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Abstract

Bayesian optimization has proven invaluable for
black-box optimization of expensive functions.
Its main limitation is its exponential complexity
with respect to the dimensionality of the search
space using typical kernels. Luckily, many ob-
jective functions can be decomposed into addi-
tive sub-problems, which can be optimized inde-
pendently. We investigate how to automatically
discover such (typically unknown) additive struc-
ture while simultaneously exploiting it through
Bayesian optimization. We propose an efficient
algorithm based on Metropolis–Hastings sam-
pling and demonstrate its efficacy empirically on
synthetic and real-world data sets. Throughout
all our experiments we reliably discover hidden
additive structure whenever it exists and exploit
it to yield significantly faster convergence.

1 INTRODUCTION

Gradient-free optimization of expensive black-box func-
tions is a ubiquitous task in a many fields. Applications
range from sensor placement [10], to robotic control [5],
to hyperparameter tuning for complex machine learning al-
gorithms such as deep convolutional neural networks [19].
These optimization tasks are challenging, because we typ-
ically have little knowledge about the objective function
beyond the ability to evaluate it at a chosen location, and
because the function is expensive to evaluate. For example,

Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics (AISTATS) 2017, Fort Lauderdale,
Florida, USA. JMLR: W&CP volume 54. Copyright 2017 by
the author(s).

each lab experiment costs time and money, and evaluating
a given set of hyperparameters for a deep neural network
may take days or even weeks of training time.

Bayesian optimization (BayesOpt) [2, 17] is a widely used
technique for optimizing expensive black-box functions.
Broadly, BayesOpt operates by maintaining a probabilis-
tic belief about the objective function. We place a prior
distribution—most often a Gaussian process—over the ob-
jective function, which we condition on data as we observe
it. We use this belief to drive the optimization process
by sequentially evaluating the objective. At each iteration,
the posterior distribution of the function is used to suggest
queries to evaluate next, typically trading off exploration
(i.e., querying areas with high posterior uncertainty) and
exploitation (i.e., querying areas with low posterior mean).

A typical BayesOpt algorithm has two key factors that must
be selected by the user: the acquisition function—how
new queries are selected given the posterior belief—and the
choice of prior. Whereas the former has been studied ex-
tensively, and many reasonable options exist, the choice of
prior has received somewhat less attention. Almost all off-
the-shelf BayesOpt solvers use general-purpose kernels,
and do little in the way of discovering and exploiting struc-
ture that may underlie a particular objective function.

With poor or overly general choices of the kernel,
BayesOpt may converge very slowly on complex functions,
especially in moderate-to-high dimension. Hence, exploit-
ing structure can have a substantial impact on optimization
performance. For example, Snoek et al. [19] argue, for ex-
ample, that for hyperparameter optimization a Matérn-5/2
kernel provides better results in general than the squared
exponential kernel, because the latter models unrealisti-
cally smooth functions. Choosing (or learning) a kernel
that exploits low-dimensional structure in the function can
significantly improve performance when confronted with
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10s or 100s of parameters [11, 24].

Here we seek to discover and exploit such additive struc-
ture: cases where the setting of some variables in the de-
sign space does not affect the optimal setting of others. For
example, in hyperparameter tuning, some groups of param-
eters may have well-known interactions (e.g., learning rate
and momentum), whereas others do not strongly interact
(e.g., momentum and regularization weight). Intuitively, if
different groups of parameters interact only additively, then
they can be optimized independently. This intuition has
been formalized many times in the context of kernels [1],
generalized additive models [13], and various extensions
[22]. In the context of Bayesian optimization specifically,
Kandasamy et al. [14] recently showed that knowing the
additive structure of a function ahead of time gives expo-
nential reductions in sample complexity.

