
Data Driven Resource Allocation for Distributed Learning

Travis Dick Mu Li Venkata Krishna Pillutla
Carnegie Mellon University Carnegie Mellon University University of Washington

Colin White Maria Florina Balcan Alex Smola
Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University

and AWS Deep Learning

Abstract

In distributed machine learning, data is dispatched
to multiple machines for processing. Motivated
by the fact that similar data points often belong
to the same or similar classes, and more gener-
ally, classification rules of high accuracy tend to
be “locally simple but globally complex” (Vapnik
and Bottou, 1993), we propose data dependent
dispatching that takes advantage of such structure.
We present an in-depth analysis of this model,
providing new algorithms with provable worst-
case guarantees, analysis proving existing scal-
able heuristics perform well in natural non worst-
case conditions, and techniques for extending a
dispatching rule from a small sample to the entire
distribution. We overcome novel technical chal-
lenges to satisfy important conditions for accurate
distributed learning, including fault tolerance and
balancedness. We empirically compare our ap-
proach with baselines based on random partition-
ing, balanced partition trees, and locality sensitive
hashing, showing that we achieve significantly
higher accuracy on both synthetic and real world
image and advertising datasets. We also demon-
strate that our technique strongly scales with the
available computing power.

1 INTRODUCTION
Motivation and Overview: Distributed computation is
playing a major role in modern large-scale machine learning
practice with a lot of work in this direction in the last few
years (Balcan et al., 2012b, 2013b, 2014; Li et al., 2014;
Zhang et al., 2013, 2012). This tends to take two high-level
forms. The first is when the data itself is collected in a dis-
tributed manner, whether from geographically-distributed

Proceedings of the 20th International Conference on Artificial In-
telligence and Statistics (AISTATS) 2017, Fort Lauderdale, Florida,
USA. JMLR: W&CP volume 54. Copyright 2017 by the author(s).

data
dispatch

train

worker 1 worker 2 worker n

Figure 1: Data is partitioned and dispatched into multiple
workers. Each worker then trains a local model using its
local data. There is no communication between workers
during training.

experiments, distributed sensors, distributed click data, etc.,
and the goal is to take advantage of all this data without
incurring the substantial overhead of first communicating it
all to some central location. The second high-level form is
where massive amounts of data are collected centrally, and
for space and efficiency reasons this data must be dispatched
to distributed machines in order to perform the processing
needed (Li et al., 2014; Zhang et al., 2012). It is this latter
form that we address here.

When data is dispatched to distributed machines, the sim-
plest approach and what past work (both theoretical and
empirical) has focused on is to perform the dispatching ran-
domly (Zhang et al., 2012, 2013). Random dispatching has
the advantage that dispatching is easy, and because each
machine receives data from the same distribution, it is rather
clean to analyze theoretically. However, since the distribu-
tions of the data on each machine are identical statistically,
such techniques could lead to sub-optimal results in practice
in terms of the accuracy of the resulting learning rule. Mo-
tivated by the fact that in practice, similar data points tend
to have the same or similar classification, and more gener-
ally, classification rules of high accuracy tend to be “locally
simple but globally complex” (Vapnik and Bottou, 1993),
we propose a new paradigm for performing data-dependent
dispatching that takes advantage of such structure by send-
ing similar datapoints to similar machines. For example, a

Data Driven Resource Allocation for Distributed Learning

globally accurate classification rule may be complicated,
but each machine can accurately classify its local region
with a simple classifier.

We introduce and analyze dispatching techniques that par-
tition a set of points such that similar examples end up on
the same machine/worker, while satisfying key constraints
present in a real world distributed system including bal-
ancedness and fault-tolerance. Such techniques can then be
used within a simple, but highly efficient distributed system
that first partitions a small initial segment of data into a
number of sets equal to the number of machines. Then each
machine locally and independently applies a learning algo-
rithm, with no communication between workers at training.
In other words, the learning is embarrassingly parallel. See
Figure 1 for a schematic representation. At the prediction
time, we use a super-fast sublinear algorithm for directing
new data points to the most appropriate machine.

Our Contributions: We propose a novel scheme for parti-
tioning data which leads to better accuracy in distributed
machine learning tasks, and we give a theoretical and experi-
mental analysis of this approach. We present new algorithms
with provable worst-case guarantees, analysis proving ex-
isting scalable heuristics perform well in natural non worst-
case conditions, techniques for extending a dispatching rule
from a small sample to the entire distribution, and an exper-
imental evaluation of our proposed algorithms and several
baselines on both synthetic and real-world image and adver-
tising data. We empirically show that our method strongly
scales and that we achieve significantly higher accuracy over
baselines based on random partitioning, balanced partition
trees, and locality-sensitive hashing.

In our framework, a central machine starts by clustering
a small sample of data into roughly equal-sized clusters,
where the number of clusters is equal to the number of
available machines. Next, we extend this clustering into an
efficient dispatch rule that can be applied to new points. This
dispatch rule is used to send the remaining training data to
the appropriate machines and to direct new points at pre-
diction time. In this way, similar datapoints wind up on the
same machine. Finally, each machine independently learns
a classifier using its own data (in an embarrassingly parallel
manner). To perform the initial clustering used for dispatch,
we use classic clustering objectives (k-means, k-median,
and k-center). However, we need to add novel constraints to
ensure that the clusters give a data partition that respects the
constraints of real distributed learning systems:

Balancedness: We need to ensure our dispatching procedure
balances the data across the different machines. If a machine
receives much more data than other machines, then it will
be the bottleneck of the algorithm. If any machine receives
very little data, then its processing power is wasted. Thus,
enforcing upper and lower bound constraints on the cluster
sizes leads to a faster, more efficient setup.

Fault-Tolerance: In order to ensure that our system is robust
to machine failures, we assign each point to multiple distinct
clusters. This way, even if a machine fails, the data on that
machine is still present on other machines. Moreover, this
has the added benefit that our algorithms behave well on
points near the boundaries of the clusters. We say a cluster-
ing algorithm satisfies p-replication if each point is assigned
to p distinct clusters.

Efficiency: To improve efficiency, we apply our clustering
algorithms to a small sample of data. Therefore, we need to
be able to extend the clustering to new examples from the
same distribution while maintaining a good objective value
and satisfying all constraints. It is important that the exten-
sion technique be efficient for both the initial partitioning
and when we dispatch examples at prediction time.

