function of k since p; ; > %, we have
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Then, since Z,ﬁé (") + ZkN:L%J (") = Zi\’:o (V) =2~ and p; ; > L + h, we obtain

vz

N
2

N N 1 1 N 1 .~ 1
(k)p,%u — i) <2Vl (4 — h2> =5 (1-4n*)* = 3¢ glog(kihz), (9)
k=0

Combining (7), (8) and (9), yields

Ppi; < 5} < e FoolEm) (10)
’ 2 2
Since the probability of the complementary of Ay is
1 1 1
c | _ N ¥ S~ — o< 2
{as | =B{ Ut — )0~ 5) <0} =B{ Utpis < 51} (11)
1<j 1<J
combining (10) and Boole’s inequality on (11) yields
Pl < e{ns < g} < 2 - on(=). (12)
i<j

As the expectation of the excess of risk can be written
E{L(@n) - 1"} =E{(L@N) - LAV} + (L(@EN) - L)HAR}H,

using successively the fact that L(oy) — L* = 0 on Ay and (12) we obtain finally

B{LGn) - 17} < @P{A%} < Me—gzog(ﬁ).

B.2.2 Remark 12
According to (12) and (20) we have

2
= X 1 | 1 1 1
E(L* =LV =E [ (D> 35— |Pi—5|t—>.95 |Pii— 5 :
— | 2 2 —~ | 2 2
i<j 1<J
and pushing further the calculus gives
2 2
T * 1 -~ 1 ~
E[(L* - L*)*] =E me‘—Q’— pi,j—Q‘ =E || Y _Ipi; — Dbijl
i<j i<j
Firstly, with the bias-variance decomposition we obtain
2
E[(L* = L)) =Var | Y iy —bigl | + | E D Ipig —Pisl| | - (13)
i<j i<j



The bias in (13) can be written as

B> Ipij—Disl| = D Elpij—bigl+ >, Elbiy—pigl =0 (14)
1<j i<jA i<jA
Pi,j>Pi,j Pi,j<Pi,j

And the variance in (13) is

Var (> Ipij—bigl | =Y Y Cov(Ipi; — bijl, Ipirjr — B jol) (15)

i<j i<j i<y’

<> \/Var(\pi,j — piil)\Var(lpir j» — pir jv1)- (16)

i<ji'<j’

Since for ¢ < j, p; ; ~ B(N,p; ;), we have

_ Piy(L=pij)pi (L= piry) 1

Var(pij — pij|)Var(|pi jo — bir j1) N2 < VT (17)
Therefore combining (17) with (15) gives
nn—1\> 1
Var | > Ipij— il | < <2> T (18)

1<J

Finally according to (13), (14) and (18) we obtain: E[(L* — L*)2] < %.

B.2.3 Proof of Proposition 15

Similarly to Proposition 11, we use Le Cam’s method and consider two Mallows models Py, and
Py, where 0, = (03, ¢) € 6, x(0,1) and 0§ # 0. We can lower bound the minimax risk as follows

RN Zlnf max ]Ep |:Lp€,C (O'N) — L*Pek]

on k=0,1 'k

~inf max " Er, [2|pm- — X H(on () — ox(7)(0" (i) — o7 (4)) < 0}

oN k= —
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Zh%e*NK(PeoHsl)

With K(Pyyj0,) = log(i)% accordig to (6) and A = 1, choosing oy and o7 as in the proof of
Proposition 11. Now we take ¢ = ﬁgz so that both Py, and Py, satisfy NA(h), and we have

K (Pyy10,) = 2hlog(%)7 which gives us finally:

Ry > ﬁe—N2hlog(1Jj—§Z
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