However, it is challenging in general to reason about the
structure of arbitrary black-box functions a priori. The
core contribution of our work is an efficient mechanism for
discovering the underlying structure of the function while
BayesOpt is executed. Although in this paper we focus on
additive structure, we believe this technique could be used
more broadly in a wide variety of settings. Rather than
fixing a model a priori, we make use Bayesian model se-
lection to, at each iteration, sample an additive structure
consistent with the data observed so far. We deal with
the large number of possible additive structures by using
a Metropolis–Hastings scheme to sample from the model
posterior, and demonstrate that this mechanism quickly
samples additive structures that explain the data well.

We evaluate our method both in-model and on several
benchmark optimization problems with varying additive
structure. The experiments validate empirically that our ap-
proach significantly outperforms both standard BayesOpt
and the random-bag-of-models exploration scheme intro-
duced by Kandasamy et al. [14]. On synthetic test func-
tions, we show that our approach discovers the correct
structure even for functions in a moderately large num-
ber of dimensions and is substantially faster than existing
structure-discovery techniques. Finally, we evaluate the ef-
ficacy of our proposed algorithm on two real-world appli-
cations: a matrix completion task and an astrophysics sim-
ulation experiment to estimate physical constants to high
accuracy. In both cases, our method converges faster and
finds better optimal solutions than prior work.

2 RELATED WORK

The idea that modeling functions can be done more ef-
ficiently by exploiting underlying additive structure is
well known in general [1]. Generalized additive models
(GAMs) are linear models that explicitly model a response
variable as a linear combination of univariate functions
[13]. These results have been extended to the setting where

some component functions depend on more than one in-
put variable, allowing for general additive structure [22].
In the context of Gaussian process regression in machine
learning, several papers exist that exploit general forms of
additive structure in the literature. Duvenaud et al. [7] in-
troduced an additional generaliztion of GAMs that allows
for “higher-order” additive kernels (GAMs corresponding
to first-order additive kernels).

Kandasamy et al. [14] demonstrated that Bayesian opti-
mization using additive Gaussian processes achieves lower
regret than fully dependent models. They showed that
Bayesian optimization using a prior that exploits additive
structure in the objective function has theoretically signif-
icantly lower sample complexity than with a kernel that
does not exploit this structure. In their paper, the au-
thors proposed evaluating a number of randomly selected
additive structures—which we will call the bag-of-models
approach—and choosing the structure that explains any ob-
served data the best. The primary goal of our work is to
show that this random search is inefficient and can be im-
proved dramatically by performing an informed search in
model space in tandem with the optimization procedure.

The problem of choosing covariance functions that result
in better models than basic kernels has been well studied
in general. One approach to this is to compose simple ker-
nels (for example, the RBF kernel, the linear kernel, etc)
using simple operations like addition and multiplication
[18]. Duvenaud et al. [8] proposed to search over possible
compositions by constructing a grammar of possible ker-
nel compositions, starting with basic base kernels and pro-
ducing more complex kernels via composition. This tree
is then greedily searched over to construct a kernel with
high model evidence. Malkomes et al. [16] extended this
idea, replacing the greedy search with Bayesian optimiza-
tion in model space, defining a novel “kernel kernel” to rea-
son about the similarity between data explanations offered
by different kernels and speed up the search. Rather than
constructing complex models from simple ones, Wilson &
Adams [26] took a different approach, and introduced a
highly flexible kernel by using Bochner’s theorem to write
any stationary kernel as the Fourier transform of a finite
measure, and parameterizing a class of stationary kernels
by using a Gaussian mixture as the spectral density. Similar
to our setting, Gardner et al. [9] considered actively discov-
ering the structure of a function by sequentially querying as
few points as possible. However, the techniques in that pa-
per are not used for optimization.

Choosing generally more informative priors in Bayesian
optimization has received some attention as well. For ex-
ample, Swersky et al. [21] considered using information
gained from functions related to the objective to guide opti-
mization. This occurs, for example, in hyperparameter tun-
ing when hyperparameters on subsampled data can be used
to inform about the validation error on the full dataset.
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3 BACKGROUND

Bayesian optimization (BayesOpt) is a technique for
optimizing an expensive black-box function [17]:
minx∈X f(x). It has become popular in the machine
learning community in recent years for its application
to hyperparameter tuning [19], but as a strong global
optimization algorithm with many theoretical guarantees
[3, 20], it has also been successfully applied in many other
areas [5, 6, 10, 15]. For a comprehensive overview of
BayesOpt see [2]; we give a brief overview of the main
components below.