When designing clustering algorithms, adding balanced-
ness and fault tolerance makes the task significantly harder.
Prior work has considered upper bounds on the cluster sizes
(Li, 2014b; Byrka et al., 2015b; Li, 2014a; An et al., 2014;
Khuller and Sussmann, 1996; Cygan et al., 2012) 1 and
lower bounds (Aggarwal et al., 2006; Ahmadian and Swamy,
2016), but no prior work has shown provable guarantees
with upper and lower bounds on the cluster sizes simulta-
neously. While capacitated clustering objective functions
are nondecreasing as the number of clusters k increases,
with lower bounds on the cluster sizes, we show the objec-
tive function can oscillate arbitrarily with respect to k. This
makes the problem especially challenging from a combinato-
rial optimization perspective. Existing capacitated clustering
algorithms work by rounding a fractional linear program so-
lution, but the erratic nature of the objective function makes
this task more difficult for us.

The balance constraints also introduce challenges when ex-
tending a clustering-based partitioning from a small sample
to unseen data. The simple rule that assigns a new point to
the cluster with the nearest center provides the best objective
value on new data, but it can severely violate the balance
constraints. Therefore, any balanced extension rule must
take into account the distribution of data.

We overcome these challenges, presenting a variety of com-
plementary results, which together provide strong justifica-
tion for our distributed learning framework. We summarize
each of our main results below.

• Balanced fault-tolerant clustering: We provide the first
algorithmic results with provable guarantees that simultane-
ously handle upper and lower bounds on the cluster sizes,
as well as fault tolerance. Clustering is NP-hard and adding
more constraints makes it significantly harder, as we will see
in Section 2. For this reason, we first devise approximation

1 Note that enforcing only upper (resp. lower) bounds implies a
weak lower (resp. upper) bound on the cluster sizes, but this is only
nontrivial if the upper (resp. lower) bounds are extremely tight or
the number of clusters is a small constant.

Dick, Li, Pillutla, White, Balcan, Smola

algorithms with strong worst-case guarantees, demonstrat-
ing this problem is tractable. Specifically, in Section 2 we
provide an algorithm that produces a fault-tolerant cluster-
ing that approximately optimizes k-means, k-median, and
k-center objectives while also roughly satisfying the given
upper and lower bound constraints. At a high level, our
algorithm proceeds by first solving a linear program, fol-
lowed by a careful balance and replication aware rounding
scheme. We use a novel min-cost flow technique to finish
off rounding the LP solution into a valid clustering solution.

• k-means++ under stability: In addition to these algo-
rithms which give provably strong guarantees in the worst-
case, we give complementary results which show that for
‘typical’ problem instances, it is possible to achieve better
guarantees with simpler, more scalable algorithms. Specif-
ically, in Section 3 we show the popular k-means++ algo-
rithm outputs a balanced clustering with stronger theoretical
guarantees, provided the data satisfies a natural notion of
stability. We make nontrivial extensions of previous work to
ensure the upper and lower size constraints on the clusters
are satisfied. No previous work gives provable guarantees
while satisfying both upper and lower bounds on the cluster
sizes, and Sections 2 and 3 may be of independent interest
beyond distributed learning.

• Efficient clustering by subsampling: For datasets large
enough to require distributed processing, clustering the en-
tire dataset is prohibitively expensive. A natural way to avoid
this cost is to only cluster a small subset of the data and
then efficiently extend this clustering to the entire dataset.
The simple extension that assigns each new point to the p
clusters with the closest centers does not satisfy the balance
constraints. Instead, in Section 4 we show that assigning a
new example to the same p clusters as its nearest neighbor
in the clustered subsample approximately preserves both
the objective value and all constraints. We also use this tech-
nique at prediction time to send new examples to the most
appropriate machines.

• Experimental results: We conduct experiments with both
our LP rounding algorithms and k-means++ together with
our nearest neighbor extension technique. We include em-
pirical (and theoretical) comparisons which show the ef-
fectiveness of both algorithms in different situations. The
k-means++ algorithm is competitive on real world image
and advertising datasets, complementing the results of Sec-
tion 3 by showing empirically that k-means++ produces
high-quality balanced clusterings for ‘typical’ datasets. We
then compare the performance of our framework (using
k-means++ with nearest neighbor extension) against three
baseline methods (random partitioning, balanced partition
trees, and locality sensitive hashing) in large scale learning
experiments where each machine trains an SVM classifier.
We find that for all datasets and across a wide range of k
values, our algorithm achieves higher accuracy than any of
the baselines. Finally, we show that our technique strongly

scales, meaning that doubling the available computational
power while keeping the workload fixed reduces the running
time by a constant factor, demonstrating that our method
can scale to very large datasets.

Related Work: Currently, the most popular method of dis-
patch in distributed learning is random dispatch (Zhang
et al., 2013, 2012). This may not produce optimal results
because each machine must learn a global model. Previous
work has studied partitioning for distributed machine learn-
ing (Wei et al., 2015; You et al., 2015; Delling et al., 2011;
Bourse et al., 2014; Aydin et al., 2016), but none simultane-
ously achieve load-balancing guarantees and approximation
guarantees for k-median, k-means, or k-center.

Previous work in theoretical computer science has consid-
ered capacitated clustering, or clustering with upper bounds
(Li, 2014b; Byrka et al., 2015b; Li, 2014a; Cygan et al.,
2012), and lower bounds (Aggarwal et al., 2006; Ahmadian
and Swamy, 2016), but our algorithm is the first to solve a
more general and challenging question of simultaneously
handling upper and lower bounds on the cluster sizes, and
p-replication. See Section 7 in the supplementary material
for a more detailed discussion about related work.

2 FAULT TOLERANT BALANCED
CLUSTERING

In this section, we give an algorithm to cluster a small initial
sample of data to create a dispatch rule that sends similar
points to the same machine. There are many ways to mea-
sure the similarity of points in the same cluster. We consider
three classic clustering objectives, k-means, k-median, and
k-center clustering while imposing upper and lower bounds
on the cluster sizes and replication constraints. This is the
first algorithm with provable guarantees to simultaneously
handle both upper and lower bounds on the cluster sizes.

