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Abstract

Despite the fundamental nature of the inho-

mogeneous Poisson process in the theory and

application of stochastic processes, and its at-

tractive generalizations (e.g. Cox process), few

tractable nonparametric modeling approaches

of intensity functions exist, especially in high

dimensional settings. In this paper we develop

a new, computationally tractable Reproduc-

ing Kernel Hilbert Space (RKHS) formulation

for the inhomogeneous Poisson process. We

model the square root of the intensity as an

RKHS function. The modeling challenge is

that the usual representer theorem arguments

no longer apply due to the form of the inho-

mogeneous Poisson process likelihood. How-

ever, we prove that the representer theorem

does hold in an appropriately transformed

RKHS, guaranteeing that the optimization

of the penalized likelihood can be cast as a

tractable finite-dimensional problem. The re-

sulting approach is simple to implement, and

readily scales to high dimensions and large-

scale datasets.

1 INTRODUCTION

Poisson processes are ubiquitous in statistical science,

with a long history spanning both theory (e.g. King-

man (1993)) and applications (e.g. Diggle et al. (2013)),

especially in the spatial statistics and time series litera-

ture. Despite their ubiquity, fundamental questions in

their application to real datasets remain open. Namely,

scalable nonparametric models for intensity functions

of inhomogeneous Poisson processes are not well under-

stood, especially in multiple dimensions since the stan-

dard approaches, based on kernel smoothing, are akin
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to density estimation. In this contribution, we propose

a step towards such scalable nonparametric modeling

and introduce a new Reproducing Kernel Hilbert Space

(RKHS) formulation for inhomogeneous Poisson pro-

cess modeling, which is based on the Empirical Risk

Minimization (ERM) framework. We model the square

root of the intensity as an RKHS function and consider

a risk functional given by a penalized version of the

inhomogeneous Poisson process likelihood. However,

standard representer theorem arguments do not apply

directly due to the form of the likelihood. Namely, the

fundamental difference arises since the observation that

no points occur in some region is just as important as

the locations of the points that do occur. Thus, the

likelihood depends not only on the evaluations of the

intensity at the observed points, but also on its inte-

gral across the domain of interest. As we will see, this

difficulty can be overcome by appropriately adjusting

the RKHS under consideration. We prove a version

of the representer theorem in this adjusted RKHS,

which coincides with the original RKHS as a space of

functions but has a different inner product structure.

This allows us to cast the estimation problem as an

optimization over a finite-dimensional subspace of the

adjusted RKHS. The derived method is demonstrated

to give better performance than a naïve unadjusted

RKHS method which resorts to an optimization over a

subspace without representer theorem guarantees. We

describe cases where adjusted RKHS can be described

with explicit Mercer expansions and propose numerical

approximations where Mercer expansions are not avail-

able. We observe strong performance of the proposed

method on a variety of synthetic, environmental, crime

and bioinformatics data.

2 BACKGROUND AND RELATED
WORK

2.1 Poisson process

We briefly state relevant definitions for point processes

over domains S ⇢ RD

, following Cressie and Wikle

(2011). For Lebesgue measurable subsets T ⇢ S, N(T )
denotes the number of events in T ⇢ S. N(·) is a
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stochastic process characterizing the point process. Our

focus is on providing a nonparametric estimator for the

first-order intensity of a point process, which is defined

as:

�(s) = lim

|ds|!0
E[N(ds))]/|ds|. (1)

The inhomogeneous Poisson process is driven solely by

the intensity function �(·):

N(T ) ⇠ Poisson(

Z

T

�(x)dx). (2)

In the homogeneous Poisson process, �(x) = � is con-

stant, so the number of points in any region T simply

depends on the volume of T , which we denote |T |:

N(T ) ⇠ Poisson(�|T |). (3)

For a given intensity function �(·), the likelihood of

a set of N = N(S) points x1, . . . , xN

observed over a

domain S is given by:

L(x1, . . . , xN

|�(·)) =
NY

i=1

�(x
i

)e�
R
S �(x)dx

(4)