The core idea of BayesOpt is to deal with the fact that
evaluating f(x) is expensive by constructing a model of f
given samples, and then using this model to decide where
to sample next. This new sample reveals new information
about the function, and our model can therefore be updated;
the process then repeats. Intuitively, if the model of f is
perfect and can be optimized cheaply, then the function it-
self can be optimized cheaply. However, when we are faced
with very few and noisy samples the model will typically
be far from perfect. It is therefore critical that the model
has well-calibrated uncertainty estimates.

Gaussian processes are the most common choices to
model f , as they naturally provide uncertainty estimates
with their predictions [18]. One can view the use of Gaus-
sian process regression as placing a prior over the objective
function f . It is nonparametric, parametrized by the choice
of a mean function µ and covariance function k:

f ∼ GP
(
µ(x), k(x,x′)

)
. (1)

Under this assumption, given any finite set of points
X = [x1, ...,xm], the vector of function values f =
[f(x1), ..., f(xn)] is multivariate Gaussian distributed:

p(f | X) = N
(
f ;µ(x), k(x,x′)

)
. (2)

Typically, Gaussian process regression is performed by
assuming a Gaussian noise observation model: for each
training point xi, we assume that we observe the true
function value offset by some Gaussian noise. That is,
yi = f(xi) + ε, where ε ∼ N (0, σ2

n). With this model,
the posterior after conditioning on some dataset D is it-
self a Gaussian process, where the predictive distribution
p(f(x∗)|D,x∗) for a test point x∗ is Gaussian distributed:

p(f(x∗) | D,x∗) = N
(
µf |D(x

∗), kf |D(x
∗,x∗)

)
; (3)

µf |D(x) = µ(x) + k(x,X)(K+ σ2
nI)
−1(f − µ(X)

)
;

σf |D(x,x) = k(x,x)− k(x,X)(K+ σ2
nI)
−1k(X,x).

Acquisition functions. After conditioning on data, we
use the predictive distribution (3) to evaluate how promis-
ing each candidate x∗ is using some acquisition func-
tion. One of the most popular acquisition functions used

in BayesOpt is the expected improvement. Let fbest be the
best function value observed so far. Define I(f(x∗)) as the
improvement obtained by sampling at x∗:

I
(
f(x∗)

)
= max

(
0, fbest − f(x∗)

)
(4)

The EI acquisition function evaluates the expectation of the
above function over the predictive posterior (3):

EI(x∗) = E
[
I
(
f(x∗)

)]
p(f(x∗)|D,x∗)

=

∫ fbest

−∞

(
fbest − f(x∗)

)
p(f(x∗) | D,x∗) df(x∗)

The expected improvement may be evaluated analytically.
Further, the form of the expected improvement has two
terms that can naturally be interpreted as encouraging both
exploitation, i.e.,points that our model suggest have low
predictive mean µf |D(x), and exploration, i.e. points with
high posterior variance σf |D(x,x). To maximize the ac-
quisition function, it is typically evaluated on a fine grid of
candidate points within a pre-defind hyper-cube. Although
the evaluation of a single candidate point is very fast, it
is important to emphasize that this search scales exponen-
tially with the number of dimensions and can become pro-
hibitively slow in regimes of 10 or more dimensions.

3.1 Model Selection

When using Gaussian process regression to model a func-
tion f , the choice of covariance function k is critical, as
it allows the data scientist to encode information about the
structure of f . However, doing so manually may require
expert knowledge about both the function being modeled as
well as about kernel methods in general. Bayesian model
selection alleviates this need by providing a mechanism to
perform inference over the covariance function from a set
of candidate kernels.

