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1 Derivation of Eq.(9)

Here, we show the details for the derivation of Eq.(9) from Eq.(8).
For two functions h, f € C*° (M), we have the following relation (Hsu, 2002):

div(h(X)V (X)) = (VA(X), V(X)) i + h(X)Af(X). (1)

Recall (X,Y )y = tr(XTY) and ¢;(X) = V(X)) = —ﬁVé(X,C;)Q(m(X), where tr(A) = Z?Zl A;,; for a
square matrix A € R¥4. Using Eq.(1) we have

div(¢ (X)) = —%div(d)l(X)Vé(X, C)?)
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where Px is the orthogonal projection onto the tangent space Tx M (Hsu, 2002, Theorem 3.1.4). For the
Grassmann manifold G4, 4,, we have Px = I, — XX and V§(X,Y)? = —2(I;, — XX )YY " X, where
X.,Y € Gq, 4,- Plugging these equations into Eq.(2) yields h; in Eq.(9).
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