2.2 Reproducing Kernel Hilbert Spaces

Given a non-empty domain S and a positive definite

kernel function k : S⇥S ! R, there exists a unique re-

producing kernel Hilbert space (RKHS) H
k

. An RKHS

is a space of functions f : S ! R, in which evaluation

is a continuous functional, meaning it can be repre-

sented by an inner product f(x) = hf, k(x, ·)iHk for all

f 2 H
k

, x 2 S (this is known as the reproducing prop-

erty), cf. Berlinet and Thomas-Agnan (2004). While

H
k

is in most interesting cases an infinite-dimensional

space of functions, due to the classical representer the-

orem (Kimeldorf and Wahba, 1971), (Schölkopf and

Smola, 2002, Section 4.2), optimization over H
k

is typ-

ically a tractable finite-dimensional problem. In par-

ticular, if we have a set of N observations x1, . . . , xN

,

x
i

2 S and consider the problem:

min

f2Hk

{R (f(x1), . . . , f(xN

)) + ⌦ (kfkHk)} . (5)

where R (f(x1), . . . , f(xN

)) depends on f through its

evaluations on the set of observations only, and ⌦

is a non-decreasing function of the RKHS norm of

f , there exists a solution to Eq. (5) of the form

f⇤
(·) =

P
N

i=1 ↵i

k(x
i

, ·), and the optimization can thus

be cast in terms of ↵ 2 RN

. This formulation is widely

used in the framework of regularized Empirical Risk

Minimization (ERM) for supervised learning, where

R (f(x1), . . . , f(xN

)) =

1
N

P
N

i=1 L(f(xi

), y
i

) is the em-

pirical risk corresponding to a loss function L.

If domain S is compact and kernel k is continu-

ous, one can assign to k its integral kernel operator

T
k

: L2(S) ! L2(S), given by T
k

g =

R
S

k(x, ·)g(x)dx,

which is positive, self-adjoint and compact. There thus

exists an orthonormal set of eigenfunctions {e
j

}1
j=1 of

T
k

, and the corresponding eigenvalues {⌘
j

}1
j=1. This

spectral decomposition of T
k

leads to Mercer’s repre-

sentation of kernel function k (Schölkopf and Smola,

2002, Section 2.2):

k(x, x0
) =

1X

j=1

⌘
j

e
j

(x)e
j

(x0
), x, x0 2 S (6)

with uniform convergence on S ⇥ S. Any function

f 2 H
k

can then be written as f =

P
j

b
j

e
j

where

kfk2Hk
=

P
j

b2
j

/⌘
j

< 1.

2.3 Related work

The classic approach to nonparametric intensity esti-

mation is based on smoothing kernels (Ramlau-Hansen,

1983; Diggle, 1985) and has a form closely related to

the kernel density estimator:

ˆ�(x) =
NX

i=1

(x
i

� x) (7)

where  is a smoothing kernel (related but a distinct no-

tion from that of an RKHS kernel), that is, any bounded

function integrating to 1. Early work in this area fo-

cused on edge-corrections and methods for choosing

the bandwidth (Diggle, 1985; Berman and Diggle, 1989;

Brooks and Marron, 1991). Connections with RKHS

have been considered by, for example, Bartoszynski

et al. (1981) who use a maximum penalized likelihood

approach based on Hilbert spaces to estimate the in-

tensity of a Poisson process. There is long literature on

maximum penalized likelihood approaches to density

estimation, which also contain interesting connections

with RKHS, e.g. Silverman (1982).

Much recent work on estimating intensities for point

processes has focused on Bayesian approaches to mod-

eling Cox processes. The log Gaussian Cox Process

(Møller et al., 1998) and related parameterizations of

Cox (doubly stochastic) Poisson processes in terms of

Gaussian processes have been proposed, along with

Monte Carlo (Adams et al., 2009; Diggle et al., 2013;

Teh and Rao, 2011), Laplace approximate (Illian et al.,

2012; Cunningham et al., 2008; Flaxman et al., 2015)

and variational (Lloyd et al., 2015; Kom Samo and

Roberts, 2015) inference schemes.