Suppose we are given a set of observed data D = (X,y)
and a set of kernel functions to choose from,M1, ...,Mm,
with corresponding hyperparameters θi. The first object of
interest in Bayesian model selection is the model evidence
of a model, p(y | X,Mi). It represents the likelihood of
having drawn the dataset D from a Gaussian process with
kernel KMi . Computing the model evidence exactly is in
general not analytically tractable for Gaussian processes.
One option is to use the MLE hyperparameters:

log p(y | X,Mi) ≈ p(y | X, θ̂i,Mi). (5)

The log marginal likelihood for a modelMi and hyperpa-
rameters θi can be computed analytically:

log p(y | X,Mi, θi) = − 1
2y
>K−1Mi

y− 1
2 log

(
(2π)n |KMi |

)
.

Because the log marginal likelihood does not penalize
model complexity, the Bayesian information critereon
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(BIC) is often used to penalize the number of hyperparam-
eters |θi| and better approximate the model evidence:

− 1
2BIC = log p(y | X,Mi, θi)− 1

2 |θi| log(|D|). (6)

In our experiments, we found that the difference in log
marginal likelihood between “correct” additive models
and “incorrect” additive models was so large that the
penalty term − 1

2 |θi| log
(
|D|
)

did not have a sigificant im-
pact. Given some prior distribution over the possible ker-
nels, p(M), applying Bayes’ theorem to the above, and
marginalizing out θi, results in the model posterior,

p(Mi | D) =
p(y | X,Mi)p(Mi)∑
j p(y | X,Mj)p(Mj)

, (7)

a probability distribution over the possible models given the
data. The model posterior provides us with a direct mea-
sure of how well each model in the set explains the data.
It allows us to generalize eq. (2) to compute a predictive
distribution marginalized over all possible models:

E [p(f(x∗) | D,x∗,M)]p(M|D)

=
∑
i

p(f(x∗) | D,x∗,Mi)p(Mi | D).

3.2 Additive Structure

Recent work [14] has shown that exploiting known additive
structure can significantly accelerate the convergence of
Bayesian optimization, both theoretically and empirically.
Consider a d-dimensional function f(x1, ..., xd). Suppose
that f(x) decomposes into some partitioning of the dimen-
sions, P , i.e.

f(x) =

|P |∑
i=1

fi
(
x[Pi]

)
(8)

where x[Pi] denotes x restricted to the dimensions in Pi. If
P is the partition where each i = 1, . . . , d is its own part,
we say the f is fully additive. As a clarifying example,
to say a 5-dimensional function decomposes into the parti-
tioning P :

{
[1, 3, 4], [2], [5]

}
means there exist functions

f1, f2, f3 so that:

f(x) = f1(x1, x3, x4) + f2(x2) + f3(x5). (9)

Intuitively, f is much easier to optimize if this structure is
known, even if the functions f1, . . . , f|P | cannot be directly
evaluated. For example, the 5-dimensional optimization
problem above could be solved as one 3-dimensional op-
timization problems and two 1-dimensional problems. In
the context of BayesOpt, known additive structure can be
readily encoded in a Gaussian process prior. In particu-
lar, if a function f(x) decomposes into

∑|P |
i=1 fi(x[Pi]),

then, given a base kernel k(x, x′), the additive kernel∑|P |
i=1 k(x[Pi],x

′[Pi]) gives rise to a prior with support
over functions with this additive structure.

4 MODEL SELECTION VIA MCMC

The number of possible additive decomposition models in
d dimensions is given by the dth Bell number Bd [25],
which grows super-exponentially, and for d = 10 already
reaches B10 = 115 975. This makes computing the model
posterior in eq. (7) prohibitively expensive, as it involves
conditioning a Gaussian process with each of these mod-
els to compute the model evidences. However, comput-
ing a small (i.e., not super-exponential) number of model
evidences is tractable. A natural alternative to computing
the model posterior is to sample from it using Metropolis–
Hastings, which requires only one additional model evi-
dence computation per sample.