A clustering instance consists of a set V of n points, and
a distance metric d. Given two points i and j in V , denote
the distance between i and j by d(i, j). The task is to find
a set of k centers C = {c1, . . . , ck} ⇢ V and assignments
of each point to p of the centers f : V ! �

C
p

�
, where

�
C
p

�

represents the subset of Cp with no duplicates. In this paper,
we study three popular clustering objectives:

(1) k-median: minC,f

P
i2V

P
j2f(i) d(i, j)

(2) k-means: minC,f

P
i2V

P
j2f(i) d(i, j)2

(3) k-center: minC,f maxi2V maxj2f(i) d(i, j)

We add size constraints 0 < `  L < 1, also known
as capacity constraints, so each cluster must have a size
between n` and nL. For simplicity, we assume these values
are integral (or replace them by dn`e and bnLc respectively).
Before we present our approximation algorithm, we discuss
the challenges introduced by these size constraints.

Structure of Balanced Clustering: It is well-known that

Data Driven Resource Allocation for Distributed Learning

5 15 5 15 5 15

y1 y2

x1 x2 x3 x4

5 15

Figure 2: Each edge signifies distance 1, and all other dis-
tances are 2. The middle points are replicated as many times
as their label suggests (but each pair of replicated points are
still distance 2 away). Finally, add length 1 edges between
all pairs in {x1, x2, x3, x4}, {y1, y2}.

solving the objectives optimally are NP-hard (even without
the capacity and fault tolerance generalizations) (Jain et al.,
2003). In fact, with the addition of lower bounds, the value
of the optimal clustering objective OPT as a function of k
behaves erratically. In uncapacitated clustering and cluster-
ing with upper bounds only, given a problem instance, the
cost of the optimal solution always decreases as k increases.
This is easy to see: given a set of optimal centers, if we add
another center v, at the very least v is now distance 0 from
a center, which decreases the cost.

However, when there are lower bounds on the cluster sizes,
there are simple examples in which the value of the optimal
solution as a function of k contains a local minimum. For
instance, the star graph has this property (see Section 11 in
the supplementary material). A much more subtle question
is whether there exists a clustering instance with a local
maximum. We confirm such clusterings do exist; see Fig-
ure 2. We give the idea here and defer the formal proof to
Section 8 in the supplementary material.

Lemma 1. There exists a balanced clustering instance with
p = 1 for which the k-center, k-median, and k-means ob-
jectives contain a local maximum with respect to k.

Proof sketch. Consider Figure 2, where n = 86, and set
n` = 21. Since the distances are all 1 or 2, this construction
is trivially a valid distance metric. From Figure 2, we see
that k = 2 and k = 4 have valid clusterings using only
length 1 edges, using centers {y1, y2} and {x1, x2, x3, x4},
respectively. But now consider k = 3. The crucial property
is that by construction, y1 and any xi cannot simultaneously
be centers and each satisfy the capacity to distance 1 points,
because the union of their distance 1 neighborhoods is less
than 2n`. In the supplementary material, we carefully check
all other sets of 3 centers do not achieve a clustering with
distance 1 edges, which completes the proof.

In fact, with a more intricate clustering instance, we are able
to show (in Theorem 8 in the supplementary material) that
any number of local maxima may exist!

Approximation Algorithm: In light of these difficulties,
one might ask whether any approximation algorithm ex-

ists for this problem. We answer affirmatively, by extend-
ing previous work (Li, 2014a) to fit our more challenging
constrained optimization problem. Our algorithm returns a
clustering whose cost is at most a constant factor multiple
of the optimal solution, while violating the capacity and
replication constraints by a small constant factor.
Theorem 2. Algorithm 1 returns a constant factor ap-
proximate solution for the balanced k-clustering with p-
replication problem for p > 1, where the upper capacity
constraints are violated by at most a factor of p+2

p , and each
point can be assigned to each center at most twice.

At a high level, our algorithm proceeds by first solving a lin-
ear program, followed by careful rounding. The key insight
is that p-replication helps to mitigate the capacity violation
in the rounding phase. Together with a novel min-cost flow
technique, this allows us to simultaneously handle upper and
lower bounds on the cluster sizes. The procedure is summa-
rized in Algorithm 1, and below we provide details, together
with the key ideas behind its correctness (see Section 9 in
the supplementary material for the full details).

Step 1: Linear Program The first step is to solve an linear
program (LP) relaxation of the integer program (IP) formu-
lation of our constrained clustering problem. The variables
are as follows: for each i 2 V , let yi be an indicator for
whether i is opened as a center. For i, j 2 V , let xij be an
indicator for whether point j is assigned to center i. In the
LP, the variables may be fractional, so yi represents the frac-
tion to which a center is opened (we will refer to this as the
“opening” of i), and xij represents the fractional assignment
of j to i. One can use an LP solver to get a fractional solu-
tion which must then be rounded (i.e., the LP may open up
2k ‘half’ centers). Let (x, y) denote an optimal solution to
the LP. For any points i and j, let cij be the cost of assigning
point j to center i. That is, for k-median, cij = d(i, j), and
for k-means cij = d(i, j)2 (we discuss k-center in the sup-
plementary material). Define Cj =

P
i cijxij , the average

cost from point j to its centers in the LP solution (x, y).

It is well-known that the LP in Algorithm 1 has an un-
bounded integrality gap (the ratio of the optimal LP solution
over the optimal integral LP solution), even when the capac-
ities are violated by a factor of 2 � ✏ (Li, 2014a). However,
with fault tolerance, the integrality is only unbounded when
the capacities are violated by a factor of p

p�1 (see the sup-
plementary material for the integrality gap). Intuitively, this
is because the p centers can ‘share’ this violation.

Step 2: Monarch Procedure Next, partition the points into
“empires” such that every point is  4Cj from the center
of its empire (the “monarch”) by using a greedy procedure
from Charikar et al. (1999) (for an informal description,
see step 2 of Algorithm 1). By Markov’s inequality, every
empire has total opening � p/2, which is crucially � 1 for
p � 2 under our model of fault tolerance.

Dick, Li, Pillutla, White, Balcan, Smola

1. Find a solution to the following linear program:

min

x,y

X

i,j2V

cijxij s.t.