3 PROPOSED METHOD AND
KERNEL TRANSFORMATION

Let S be a compact domain of observations, e.g. the in-

terval [0, T ] for a time series dataset observed between
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times 0 and T . Let k : S⇥S ! R be a continuous posi-

tive definite kernel, and H
k

its corresponding RKHS of

functions f : S ! R. We model the intensity function

�(·) of an inhomogeneous Poisson process as:

�(x) := af2
(x), x 2 S, (8)

which is parametrized by f 2 H
k

and an additional

scale parameter a > 0. Note that we have squared

f to ensure that the intensity is non-negative on S,

a pragmatic choice that has previously appeared in

the literature (e.g. Lloyd et al. (2015)). The rationale

for including a is that it allows us to decouple the

overall scale and units of the intensity (e.g. number of

points per hour versus number of points per year) from

the penalty on the complexity of f which arises from

the classical regularized Empirical Risk Minimization

framework (and which should depend only on how

complex, i.e. “wiggly” f is).

We use the inhomogeneous Poisson process likelihood

from Eq. (4) to write the log-likelihood of a Poisson

process corresponding to the observations {x1, . . . , xN

},
for x

i

2 S, and intensity �(·):

`(x1, . . . , xN

|�) =
NX

i=1

log(�(x
i

))�
Z

S

�(x)dx. (9)

We will consider the problem of minimization of the

penalized negative log likelihood, where the regular-

ization term corresponds to the squared Hilbert space

norm of f in parametrization Eq. (8):

min

f2Hk

(
�

NX

i=1

log(af2
(x

i

)) + a

Z

S

f2
(x)dx+ �kfk2Hk

)
.

(10)

This objective is akin to a classical regularized empiri-

cal risk minimization framework over RKHS: there is a

term that depends on evaluations of f at the observed

points x1, . . . , xN

as well as a term corresponding to

the RKHS norm. However, the representer theorem

does not apply directly to Eq. (10): since there is also

a term given by the L2-norm of f , there is no guar-

antee that there is a solution of Eq. (10) that lies in

span{k(x
i

, ·)}N
i=1. We will show that Eq. (10) fortu-

nately still reduces to a finite-dimensional optimization

problem corresponding to a different kernel function

˜k
which we define below.

Using the Mercer expansion of k in Eq. (6), we can

write the objective Eq. (10) as follows:

J [f ] = �
NX

i=1

log(af2
(x

i

)) + akfk2
L2(S) + �kfk2Hk

(11)

= �
NX

i=1

log(af2
(x

i

)) + a
1X

j=1

b2
j

+ �
1X

j=1

b2
j

⌘
j

. (12)

The last two terms can now be merged together, giving

a
1X

j=1

b2
j

+ �
1X

j=1

b2
j

⌘
j

=

1X

j=1

b2
j

a⌘
j

+ �

⌘
j

=

1X

j=1

b2
j

⌘
j

(a⌘
j

+ �)�1
.

Now, if we define kernel

˜k to be the kernel correspond-

ing to the integral operator T
k̃

:= T
k

(aT
k

+ �I)�1
, i.e.,

˜k is given by:

˜k(x, x0
) =

1X

j=1

⌘
j

a⌘
j

+ �
e
j

(x)e
j

(x0
), x, x0 2 S,

we see that:

J [f ] = �
NX

i=1

log(af2
(x

i

)) + kfk2Hk̃
. (13)

Thus, we have merged the two squared norm terms into

a squared norm in a new RKHS. We note that a simi-

lar idea has previously been used to modify Gaussian

process priors in Csató et al. (2001). We are now ready

to state the representer theorem in terms of kernel

˜k.

Theorem 1. There exists a solution of Eq. (10) for
observations x1, . . . , xN

, which takes the form f⇤
(·) =P

N

i=1 ↵i

˜k(x
i

, ·).

Proof. Since

P
j

b

2
j

⌘j
< 1 if and only if

P
j

b

2
j

⌘j(a⌘j+�)�1 < 1, i.e. f 2 H
k

() f 2 H
k̃

,

we have that the two spaces correspond to exactly

the same set of functions. Optimization over H
k

is

therefore equivalent to optimization over H
k̃

. The

proof now follows by applying the classical representer

theorem in

˜k to the representation of the objective

function in Eq. (13). For completeness, this is given in

Appendix D.