Proposal distribution. As we focus on additive struc-
ture throughout this section, a model is uniquely defined
by its partitioning of the underlying dimensions, and with
a slight abuse of notation we refer to the partitioning and
the resulting model both asM. The primary component of
Metropolis–Hastings that needs to be specified is the pro-
posal distribution g(M′ | M). Given an additive structure
partitioning M, there are two natural operations that can
be performed.

First, an existing element of the partition can be split
in two. For example, if [1, 2, 3] ∈ M, we can form
[1][2, 3], [2][1, 3], [3][1, 2] by splitting. In general, a com-
ponent of size k can be split in 2k−1 different ways.

Second, two existing elements of the partition may be
merged. For example, [1, 4] and [2, 3] can be merged to
form [1, 2, 3, 4]. In general, a partition with k components
has
(
k
2

)
possible merges.

With these operations in mind, we construct a proposal dis-
tribution as illustrated in Figure 1. We first choose whether
to split or merge, each with 50% probability. Next, if we
split (left sub-tree), we choose a component of the existing
partitionM uniformly at random and split it in two (again
uniformly at random). If we instead merge (right sub-tree),
we choose two components of M uniformly without re-
placement and merge them. Given this proposal mecha-
nism, sampling from the proposal distribution g(M′ | M)
is straightforward and efficient.

5 STRUCTURE DISCOVERY AND
EXPLOITATION

The goal of our work is to discover the additive model
structure underlying the objective function f(x), while si-
multaneously exploiting it for BayesOpt. At each iteration
i of BayesOpt, we will have collected some dataset of func-
tion evaluations Di = {Xi,yi}. BayesOpt, as described in
section 3, uses this data to update the posterior p(f | Di)
and then to identify the new point x∗, which maximizes
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  =[1,3] [2] [4]

mergesplit

pick 1 sub-partition: pick 2 sub-partitions:

[1,3]
[2]

[1,3]
[4]

[2]
[4]

[1,3,2]
[4]

[1,3,4]
[2]

[1,3]
[2,4]

[1,3] [2] [4]

=[1][2][3][4]

perform split perform merge

=

M

M0 M0

split or merge?

Figure 1: An illustration of the proposal distribution
g(M′ | M) on a simple input model with three sub-
partitions, M = [1, 3][2][4]. Splits with dice represent
choices performed uniformly at random (without replace-
ment). See text for details.

EI(x∗) and for which f(x∗) should be evaluated next.

The expected improvement EI(x∗) is a function of
p(f(x∗) | D,x∗). As we are considering multiple mod-
els, each providing us with a different posterior over f , we
approximately marginalize out the model. We sample k
modelsM1, . . . ,Mk from p(M | Di) to obtain

p(f(x∗) | D,x∗) ≈ 1

k

k∑
j=1

p(f(x∗) | D,x∗,Mj). (10)

MCMC. To obtain these samples, we use the Metropois-
Hastings algorithm with the proposal distribution g(M |
M′). First observe that the model posterior is proportional
to the model evidence p(y | X,M), by eq. (7), which can
be efficiently evaluated for single models. We can there-
fore sample k models as follows: Given the current model
Mj (initializing M0 to the final model found in the pre-
vious iteration), we sample a proposed model M′ from
the proposal distribution g(M′ | Mj). Next, we com-
pute the model evidence for M′ and use this to compute
the Metropolis-Hastings acceptance probability:

A(M′ | Mj) = min

(
1,
p(yi | Xi,M′)g(Mj | M′)
p(yi | Xi,Mj)g(M′ | Mj)

)
.

Finally, we update the current state toM′ with probability
A(M′ | Mi).