(a) 8j 2 V :

X

i2V

xij = p; (b)
X

i2V

yi  k;

(c) 8i 2 V : `yi 
X

j2V

xij

n
 Lyi;

(d) 8i, j 2 V : 0  xij  yi  1.

2. Greedily place points into a set M from lowest Cj

to highest (called “monarchs”), adding point j to
M if it is not within distance 4Cj of any monarch.
For each monarch u, let Eu be the points closest to
u, called u’s empire.

3. For empire Eu with total fractional opening Yu ,P
i2E

u

yi, give opening Y
u/bY

u

c to the bYuc closest
points to u and all other points opening 0.

4. Round the xij’s by constructing a minimum cost
flow problem on a bipartite graph of centers and
points, setting up demands and capacities to handle
the bounds on cluster sizes.

Algorithm 1: Balanced clustering with fault tolerance

Step 3: Aggregation The point of this step is to end up
with  k centers total. Since each empire has total opening
at least 1, we can aggregate openings within each empire.
For each empire Eu, we move the openings to the bYuc
innermost points of Eu, where Yu =

P
i2E

u

yi. We accom-
plish this using an iterative greedy procedure, similar to (Li,
2014a) (we give details in the supplementary material). We
preserve all LP constraints, except we may incur a factor
p+2

p increase to the capacity constraints. At the end of the
procedure, there are  k points with nonzero opening, so
we can set them all to 1 to round the y’s. The cost incurred
in this step can be bounded using the triangle inequality.

Step 4: Min cost flow Now we must round the x’s. We
set up a min cost flow problem, where an integral solution
corresponds to an assignment of points to centers. We cre-
ate a bipartite graph with V on the left (each with supply
p) and the k centers on the right (each with demand n`),
and a sink vertex with demand np � kn`. We carefully set
the edge weights so that the minimum cost flow that sat-
isfies the capacities corresponds to an optimal clustering
assignment. Then using the Integral Flow Theorem, we are
guaranteed there is an integral assignment that achieves
the same optimal cost (and finding the min cost flow is a
well-studied polynomial time problem (Papadimitriou and
Steiglitz, 1998)). Thus, we can round the x’s without incur-
ring any additional cost to the approximation factor. This is
the first time this technique has been used in the setting of
clustering.

In Section 10 of the supplementary material, we show a
more involved algorithm specifically for k-center which
achieves a 6-approximation with no violation to the capacity
or replication constraints.

3 BALANCED CLUSTERING UNDER
STABILITY

In the previous section, we showed an LP-based algorithm
which provides theoretical guarantees even on adversarially
chosen data. Often real-world data has inherent structure that
allows us to use more scalable algorithms and achieve even
better clusters (Balcan et al., 2013a; Ostrovsky et al., 2006).
In our distributed ML framework, this translates to being
able to use a larger initial sample for the same computational
power (Section 4 analyzes the effect of sample size). In this
section, we prove the popular k-means++ algorithm as well
as a greedy thresholding algorithm output clusters very close
to the optimal solution, provided the data satisfies a natural
notion of stability called approximation stability (Balcan
et al., 2013a; Agarwal et al., 2015; Balcan and Braverman,
2010; Balcan et al., 2016; Gupta et al., 2014).

Specifically, we show that given a balanced clustering in-
stance in which clusterings close in value to OPT are
also close in terms of the clusters themselves, assuming
L 2 O(`), then k-means++ with a simple pruning step (Os-
trovsky et al., 2006) outputs a solution close to optimal. We
overcome key challenges that arise when we add upper and
lower bounds to the cluster sizes. We include the details in
Section 11 of the supplementary material.

Approximation Stability: Given a clustering instance
(S, d) and inputs ` and L, and let OPT denote the cost of the
optimal balanced clustering. Two clusterings C and C0 are
✏-close, if only an ✏-fraction of the input points are clustered
differently in the two clusterings, i.e., min�

Pk
i=1 |Ci \

C 0
�(i)|  ✏n, where � is a permutation of [k].

Definition 1 (Balcan et al. (2013a)). A clustering in-
stance (S, d) satisfies (1 + ↵, ✏)-approximation stability
with respect to balanced clustering if all clusterings C with
cost(C)  (1 + ↵) · OPT are ✏-close to C.

k-means: We show that sampling k log k centers using k-
means++, followed by a greedy center-pruning step, (in-
troduced by Ostrovsky et al. (2006)) is sufficient to cluster
well with high probability, assuming (↵, ✏)-approximation
stability for balanced clustering. Our results improve over
Agarwal et al. (2015), who showed this algorithm outputs a
good clustering with probability ⌦(

1
k) for standard (unbal-

anced) clustering under approximation stability. Formally,
our result is the following.

Theorem 3. Given ✏·k
↵ < ⇢ < 1, k-means++ seeding with

a greedy pruning step outputs a solution that is 1
1�⇢ close to

the optimal solution with probability > 1 � O(⇢), for clus-
tering instances satisfying (1+↵, ✏)-approximation stability
for the balanced k-means objective, with L

` 2 O(1).

Data Driven Resource Allocation for Distributed Learning

Intuitively, (↵, ✏)-approximation stability forces the clusters
to become “spread out”, i.e., the radius of any cluster is
much smaller than the inter-cluster distances. This allows
us to show for 2-means clustering, the k-means++ seeding
procedure will pick one point from each cluster with high
probability. However, if we induct on the number of clusters,
the probability of success becomes exponentially small in k.
We circumvent this issue in a manner similar to Ostrovsky
et al. (2006), by sampling k log k centers, and carefully
deleting centers greedily, until we are left with one center
per cluster with high probability.

k-median and k-center: We show that the greedy thresh-
olding algorithm of Balcan et al. (2013a) is sufficient to
give a good clustering even for the balanced k-median or
k-means objective, under approximation stability. At a high
level, their algorithm works by first creating a threshold
graph for a specific distance, and then iteratively picking
the node with the highest degree in the threshold graph and
removing its neighborhood. We show balanced clustering
instances where the analysis in Balcan et al. (2013a) is not
sufficient to guarantee good clusterings are outputted. We
provide a new technique which overcomes the difficulties in
adding upper and lower balance constraints. The technique
involves showing there cannot be too many distinct pairs
of points from different clusters which are close together,
otherwise swapping these points between clusters would
conserve the balance constraints and contradict approxima-
tion stability. We obtain the following theorem.
Theorem 4. (1) There is an efficient algorithm which re-
turns a valid clustering that is O(

✏
↵)-close to the opti-

mal, for balanced k-median or k-means clustering under
(1 + ↵, ✏)-approximation stability, provided all clusters are
size � 3✏n(1+

3
↵). (2) There is an efficient algorithm which

returns the optimal clustering for balanced k-center under
(2, 0)-approximation stability. (3) For ✏ > 0, there does not
exist an efficient algorithm which returns the optimal clus-
tering for balanced k-center under (2�✏, 0)-approximation
stability, unless NP = RP .