Remark 1. The notions of the inner product

in H
k

and H
k̃

are different and thus in general

span{k(x
i

, ·)} 6= span{˜k(x
i

, ·)}.
Remark 2. Notice that unlike in a standard ERM

setting, � = 0 does not recover the unpenalized risk,

because � appears in

˜k. Notice further that the overall

scale parameter a also appears in

˜k. This is important

in practice, because it allows us to decouple the scale

of the intensity (which is controlled by a) from its

complexity (which is controlled by �).

Illustration. The eigenspectrum of

˜k where k is a

squared exponential kernel is shown below for various

settings of a and �. Reminiscent of spectral filtering

studied by Muandet et al. (2014), in the top plot we

see that depending on the settings of a and �, eigen-

values are shrunk or inflated as compared to k(x, x0
)
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which is shown in black. In the bottom plot, the

values of k(0, x) are shown for the same set of kernels.
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4 COMPUTATION OF k̃

In this section, we consider first the case in which

an explicit Mercer expansion is known, and then we

consider the more commonly encountered situation in

which we only have access to the parametric form of

the kernel k(x, x0
), so we must approximate

˜k. We

show experimentally that our approximation is very

accurate by considering the Sobolev kernel, which can

be expressed in both ways.

4.1 Explicit Mercer Expansion

We start by assuming that we have a kernel k with

an explicit Mercer expansion, so we have eigenvectors

{e
j

(x)}
j2J

and eigenvalues {⌘
j

}
j2J

:

k(x, x0
) =

X

j2J

⌘
j

e
j

(x)e
j

(x0
), (14)

with an at most countable index set J . Given a and �
we can calculate:

˜k(x, x0
) =

X

j2J

⌘
j

a⌘
j

+ �
e
j

(x)e
j

(x0
) (15)

up to a desired precision as informed by the spectral

decay in {⌘
j

}
j2J

. We consider a kernel on the Sobolev

space on [0, 1] with a periodic boundary condition,

proposed by Wahba (1990, chapter 2) and recently

used in Bach (2015):

k(x, x0
) = 1 +

1X

j=1

2 cos (2⇡j (x� x0
))

(2⇡j)2s
(16)

where s = 1, 2, . . . denotes the order of the Sobolev

space (larger s means existence of a larger number of

square-integrable derivatives). We will return to this

kernel in the experiments and use it to model point

process data on periodic domains, including dihedral

angles in protein structures. The Mercer expansion is

given by:

k(x, x0
) =

X

j2Z
⌘
j

e
j

(x)e
j

(x0
) (17)

where the eigenfunctions are e0(x) = 1 and e
j

(x) =p
2 cos (2⇡jx), e�j

(x) =

p
2 sin (2⇡jx) for j =

{1, 2, . . .} with the corresponding eigenvalues ⌘0 = 1,

⌘
j

= ⌘�j

= (2⇡j)�2s
. Further details are in the Ap-

pendix in Section C.1. We derive:

˜k(x, x0
) =

1

1 + c
+

1X

j=1

2 cos (2⇡j (x� x0
))

a+ �(2⇡j)2s
. (18)

We discuss a Mercer expansion of the squared exponen-

tial kernel in the Appendix in Section C.2 and exten-

sions of the Mercer expansion to multiple dimensions

using a tensor product formulation in the Appendix in

Section C.4. Although not practical for large datasets,

we can use the Mercer expansion with summing terms

up to j > 50 (for which the error is less than 10

�5
)

to evaluate the further approximations where Mercer

expansion is not available, which we develop next.

4.2 Numerical Approximation

We propose an approximation to

˜k given access only to

a kernel k for which we do not have an explicit Mercer

expansion with respect to Lebesgue measure. We only

assume that we can form Gram matrices corresponding

to k and calculate their eigenvectors and eigenvalues.

As a side benefit, this representation will also enable

scalable computations through Toeplitz / Kronecker

algebra or primal reduced rank approximations.

Let us first consider the one-dimensional case and con-

struct a uniform grid u = (u1, . . . , um

) on [0, 1]. Then

the integral kernel operator T
k

can be approximated

with the (scaled) kernel matrix

1
m

K
uu

: Rm ! Rm

,

where [K
uu

]

ij

= k(u
i

, u
j

), and thus

˜K
uu

is approxi-

mately K
uu

�
a

m

K
uu

+ �I
��1

. Note that for the general

case of multidimensional domains S, the kernel matrix

would have to be multiplied by vol(S). Without loss

of generality we assume vol(S) = 1 below.