Candidate selection. As pointed out at the end of sec-
tion 3, finding the point x∗i to maximize EI(x∗) has expo-
nential sample complexity with the number of dimensions
and can be slow. In the presence of additive structure, this
search can be decomposed and performed for each compo-
nent individually—leading to exponential speed-ups. To do
this, we start with some initial x∗i and iteratively optimize
EI in each component of the partition. For example, if the
first component of the partition is [1,3,5], we first optimize
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Figure 2: Plot of the relative distance to the true loglike-
lihood as a function of the number of model evaluations
(see text). For MCMC, this means the number of samples
drawn in the Markov chain. For bag of models, this means
the number of models in the selected bag. Error bars are
standard error averaged over 10 runs.

the first, third, and fifth dimensions of x∗i , holding the other
dimensions fixed. If the next component is [4], we optimize
EI by varying the 4th dimension (holding other dimensions
fixed), and so on.

As each modelMi has its own additive structure, we iden-
tify the best x∗i for each of the k models,

x∗i = argmax
x

EI(xi | Mi). (11)

We consider the resulting points x1, . . .xk as candidate
points and set x∗ = xi for the particular i that maxi-
mizes the marginalized acquisition function EI(x∗i ) using
eq. (10).

6 RESULTS

For all the experiments, we used the Python GP
toolbox GPy [12]. We will make our code pub-
licly available at https://github.com/jrg365/
bayesopt_model_mcmc.

6.1 Model Selection

Here we demonstrate the effectiveness of MCMC search
in model space. We sample a random partition P of
{1, . . . , d} and sample observations from a Gaussian pro-
cess with additive structure corresponding to P . In par-
ticular, we take N = 50 points from a scrambled Hal-
ton sequence on [0, 1]d, and sample corresponding function
values f(x) from the Gaussian process. We then perform
MCMC model search using these N observations. The ini-
tial kernel is the fully dependent kernel. Figure 2 shows

https://github.com/jrg365/bayesopt_model_mcmc
https://github.com/jrg365/bayesopt_model_mcmc
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plots of the Markov chain length versus model evidence
achieved with that chain length for d = 10. We compare
with the bag-of-models (BOM) proposed by Kandasamy
et al. [14]. For each method we plot, as a function of the
number of models evaluated, the relative distance to the
true model. This is given by 1 − log p(y|X,Mi,θi)

log p(y|X,M∗,θ∗) , where
M∗ is the true model and Mi is the model evaluated at
iteration i.

MCMC consistently finds additive decompositions within
15–17% of the ground-truth log likelihood. In 8 out of
10 runs, MCMC samples the ground-truth model exactly.
BOM consistently fails to find models with a relative log
likelihood distance of less than 30%. This experiment
demonstrates that MCMC is an effective technique for ex-
ploring the space of additive structures, at least when the
underlying function is well modeled by a Gaussian process.
Specifically, we can expect it to outperform the BOM when
used as a subroutine in Bayesian optimization when addi-
tive structure is critical to the optimization task.

6.2 Optimization

We next incorporate MCMC model search into the
BayesOpt framework. In all experiments below, we sam-
ple k = 50 models using the MCMC techniques dis-
cussed above at each iteration. For the Bag of Models
(BOM) baseline, we use a bag of 50 models. Thus, the
MCMC approach and the bag of models approach perform
the same number of MLE optimizations of the log likeli-
hood log p(y | X,Mi, θi). Instead of performing burn-
in—discarding initial low-likelihood samples—we initial-
ize the Markov chain at each iteration with the final model
sampled at the previous iteration. Therefore, the MCMC
and BOM approaches add virtually identical amounts of
overhead to the baseline BayesOpt algorithm, and the wall-
clock time required for each iteration is essentially identical
for both methods.

We do note that the amount of overhead added by per-
forming model selection is not inconsequential for cheap
functions f . Indeed, considering k models at each itera-
tion results in roughly a factor k increase in the overhead
added by BayesOpt. However, in many real world settings
(like the cosmological constants experiment and the matrix
factorization experiment below), the overhead of running
BayesOpt is insignificant compared to evaluating the objec-
tive function f) as long as only a relatively small number
of optimization iterations are run.

In all experiments, the squared exponential (SE) kernel is
used as the base kernel.