4 EFFICIENT CLUSTERING BY
SUBSAMPLING

For datasets large enough to require a distributed learning
system, it is expensive to apply a clustering algorithm to
the entire dataset. In this section, we show that we can first
cluster a small subsample of data and then efficiently extend
this clustering to the remaining data. In our technique, each
point in the dataset is assigned to the same p clusters as its
nearest neighbor in the clustered subsample. In fact, this
dispatch rule extends the clustering to the entire space X
(not just to the unused portion of the training set), so at
prediction time it can be used to send query points to the
appropriate machines. We show that the clustering induced
over X approximately inherits all of the desirable properties
of the clustered subsample: good objective value, balanced
clusters, and replication.

We measure the quality of a clustering of X as follows: given
a data distribution µ over X , our goal is to find a clustering
with centers C = {c1, . . . , ck} and an assignment function
f : X ! �

C
p

�
for the entire space that minimizes Q(f, C) =

Ex⇠µ[

P
c
j

2f(x) d(x, cj)] subject to the balance constraints
Px⇠µ(cj 2 f(x)) 2 [`, L] for all j. In this section we focus
on the k-median objective, but similar results for k-means
are given in Section 12 of the supplementary material.

The simplest approach to extend a clustering of small sub-
sample of data is to assign a new example x to the p clusters
with the closest centers. This strategy incurs the lowest cost
for new examples, but it may severely violate the balance
constraints if the distribution is concentrated near one center.

Instead, given a clustering of the subsample S, our technique
assigns a new example x to the same p clusters as its nearest
neighbor in the set S, denoted by NNS(x). We use the fact
that the clustering of S is balanced to show that the extended
clustering is also balanced. Some points in S will represent
more probability mass of µ than others, so we use a second
independent sample S0 to estimate weights for each point in
S, which are used in a weighted version of the objective and
balance constraints. Pseudocode is given in Algorithm 2.
We obtain the following guarantees for k-median.
Theorem 5. For any ✏, � > 0, let (ḡS , CS) be the output of
Algorithm 2 with parameters k, p, `, L and second sample
size n0

= O
�

1
✏2 (n+log

1
�)

�
. Let (f⇤, C⇤

) be any clustering
of X and (g⇤S , C⇤

S) be an optimal clustering of S under QS

satisfying the weighted balance constraints (`, L). Suppose
that QS(gS , CS)  r · QS(g⇤S , C⇤

S) + s. Then w.p. � 1 � �
over the second sample, the output (ḡS , CS) satisfies the
balance constraints with `0 = ` � ✏ and L0

= L + ✏ and

Q(ḡS , CS)  r · Q(f⇤, C⇤
) + s + 2(r + 1)pD✏

+ p(r + 1)↵(S) + r�(S, ` + ✏, L � ✏),

where D is the diameter of X , the quantity ↵(S) =

Ex⇠µ[d(x, NNS(x))] measures how well µ is approximated
by S, and �(S, `, L) = minh,C

�
Q(

¯h, C) � Q(f⇤, c⇤)}
measures the loss incurred by restricting to clusterings that
are constant over the Voronoi tiles of S.

The terms ↵(S), �(S) can be bounded in terms of the size
of S under natural conditions on the distribution µ. For ex-
ample, when the distribution has doubling dimension d0 and
the optimal clustering of X is �-probabilistically Lipschitz
(Urner et al., 2011, 2013) (intuitively requiring that the prob-
ability mass close to the cluster boundaries is small) then
for n =

˜O((

1
✏��1(✏))

d0d0) we will have ↵(S) < D✏ and
�(S) < pD✏ with high probability. See Section 12 in the
supplementary material for details.

5 EXPERIMENTS
In this section, we present an empirical study of the accuracy
and scalability of our technique using both the LP rounding
algorithms and k-means++ together with the nearest neigh-
bor extension. We compare against three baselines: random

Dick, Li, Pillutla, White, Balcan, Smola

Input: Dataset S = {x1, . . . , xn}, cluster parameters
(k, p, `, L), second sample size n0.
1. Draw second sample S0 of size n0 iid from µ.
2. For each point xi, set ŵi = |S0

i|/n0, where S0
i =

{x0 2 S0
: NNS(x0

) = xi}
3. Let CS = (c1, . . . , ck) and gS : S ! �

C
p

�
be a

clustering of S obtained by minimizing

QS(g, C) =

nX

i=1

ŵi

X

c
j

2g(x)

d(xi, cj)

subject to
X

i:c
j

2g
n

(x
i

)

ŵi 2 [`, L] for all j = 1, . . . , k.

4. Return ḡS(x) = gS(NNS(x)) and centers CS .

Algorithm 2: Nearest neighbor clustering extension.

partitioning, balanced partition trees, and locality sensitive
hashing (LSH) on both synthetic and real world image and
advertising datasets. Our findings are summarized below:

• Using small samples of the given datasets, we compare the
clusterings produced by our LP rounding algorithms2 and
k-means++ (with balancing heuristics described shortly).
We find that clusterings produced by k-means++ and the
LP rounding algorithms have similar objective values and
correlate well with the underlying class labels. These re-
sults complement the results of Section 3, showing that
k-means++ produces high quality balanced clusterings for
‘typical’ data. This comparison is detailed in Sections 13 and
14 of the supplementary material. Based on this observation,
our further empirical studies use k-means++.

• We compare the accuracy of our technique (using k-
means++ and the nearest neighbor extension) to the three
baselines for a wide range of values of k in large-scale learn-
ing tasks where each machine learns a local SVM classifier.
For all values of k and all datasets, our algorithm achieves
higher accuracy than all our baselines.