We are not primarily interested in evaluations of

˜k on

this grid, but on the observations x1, . . . , xN

. Simply

adding the observations into the kernel matrix is not

an option however, as it changes the base measure with

respect to which the integral kernel operator is to be
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computed (Lebesgue measure on [0, T ]). Thus, we con-

sider the relationship between the eigendecomposition

of K
uu

and the eigenvalues and eigenfunctions of the

integral kernel operator T
k

.

Let �u
i

, eu
i

be the eigenvalue/eigenvector pairs of the

matrix K
uu

, i.e., its eigendecomposition is given by

K
uu

= Q⇤Q>
=

P
m

i=1 �
u

i

eu
i

(eu
i

)

>
. Then the esti-

mates of the eigenvalues/eigenfunctions of the integral

operator T
k

are given by the Nyström method (see Ras-

mussen and Williams (2006, Section 4.3) and references

therein, especially Baker (1977)):

⌘̂
i

=

1

m
�u
i

, ê
i

(x) =

p
m

�u
i

K
xu

eu
i

, (19)

with K
xu

= [k(x, u1), . . . , k(x, um

)], leading to:

b̃k(x, x0
) =

mX

i=1

⌘̂
i

a⌘̂
i

+ �
ê
i

(x)ê
i

(x0
) (20)

=

mX

i=1

1
m

�u
i

a

m

�u
i

+ �
· m

(�u
i

)

2
K

xu

eu
i

(eu
i

)

>K
ux

0

= K
xu

(
mX

i=1

1�
a

m

�u
i

+ �
�
�u
i

eu
i

(eu
i

)

>
)
K

ux

0 .

For an estimate of the whole matrix

˜K
xx

we thus have

b̃K
xx

= K
xu

(
mX

i=1

1�
a

m

�u
i

+ �
�
�u
i

eu
i

(eu
i

)

>
)
K

ux

= K
xu

Q
⇣ a

m
⇤

2
+ �⇤

⌘�1
Q>K

ux

. (21)

The above is reminiscent of the Nyström method

(Williams and Seeger, 2001) proposed for speeding up

Gaussian process regression. It has computational cost

O(m3
+ N2m). A reduced rank representation for

Eq. (21) is straightforward by considering only the top

p eigenvalues/eigenvectors of K
uu

. Furthermore, a pri-

mal representation with the features corresponding to

kernel

˜k is readily available and is given by

˜�(x) =
⇣ a

m
⇤

2
+ �⇤

⌘�1/2
Q>K

ux

, (22)

which allows linear computational cost in the number

N of observations.

For D > 1 dimensions, one can exploit Kronecker and

Toeplitz algebra approaches. Assuming that the K
uu

matrix corresponds to a Cartesian product structure

of the one-dimensional grids of size m, one can write

K
uu

= K1 ⌦ K2 · · · ⌦ K
D

. Thus, the eigenspectrum

can be efficiently calculated by eigendecomposing each

of the smaller m ⇥m matrices K1, . . . ,KD

and then

applying standard Kronecker algebra, thereby avoiding

ever having to form the prohibitively large mD ⇥mD

matrix K
uu

. For regular grids and stationary kernels,

each small matrix will be Toeplitz structured, yielding

further efficiency gains (Wilson et al., 2015). The

resulting approach thus scales linearly in dimension D.

An even simpler alternative to the above is to sample

the points u1, . . . , um

uniformly from the domain S
using Monte Carlo or Quasi-Monte Carlo (see Oates

and Girolami (2016) for a discussion in the context

of RKHS). We found this approach to work well in

practice in high-dimensions (D = 15), even when m
was fixed, meaning that the scaling was effectively

independent of the dimension D.

We compared the exact calculation of

˜K
uu

with s = 1,

a = 10, and � = .5 to our approximate calculation.