6.3 Optimization of Benchmark Functions

We first consider two standard optimization benchmark
functions that have additive structure: the Styblinski–

Tang function, and the Michalewicz function. The d-
dimensional Styblinski–Tang function is defined as

Stybtang(x) =
1

2

d∑
i=1

x4i − 16x2i + 5xi.

The global minimum is approximately−39.166d and is at-
tained at point x∗ ≈ (−2.9, . . . ,−2.9). We restrict the
domain of the function to [−4, 4]d for the optimization.

The d-dimensional Michalewicz function is defined as

Michalewicz(x) = −
d∑
i=1

sin(xi) sin
2m

(
ixi
π

)
.

Here, m controls the steepness of valleys and ridges. For
this experiment, we set m = 10. For d = 10, the global
minimum is approximately −9.66 over the domain [0, π]d.

In addition to these two functions, we extend the
Styblinski–Tang function, which fully additively decom-
poses, to a transformed Styblinski–Tang function: We sam-
ple a random partition P and for each part i of P , we sam-
ple a random orthonormal matrix Qi over the dimensions
of part i. If Q is the block diagonal matrix formed by plac-
ing each Qi on a diagonal, then Stybtang(Qx) is no longer
fully additive, but instead is additive across the components
of P . We use this to investigate performance when the true
function is not fully additive across individual dimensions.

We compare against three baselines. The fully dependent
model uses a single d-dimensional kernel as the model.
This is the approach used by popular BayesOpt packages
such as Spearmint [19]. The oracle model uses a sum of
squared-exponential kernels whose parts capture the true
additive structure of the underlying function. For all exper-
iments, we expect the oracle model to outperform all other
methods since it has prior knowledge of the true function
structure. Our third baseline is BOM [14]. In all experi-
ments, BayesOpt+Model MCMC significantly outperforms
the non-oracle approaches, both in terms of convergence
speed and ultimate objective value.

Figure 3 left shows the plot of optimizing the Styblinski–
Tang function. Each curve shows the mean cumulative
minimum function evaluation up to the current iteration
across 10 runs, while the shaded region shows the standard
error. It can be seen that our method attains the true global
minimum as quickly as the oracle model, while outper-
forming BOM. The fully dependent model does not con-
verge within 200 iterations.

Figure 3 right shows the plot of optimizing the
Michalewicz function. Since the function has many steep
valleys, it is much more difficult to model with a Gaus-
sian process than the Styblinski–Tang function. Neverthe-
less, both the oracle model and our method converge to the
global optimum within 300 iterations while BOM has not
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Figure 3: Optimizing the 10d Styblinksi-Tang and transformed Styblinksi-Tang function. Shaded error bars are 2 standard
errors over 10 runs. BayesOpt+Model MCMC converges faster than BOM in both cases.
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Figure 4: Optimizing the 10d transformed Styblinksi-Tang
function. Shaded error bars are 2 standard errors over 10
runs. BayesOopt+Model MCMC converges to the same
final solution as BOM much faster, and significantly out-
performs it in terms of final objective value

yet converged after 400 iterations. Again, the fully depen-
dent model shows no sign of convergence.

In the transformed Styblinski-Tang experiment (Figure 4),
the more difficult model selection problem poses a signif-
icant challenge to the BOM method, which does not sig-
nificantly outperform the baseline fully dependent model.
In contrast, Model MCMC successfully discovers appro-
priate additive structure and performs significantly better.
Of particular interest is the first 50 iterations where Model
MCMC outperforms the baseline. This happens in cases
where the ground truth model has large non-additive com-
ponents, which makes the EI optimization problem signif-
icantly more difficult for the oracle method. The Model
MCMC method averages over many additive structures
which, while incorrect, have much simpler structure and

for which EI can be more efficiently optimized.

6.4 Determining Cosmological Parameters

In this section, we test our method on the task of deter-
mining the values of various cosmological constants (e.g.,
Hubble’s constant, the density of baryonic matter in the
universe, etc). These cosmological constants are values
that are required in standard physical models of the uni-
verse, but their exact values must be determined experi-
mentally. To do this, scientists can run simulations with
various settings of these cosmological constants and eval-
uate how well these simulations model experimentally ob-
served data.