• We show that our framework exhibits strong scaling, mean-
ing that if we double the available computing power, the
total running time reduces by a constant fraction.

Experimental Setup: In each run of our experiment, one
of the partitioning algorithms produces a dispatch rule from
10, 000 randomly sampled training points. This dispatch
rule is then used to distribute the training data among the
available worker machines. If the parameter k exceeds the
number of machines, we allow each machine to process
multiple partitions independently. Next we train a one-vs-all
linear separator for each partition in parallel by minimizing
the L2-regularized L2-loss SVM objective. This objective
is minimized using Liblinear (Fan et al., 2008) when the
data is small enough to fit in the each worker’s memory, and
L-BFGS otherwise (note that both solvers will converge to

2 We can run the LP rounding algorithm for small n, even
though there are O(n2) variables.

the same model). The regularization parameter is chosen
via 5-fold cross validation. To predict the label of a new
example, we use the dispatch rule to send it to the machine
with the most appropriate model. All experimental results
are averaged over 10 independent runs.

Details for our technique: Our method builds a dispatch
rule by clustering a small sample of data using k-means++
and uses the nearest neighbor dispatch rule in order to dis-
patch both the training and testing data. To ensure a bal-
anced partitioning, we apply the following simple balancing
heuristics: while there is any cluster smaller than `n points,
pick any such cluster and merge it with the cluster whose
center is nearest. Then each cluster that is larger than Ln
points is randomly partitioned into evenly sized clusters that
satisfy the upper capacity constraint. This guarantees every
cluster satisfies the capacity constraints, but the number of
output clusters may differ from k. For the nearest neigh-
bor dispatch, we use the random partition tree algorithm of
Dasgupta and Sinha (2015) for efficient approximate near-
est neighbor search. We set ` = 1/(2k) and L = 2/k and
p = 1, since our baselines do not support replication.

Baselines: We compare against the following baselines.3

Random Partitioning: Points are dispatched uniformly at
random. This baseline produces balanced partitions but does
not send similar examples to the same machine.

Balanced Partition Trees: Similarly to a kd-tree, this parti-
tioning rule recursively divides the dataset by splitting it at
the median point along a randomly chosen dimension. This
is repeated until the tree has k leaves (where we assume k
is a power of 2). This baseline produces balanced partitions
and improves over random partitioning because each ma-
chine learns a local model for a different subset of the space.
The drawback is that the partitioning may result in subsets
that do not contain similar data points.

LSH Partitioning: This baseline uses locality sensitive hash
functions (Andoni and Indyk, 2006) to dispatch similar
points to the same machine. Given an LSH family H , we
pick a random hash h : Rd ! Z. Then a point x is assigned
to cluster h(x) mod k. In our experiments, we use the con-
catenation of 10 random projections followed by binning
(Datar et al., 2004). See Section 13 for details of the con-
struction. This baseline sends similar examples to the same
machine, but does not balance the cluster sizes (which is
essential for practical data distribution).

Datasets: We use the following datasets:

Synthetic: We use a 128 GB synthetic dataset with 30 classes
and 20 features. The data distribution is a mixture of 200
Gaussians with uniformly random centers in [0, 1]

20 with
covariance 0.09I . Labels are assigned so that nearby Gaus-

3Since our framework does not communicate during training,
we do not compare against algorithms that do, e.g. boosting (Bal-
can et al., 2012a).

Data Driven Resource Allocation for Distributed Learning

0.65

0.7

0.75

0.8

0.85

0.9

A
cc

u
ra

cy

 28 29 210 211 212 213

of clusters (k)

ours
random
bpt

(a) Accuracy on Synthetic Dataset

0.75

0.8

0.85

0.9

0.95

1

A
cc

u
ra

cy

 22 23 24 25 26 27 28 29 210

of clusters (k)

ours
random
bpt

(b) Accuracy on MNIST-8M

0.67

0.68

0.69

0.7

0.71

0.72

0.73

A
cc

u
ra

cy

 21 22 23 24 25 26 27 28 29 210

of clusters (k)

ours
random
bpt
lsh

(c) Accuracy on CTR Dataset

0.58

0.59

0.6

0.61

0.62

0.63

0.64

A
cc

u
ra

cy

22 23 24 25 26 27 28

of clusters (k)

ours
random
bpt
lsh

(d) Accuracy on CIFAR-10 (in3c)

0.77

0.775

0.78

0.785

0.79

0.795

0.8

A
cc

u
ra

cy

22 23 24 25 26 27 28

of clusters (k)

ours
random
bpt
lsh

(e) Accuracy on CIFAR-10 (in4d)

8 16 32 64
1

2

4

8

S
p
e
e
d
u
p
 o

ve
r

8
 w

o
rk

e
rs

of workers

MNIST-8m
CIFAR10-early
CIFAR10-late
CTRS
Synthetic

(f) Strong Scaling

Figure 3: Figures (a) through (e) show the effect of k on the classification accuracy. Figure (f) shows the speedup factor as we increase
the number of workers from 8 to 64 for each dataset.

sians have the same label.

MNIST-8M: We use the raw pixels of the MNIST-8M dataset
(Loosli et al., 2007). It has 8M examples and 784 features.

CIFAR-10: The CIFAR-10 dataset (Krizhevsky, 2009) is
an image classification task with 10 classes. Following
Krizhevsky et al. (2012) we include 50 randomly rotated and
cropped copies of each training example to get a training set
of 2.5 million examples. We extract the features from the
Google Inception network (Szegedy et al., 2015) by using
the output of an early layer (in3c) and a later layer (in4d).

CTR: The CTR dataset contains ad impressions from a com-
mercial search engine where the label indicates whether the
ad was clicked. It has 860K examples with 232 features.

Results: Our empirical results are shown in Figure 3. We do
not report accuracies when the partitioning is imbalanced,
specifically when the largest k/2 clusters contain more than
98% of the data. For all values of k and all datasets, our
method has higher accuracy than all three baselines. The
balanced partition tree is the most competitive baseline, but
in Section 13 we present an additional synthetic distribu-
tion for which our algorithm drastically outperforms the
balanced partition tree. For all datasets except CTR, the
accuracy of our method increases as a function of k, until
k is so large that each cluster becomes data starved. Our
method combines the good aspects of both the balanced
partition tree and LSH baselines by simultaneously sending
similar examples to the same machines and ensuring that
every machine gets roughly the same amount of data.