For illustration we tried a coarse grid of size 10 on

the unit interval (left) to a finer grid of size 100. The

RMSE was 2E-3 for the coarse grid and 1.6E-5 for the

fine grid, as shown in the Appendix in Fig. A9. In

the same figure we compared the exact calculation of

˜K
xx

with s = 1, a = 10, and � = .5 to our Nyström-

based approximation, where x1, . . . , x400 ⇠ Beta(.5, .5)
distribution. The RMSE was 0.98E-3. A low-rank

approximation using only the top 5 eigenvalues gives

the RMSE of 1.6E-2.

5 INFERENCE

The penalized risk can be readily minimized with gradi-

ent descent. Let ↵ = [↵1, . . . ,↵N

]

>
and

˜K be the Gram

matrix corresponding to

˜k such that

˜K
ij

=

˜k(x
i

, x
j

).

Then [f(x1), . . . , f(xN

)]

>
=

˜K↵ and the gradient of

the objective function J from (13) is given by

r
↵

J = �r
↵

X

i

log(af2
(x

i

)) + �r
↵

kfk2Hk̃

= �r
↵

X

i

log(a(
X

j

˜k
ij

↵
j

)

2
) + �r

↵

↵>
˜K↵

= �
X

i

2a(
P

j

˜k
ij

↵
j

)r
↵

P
j

˜k
ij

↵
j

a(
P

j

˜k
ij

↵
j

)

2
+ 2� ˜K↵

= �
X

i

2

˜K·iP
j

˜k
ij

↵
j

+ 2� ˜K↵

= �2

X

i

(

˜K·i./( ˜K↵)) + 2� ˜K↵

where ./ denotes element-wise division. Computing

˜K
requires O(N2

) time and memory, and each gradient

and likelihood computation requires matrix-vector mul-

tiplications which are also O(N2
). Overall, the running

time is O(qN2
) for q iterations of the gradient descent

method, where q is usually very small in practice.

6 NAÏVE RKHS MODEL

In this section, we compare the proposed approach,

which uses the representer theorem in the transformed

kernel

˜k, to the naïve one, where a solution to Eq. (10)
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of the form f(·) =

P
N

j=1 ↵j

k(x
j

, ·) is sought even

though the representer theorem in k need not hold.

Despite being theoretically suboptimal, this is a nat-

ural model to consider, and it might perform well in

practice. The corresponding optimization problem is:

min

f2Hk

(
�

NX

i=1

log(af2
(x

i

)) + a

Z

S

f2
(x)dx+ �kfk2Hk

)

While the first and the last term are straightforward

to calculate for any f(·) =
P

j

↵
j

k(x
j

, ·),
R
S

f2
(x)dx

needs to be estimated. As before, we construct a uni-

form grid of fineness h, u = (u1, . . . , un

) covering the

domain. ThenZ

S

f2
(u)du =

Z

S

�
↵>K

xu

�2
du = ↵>

⇢Z

S

K
xu

K
ux

du

�
↵

⇡ h↵>K
xu

K
ux

↵,

and the optimization problem reads:

min

↵2RN
{�

NX

i=1

log(a(↵>K
xxi)

2
)+

↵>
(ahK

xu

K
ux

+ �K
xx

)↵}.
As in the previous section, the gradient of this objective

can be readily calculated, and optimized with gradient

descent.

7 EXPERIMENTS

We use cross-validation to choose the hyperparameters

in our methods: a, the fixed intensity, �, the roughness

penalty, and the length-scale of the kernel k. For a held-

out set of points, we calculate the original unpenalized

log-likelihood, which is given in Eq. (9) and requires

the calculation of an integral over the domain. We

follow the same strategy as we use for calculating

˜k,

reusing the same grid or uniform sample u1, . . . , un

as integration points. To calculate RMSE, we either

make predictions at a grid of locations and calculate

RMSE compared to the true intensity at that grid or

for the high-dimensional synthetic example we pick

a new uniform sample of locations over the domain

and calculate the RMSE at these locations. We used

limited memory BFGS in all experiments involving

optimization, and found that it converged very quickly

and was not sensitive to initial values. Code for our

experiments is available at https://bitbucket.org/

flaxter/kernel-poisson.