We use software released by NASA1 that, given settings
of these cosmological constants, computes via simulation
the likelihood of a set of experimental data released by the
Sloan Digital Sky Survey. As in [14], we tune the 9 pa-
rameters that this software takes as input and produces the
negative log likelihood. However, unlike [14], we do not
introduce placeholder dimensions that have no effect on the
objective function value.

To set ranges for each of the parameters, we take the values
set in a parameter file shipped with the software, and opti-
mize over a range of 75%− 125% of this default value for
each parameter. The results of this experiment are in Figure
5. The parameter values shipped with the software achieve
an objective function value of 23.7. All three methods find
statistically significantly better solutions by 200 iterations,
with the BayesOpt+Model MCMC approach performing
the best, consistently converging to an optimal negative
log likelihood of 22.17. Furthermore, BayesOpt+Model
MCMC converges much faster, achieving the global solu-
tion found by the bag of models method nearly 40% faster.

1https://lambda.gsfc.nasa.gov/toolbox/lrgdr/
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Figure 5: Setting values of various cosmological con-
stants to match experimental data using BayesOpt. Shaded
regions correspond to 2 standard errors over 10 runs.
BayesOpt+Model MCMC matches BOM 38% faster, and
then outperforms it.

6.5 Matrix completion

Many of the experiments in Kandasamy et al. [14] and our
paper here have focused on functions with 10 or more di-
mensions. However, there are also many machine learning
algorithms with only a small number (3 or fewer) of hyper-
parameters. Although with these few dimensions, employ-
ing the machinery of MCMC to explore the model space is
not necessarily critical (indeed, BOM reduces to evaluat-
ing all possible additive decompositions and choosing the
best), we seek to demonstrate two things: First, exploit-
ing additive structure can still have a substantial impact on
performance. Second, even in a scenario where BOM is
optimal (i.e. the best additive structure is chosen each iter-
ation), our sampling approach matches its performance.

We evaluate our method on the task of choosing hyper-
parameters for a matrix completion algorithm in [4]: a
singular-value decomposition-based method for recover-
ing a matrix with missing entries which can be used for
image denoising, recommendation, and data interpolation,
among other applications. We set the following hyperpa-
rameters using standard BayesOpt, our method, and BOM:
the regularization trade-off τ , the step-size δ, and the noise-
constraint ε. A plot of the average validation reconstruction
error on an image reconstruction task as a function of the
number of BayesOpt iterations is displayed in figure 6.

Both additive structure mechanisms significantly outper-
form the standard BayesOpt baseline, both in terms of con-
vergence speed and in terms of final objective function
value. To assess whether the hyperparameters made a dif-
ference in terms of image reconstruction quality, we use
the hyperparameters found by each method to recover the
benchmark “peppers” image [23] after noise has destroyed
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Figure 6: Optimizing the reconstruction error of images
with matrix completion. Corner: Example of image re-
construction on the peppers image using hyperparameters
found by both the baseline and by BayesOpt with additive
structure. The additive BayesOpt parameters produce a sig-
nificantly sharper image.

50% of the pixels. The corrupted image as well as the
reconstructions are in figure 6. The image reconstructed
using the additive Bayesian optimization methods is sig-
nificantly sharper than the image reconstructed using the
non-additive approach, with less blurring and much sharper
edges.

7 CONCLUSION

In this paper we introduced an integrated solution to
discover and exploit additive structure while performing
BayesOpt. Our algorithm is based on MCMC sampling
of model candidates and in practice converges surprisingly
fast for plausible and useful model decompositions. Given
the drastic speed-ups that can be achieved through exploita-
tion of additive structure, we hope that our algorithm will
become a standard component of Bayesian optimization.
We hope to extend this work to allow data-driven modeling
choices beyond additive structure.
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