Figure 3(f) shows the speedup obtained when running our
system using 16, 32, or 64 workers compared to using 8.

We clock the time taken for the entire experiment: the time
for clustering a subsample, dispatch, training and testing.
In all cases, doubling the number of workers reduces the
total time by a constant factor, showing that our framework
strongly scales and can be applied to very large datasets.
6 CONCLUSION
In this work, we propose and analyze a new framework
for distributed learning. Given that similar points tend to
have similar classes, we partition the data so that similar
examples go to the same machine. We cast the dispatch-
ing step as a clustering problem combined with novel fault
tolerance and balance constraints necessary for distributed
systems. We show the added constraints make the objective
highly nontrivial, yet we provide LP rounding algorithms
with provable guarantees. This is complemented by our re-
sults showing that the k-means++ algorithm is competitive
on ‘typical’ datasets. These are the first algorithms with
provable guarantees under both upper and lower capacity
constraints, and may be of interest beyond distributed learn-
ing. We show that it is sufficient to cluster a small subsample
of data and use a nearest neighbor extension technique to
efficiently dispatch the remaining data. Finally, we conduct
experiments for all our algorithms that support our theoret-
ical claims, show that our framework outperforms several
baselines and strongly scales.

Acknowledgements

This work was supported in part by NSF grants CCF-
1451177, CCF-1422910, CCF-1535967, IIS-1618714, IIS-
1409802, a Sloan Research Fellowship, a Microsoft Re-
search Faculty Fellowship, a Google Research Award, Intel
Research, Microsoft Research, and a National Defense Sci-
ence & Engineering Graduate (NDSEG) fellowship.

Dick, Li, Pillutla, White, Balcan, Smola

References

Karen Aardal, Pieter L van den Berg, Dion Gijswijt, and Shanfei
Li. Approximation algorithms for hard capacitated k-facility
location problems. European Journal of Operational Research,
(2):358–368, 2015.

Manu Agarwal, Ragesh Jaiswal, and Arindam Pal. k-means++
under approximation stability. Theoretical Computer Science,
588:37–51, 2015.

Gagan Aggarwal, Tomás Feder, Krishnaram Kenthapadi, Samir
Khuller, Rina Panigrahy, Dilys Thomas, and An Zhu. Achieving
anonymity via clustering. In Proceedings of the twenty-fifth
ACM symposium on Principles of database systems, pages 153–
162, 2006.

Sara Ahmadian and Chaitanya Swamy. Approximation algorithms
for clustering problems with lower bounds and outliers. In
Proceedings of the 43rd annual International Colloquium on
Automata, Languages, and Programming, 2016.

Hyung-Chan An, Aditya Bhaskara, Chandra Chekuri, Shalmoli
Gupta, Vivek Madan, and Ola Svensson. Centrality of trees for
capacitated k-center. In Integer Programming and Combinato-
rial Optimization, pages 52–63. Springer, 2014.

Alexandr Andoni and Piotr Indyk. Near-optimal hashing algo-
rithms for approximate nearest neighbor in high dimensions. In
2006 47th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS’06), pages 459–468. IEEE, 2006.

Kevin Aydin, MohammadHossein Bateni, and Vahab Mirrokni.
Distributed balanced partitioning via linear embedding. In
Proceedings of the Ninth ACM International Conference on
Web Search and Data Mining, pages 387–396. ACM, 2016.

Maria-Florina Balcan and Mark Braverman. Approximate nash
equilibria under stability conditions. Technical report, 2010.

Maria-Florina Balcan, Avrim Blum, Shai Fine, and Yishay Man-
sour. Distributed learning, communication complexity and pri-
vacy. arXiv preprint arXiv:1204.3514, 2012a.

Maria-Florina Balcan, Avrim Blum, Shai Fine, and Yishay Man-
sour. Distributed learning, communication complexity, and
privacy. In Conference on Learning Theory, 2012b.

Maria-Florina Balcan, Avrim Blum, and Anupam Gupta. Clus-
tering under approximation stability. J. ACM, 60(2):8:1–
8:34, May 2013a. ISSN 0004-5411. doi: 10.1145/
2450142.2450144. URL http://doi.acm.org/10.
1145/2450142.2450144.

Maria-Florina Balcan, Steven Ehrlich, and Yingyu Liang. Dis-
tributed k-means and k-median clustering on general communi-
cation topologies. In Advances in Neural Information Process-
ing Systems, 2013b.

Maria-Florina Balcan, Vandana Kanchanapally, Yingyu Liang, and
David Woodruff. Improved distributed principal component
analysis. In Advances in Neural Information Processing Sys-
tems, 2014.

Maria-Florina Balcan, Nika Haghtalab, and Colin White. k-center
clustering under perturbation resilience. In Proceedings of the
43rd annual International Colloquium on Automata, Languages,
and Programming, 2016.

J. Barilan, G. Kortsarz, and D. Peleg. How to allocate net-
work centers. Journal of Algorithms, 15(3):385 – 415,
1993. ISSN 0196-6774. doi: http://dx.doi.org/10.1006/jagm.
1993.1047. URL http://www.sciencedirect.com/
science/article/pii/S0196677483710473.

Florian Bourse, Marc Lelarge, and Milan Vojnovic. Balanced
graph edge partition. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data
mining, pages 1456–1465. ACM, 2014.

Jarosław Byrka, Krzysztof Fleszar, Bartosz Rybicki, and Joachim
Spoerhase. Bi-factor approximation algorithms for hard capaci-
tated k-median problems. In Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages
722–736. SIAM, 2015a.

Jarosław Byrka, Krzysztof Fleszar, Bartosz Rybicki, and Joachim
Spoerhase. Bi-factor approximation algorithms for hard capaci-
tated k-median problems. In Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages
722–736. SIAM, 2015b.

Moses Charikar, Sudipto Guha, Éva Tardos, and David B Shmoys.
A constant-factor approximation algorithm for the k-median
problem. In Proceedings of the thirty-first annual ACM sympo-
sium on Theory of computing, pages 1–10. ACM, 1999.