1-d synthetic Example. We generated a synthetic

intensity using the Mercer expansion of a SE kernel with

lengthscale 0.5, producing a random linear combination

of 64 basis functions, weighted with iid draws ↵ ⇠
N (0, 1). In Fig. 1 we compare ground truth to estimates

made with: our RKHS method with SE kernel, the

naïve RKHS approach with SE kernel, and classical

kernel intensity estimation with bandwidth selected

by crossvalidation. The results are typical of what

we observed on 1D and 2D examples: given similar

kernel choices, each method performed similarly, and

numerically there was not a significant difference in

terms of the RMSE compared to the true underlying

intensity.
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Figure 1: A synthetic dataset, comparing our RKHS method,
the naïve model, and kernel smoothing to a synthetic intensity
“true”. The rug plot at bottom gives the location of points in
the realized point pattern. The RMSE for each method was
similar.

Environmental datasets. Next we demonstrate our

method on a collection of two-dimensional environmen-

tal datasets giving the locations of trees. Intensity

estimation is a standard first step in both exploratory

analysis and modelling of these types of datasets, which

were obtained from the R package spatstat. We cal-

culated the intensity using various approaches: our

proposed RKHS method with

˜k with a squared expo-

nential kernel, the naïve RKHS method with squared

exponential kernel, and classical kernel intensity es-

timation (KIE) with edge correction. Each method

used a squared exponential kernel. We report average

held-out cross-validated likelihoods in Table 1. With

the exception of our method performing better on the

Red oak dataset, each method had comparable per-

formance. It is interesting to note, however, that our

method does not require any explicit edge correction

1
,

because we are optimizing a likelihood which explicitly

takes into account the window. A plot of the resulting

intensity surfaces for each method and the effect of

edge correction are shown in Fig. 2 for the Black oak

dataset.

High dimensional synthetic examples. We gener-

ated random intensity surfaces in the unit hypercube

1Because no points are observed outside the window S,
intensity estimates near the edge are biased downwards
(Jones, 1993).

https://bitbucket.org/flaxter/kernel-poisson
https://bitbucket.org/flaxter/kernel-poisson
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(a) KIE with edge correction (b) KIE without edge correction (c) Our RKHS method with k̃ (d) Naïve RKHS method

Figure 2: Location of white oak trees in Lansing, Michigan, smoothed with various approaches. Squared exponential
kernels are used throughout. Edge correction makes a noticeable difference for classical kernel intensity estimation.
Comparing (a) and (c) it is clear that our method is automatically performing edge correction.

Table 1: Tree Point Patterns from R Package spatstat

Dataset Kernel intensity estimation Naïve approach Our approach with k̃
Lansing: Black oak (n = 135) 234 233 227

Hickory (n = 703) 1763 1746 1757
Maple (n = 514) 1239 1228 1233
Misc (n = 105) 179 177 172

New Zealand (n = 86) 119 119 119
Red oak (n = 346) 726 726 739

Redwoods in California (n = 62) 79 84 77
Spruces in Saxonia (n = 134) 215 212 212

Swedish pines (n = 71) 91 89 90
Waka national park (n = 504) 1142 1141 1144

White oak (n = 448) 992 992 996

for dimensions D = 2, . . . , 15. The intensity was given

by a constant multiplied by the square of the sum of

20 multivariate Gaussian pdfs with random means and

covariances. The constant was automatically adjusted

so that the number of points in the realizations would

be held close to constant, around 200. We expected

this to be a relatively simple synthetic example for ker-

nel intensity estimation with a Gaussian kernel in low

dimensions, but not in high dimensions. From each ran-

dom intensity, we generated two random realizations,

and trained our model using 2-fold crossvalidation with

these two datasets. We predicted the intensity at a

randomly chosen set of points and calculated the mean

squared error as compared to the true intensity. For

each dimension we repeated this process 100 times com-

paring kernel intensity estimation, the naïve approach,

and our approach with

˜k. As shown in Fig. 3(a) once we

reach dimension 7 and above, our RKHS method with

˜k
begins to outperform kernel intensity estimation, where

performance is measured as MSE across 100 random

datasets. Our method also significantly outperforms

the naïve RKHS method as shown in Fig. 3(b). For

high dimensions the difference between the two RKHS

methods is not significant. This is most likely due to

the fact that the number of points in the point pattern

remains fixed, so the problem becomes very hard in

high dimensions.

2
Finally, as shown in the Appendix

in Fig. A7, kernel intensity estimation is almost always

better than the naïve RKHS approach, although the

difference is not significant in high dimensions.

Computational complexity. Using the synthetic

data experimental setup, we evaluated the time com-

plexity of our method with respect to dimensionality

d, number of points in the point pattern dataset n,

and number of points s used to estimate

˜k (Fig. A6),

confirming our theoretical analysis. Further discussion

and Figures are in the Appendix in Section A.

Spatiotemporal point pattern of crimes. To

demonstrate the ability to use domain specific ker-

nels and learn interpretable hyperparameters, we used

12 weeks (84 days) of geocoded, date-stamped re-

ports of theft obtained from Chicago’s data portal

2Note that our experiments are sensitive to the overall
number of points in the synthetic point patterns; since ker-
nel density estimation is a consistent method (Wied and
Weißbach, 2012), we should expect kernel intensity esti-
mation to become more accurate as the number of points
grows. However, consistency in the sense of classical statis-
tics is not necessarily useful in point processes, because
our observations are not iid; the number of points that we
observe is in fact part of the dataset since it reflects the
underlying intensity.
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Figure 3: In (a): comparison of our RKHS method versus
kernel intensity estimation (KIE) as the dimensionality
grows, with 95% CIs shown based on 100 random surfaces
for each dimension. In (b), our RKHS method versus the
naïve RKHS method. Our method significantly outperforms
kernel intensity estimation as the dimension increases, and
outperforms the naïve method throughout.

(data.cityofchicago.org) starting January 1, 2004, a

relatively large spatiotemporal point pattern consist-

ing of 18,441 events. We used the following kernel:

exp(�.5s2/�2
s

)(exp(�2 sin

2
(t⇡p)) + 1)(exp(�.5t2/�2

t

))

which is the product of a separable squared exponential

space and decaying periodic time kernel (with frequency

p in a time domain normalized to range from 0 to 1) plus

a separable squared exponential space and time kernel.

After finding reasonable values for the lengthscales and

other hyperparameters of

˜k through exploratory data

analysis, we used 2-fold cross-validation and calculated

average test log-likelihoods for the number of cycles

varying p = 1, 2, . . . , 14 or equivalently a period of

length 12 weeks (meaning no cycle), 6 weeks, ..., 6 days.

These log-likelihoods are shown in Fig. 4; we found

that the most likely frequency is 12, or equivalently a

period lasting 1 week. This makes sense given known

day-of-week effects on crime.

Dihedral angles as point process on a torus. We

consider a novel application of Poisson process estima-

tion, suited to the periodic Sobolev kernel in Eq. (16).

The tensor product construction in two dimensions
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Figure 4: Log-likelihood for various frequencies in a dataset
of 18,441 geocoded, date-stamped theft events from Chicago.
The dataset is for 12 weeks starting January 1, 2004, and
the maximum log-likelihood is attained when the frequency
is 12, meaning that there is a weekly pattern in the data.

(cf. Appendix C.4) gives a periodic boundary condition

appropriate for data observed on a torus. An exam-

ple from protein bioinformatics is shown in Fig. A8

using data included with the R package MDplot, visu-

alizing the dihedral torsion angles [ ,�] of amino acids

in proteins (Ramachandran et al., 1963). Classically,

datasets of observed angle pairs have been binned using

two-dimensional histograms or they have been mod-

elled using bivariate Von Mises mixtures fitted using

an EM algorithm (Mardia, 2013), where a selection of

the number of mixture components can be a challenge.

We propose to treat a set of observed angles as an

inhomogeneous Poisson process, thus enabling flexible

nonparametric intensity estimation as shown, which

directly captures the appropriate boundary conditions.

8 CONCLUSION

We presented a novel approach to inhomogeneous Pois-

son process intensity estimation using a Representer

Theorem formulation in an appropriately transformed

RKHS, providing a scalable approach giving strong

performance on synthetic and real-world datasets. In

future work, we will consider marked Poisson processes

and other more complex point process models, as well

as Bayesian extensions akin to Cox process modeling.

A comparison to existing inference methods for Cox

processes would also be worthwhile.
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