Brian F Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam
Silberstein, Philip Bohannon, Hans-Arno Jacobsen, Nick Puz,
Daniel Weaver, and Ramana Yerneni. Pnuts: Yahoo!’s hosted
data serving platform. Proceedings of the VLDB Endowment, 1
(2):1277–1288, 2008.

Marek Cygan, MohammadTaghi Hajiaghayi, and Samir Khuller.
Lp rounding for k-centers with non-uniform hard capacities.
In Foundations of Computer Science (FOCS), 2012 IEEE 53rd
Annual Symposium on, pages 273–282. IEEE, 2012.

Sanjoy Dasgupta and Kaushik Sinha. Randomized partition trees
for exact nearest neighbor search. Algorithmica, 72(1):237–263,
2015.

M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni. Locality-
sensitive hashing scheme based on p-stable distributions. In
Proceedings of the twentieth annual symposium on Computa-
tional geometry, pages 253–262, 2004.

Daniel Delling, Andrew V Goldberg, Ilya Razenshteyn, and Re-
nato F Werneck. Graph partitioning with natural cuts. In Paral-
lel & Distributed Processing Symposium (IPDPS), 2011 IEEE
International, pages 1135–1146. IEEE, 2011.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang,
and Chih-Jen Lin. Liblinear: A library for large linear classifica-
tion. The Journal of Machine Learning Research, 9:1871–1874,
2008.

Sudipto Guha, Adam Meyerson, and Kamesh Munagala. Hierar-
chical placement and network design problems. In FOCS, pages
603–612. IEEE Computer Society, 2000. ISBN 0-7695-0850-2.
URL http://dblp.uni-trier.de/db/conf/focs/
focs2000.html#GuhaMM00.

Rishi Gupta, Tim Roughgarden, and C Seshadhri. Decompositions
of triangle-dense graphs. In Proceedings of the 5th conference
on Innovations in theoretical computer science, pages 471–482.
ACM, 2014.

Kamal Jain, Mohammad Mahdian, Evangelos Markakis, Amin
Saberi, and Vijay V Vazirani. Greedy facility location algo-
rithms analyzed using dual fitting with factor-revealing lp. Jour-
nal of the ACM (JACM), 50(6):795–824, 2003.

David R. Karger and Maria Minkoff. Building steiner trees
with incomplete global knowledge. In FOCS, pages 613–
623. IEEE Computer Society, 2000. ISBN 0-7695-0850-2.
URL http://dblp.uni-trier.de/db/conf/focs/
focs2000.html#KargerM00.

Data Driven Resource Allocation for Distributed Learning

Samir Khuller and Yoram J. Sussmann. The capacitated k-center
problem. In In Proceedings of the 4th Annual European Sympo-
sium on Algorithms, Lecture Notes in Computer Science 1136,
pages 152–166. Springer, 1996.

Samory Kpotufe. The curse of dimension in nonparametric regres-
sion. 2010.

Robert Krauthgamer and James R Lee. Navigating nets: simple
algorithms for proximity search. In Proceedings of the fifteenth
annual ACM-SIAM symposium on Discrete algorithms, pages
798–807. Society for Industrial and Applied Mathematics, 2004.

Alex Krizhevsky. Learning multiple layers of features from tiny
images. Technical report, University of Toronto, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Ima-
genet classification with deep convolutional neural networks.
In Advances in neural information processing systems, pages
1097–1105, 2012.

Mu Li, David G Andersen, Alex J Smola, and Kai Yu. Communi-
cation efficient distributed machine learning with the parameter
server. In Advances in Neural Information Processing Systems,
pages 19–27, 2014.

Shanfei Li. An improved approximation algorithm for the hard
uniform capacitated k-median problem. In Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2014, September 4-6, 2014,
Barcelona, Spain, pages 325–338, 2014a. doi: 10.4230/LIPIcs.
APPROX-RANDOM.2014.325. URL http://dx.doi.
org/10.4230/LIPIcs.APPROX-RANDOM.2014.325.

Shi Li. Approximating capacitated k-median with (1 + ✏)k open
facilities. arXiv preprint arXiv:1411.5630, 2014b.

Gaëlle Loosli, Stéphane Canu, and Léon Bottou. Training invariant
support vector machines using selective sampling. Large scale
kernel machines, pages 301–320, 2007.

Mohammad Mahdian and Martin Pál. Universal facility location.
In Algorithms-ESA 2003, pages 409–421. Springer, 2003.

Rafail Ostrovsky, Yuval Rabani, Leonard J Schulman, and Chai-
tanya Swamy. The effectiveness of lloyd-type methods for the
k-means problem. In Foundations of Computer Science, 2006.
FOCS’06. 47th Annual IEEE Symposium on, pages 165–176.
IEEE, 2006.

Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial
optimization: algorithms and complexity. Courier Corporation,
1998.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott
Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke,
and Andrew Rabinovich. Going deeper with convolutions. The
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2015.

Ruth Urner, Shai Shalev-Shwartz, and Shai Ben-David. Access to
unlabeled data can speed up prediction time. In Proceedings of
the 28th International Conference on Machine Learning (ICML-
11), pages 641–648, 2011.

Ruth Urner, Sharon Wulff, and Shai Ben-David. Plal: Cluster-
based active learning. In Conference on Learning Theory, pages
376–397, 2013.

Vladimir N. Vapnik and Leon Bottou. Local algorithms for pattern
recognition and dependencies estimation. Neural Computation,
1993.

Kai Wei, Rishabh K Iyer, Shengjie Wang, Wenruo Bai, and Jeff A
Bilmes. Mixed robust/average submodular partitioning: Fast
algorithms, guarantees, and applications. In Advances in Neural
Information Processing Systems, pages 2233–2241, 2015.

Y. You, J. Demmel, K. Czechowski, L. Song, and R. Vuduc. CA-
SVM: Communication-avoiding support vector machines on
clusters. In IEEE International Parallel and Distributed Pro-
cessing Symposium, 2015.

Yuchen Zhang, John C. Duchi, and Martin Wainwright.
Communication-efficient algorithms for statistical optimization.
In Neural Information Processing Systems, 2012.

Yuchen Zhang, John Duchi, Michael Jordan, and Martin Wain-
wright. Information-theoretic lower bounds for distributed sta-
tistical estimation with communication constraints. In Neural
Information Processing Systems, 2013.

