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Abstract

In this paper we develop a framework for
a sequential decision making under budget
constraints for multi-class classification. In
many classification systems, such as medical
diagnosis and homeland security, sequential
decisions are often warranted. For each in-
stance, a sensor is first chosen for acquir-
ing measurements and then based on the
available information one decides (rejects) to
seek more measurements from a new sen-
sor/modality or to terminate by classifying
the example based on the available informa-
tion. Different sensors have varying costs
for acquisition, and these costs account for
delay, throughput or monetary value. Con-
sequently, we seek methods for maximizing
performance of the system subject to bud-
get constraints. We formulate a multi-stage
multi-class empirical risk objective and learn
sequential decision functions from training
data. We show that reject decision at each
stage can be posed as supervised binary clas-
sification. We derive bounds for the VC di-
mension of the multi-stage system to quan-
tify the generalization error. We compare our
approach to alternative strategies on several
multi-class real world datasets.

1 Introduction

We develop supervised learning algorithms for learn-
ing multi-class sequential classifiers. The need for se-
quential rules arise because we are limited by a budget
in acquiring measurements. So we need to learn rules
that tradeoff prediction error against acquisition costs.
Such problems appear in many applications including
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Figure 1: Multi-Stage System consists of K stages. Each
stage is a classifier with a reject option. The system incurs
a penalty of δk+1 at kth stage if it rejects to seek more mea-
surements. The kth classifier only sees the first k sensing
modalities in making a decision.

homeland security and medical diagnosis. The goal in
these scenarios is to classify examples with low cost
sensors and limit the number of examples for which
more expensive or time consuming informative sensor
is required.1 Consequently, we associate each stage
with a new sensing modality with higher costs associ-
ated with later stages.

An important aspect of homeland security and medical
diagnosis applications is that each sensors/modality
produce high dimensional measurements (such as im-
ages (X-Rays etc)). So, not only are the underlying
distributions for the sensor measurements under dif-
ferent classes not known, but impossible to estimate
from training data due to the inherent “curse of di-
mensionality.”

1Modern passenger screening systems for explosives de-
tection employ a suite of sensors such as X-ray backscatter
scanners (cheap & fast), millimeter wave imagers (expen-
sive & low-throughput), magnetometers, video, IR imagers
in different bands, and/or physical (human) search. Such
systems must maintain a throughput constraint in order
to keep pace with arriving traffic. In clinical diagnosis,
doctors use a suite of sensors for detecting and assess-
ing the severity of (breast cancer) mammographic mass le-
sions (malicious or benign) including genetic markers, CT
images from different views, 3-D CT tomographic recon-
structions, optical tomography imaging, ultrasound imag-
ing, elastography imaging, manual palpation, and biopsy,
among others. Many of these sensors provide imagery in-
put for individual human radiologist scoring. The different
sensing modalities have diverse costs, in terms of health
risks (radiation exposure) and monetary expense.
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To deal with these issues we adopt a supervised dis-
criminative learning approach by directly learning se-
quential decision rules from a suitable class. Specifi-
cally, we formulate a novel Empirical Risk Minimiza-
tion (ERM) objective function over the class of se-
quential decision rules. We train sequential decision
rules from a set of training examples in which mea-
surements from all the sensing modalities as well as
the ground truth labels are available. Our goal is to
learn sequential reject classifiers that reduces cost of
measurement acquisition and error in the prediction
(or testing) phase. This concept of using training ex-
amples from all modalities for training decision rules
is evidently not new and is known as Prediction Time
Cost Reduction approach ([11]).

In contrast to much of the existing literature the nov-
elty of our learning scheme is in emulating the stage-
wise optimization objective of a closely related Markov
Decision Problem (MDP). This MDP problem, which
is based on knowledge of underlying probability mod-
els for sensor measurements, seeks to minimize multi-
stage risk over all measurable decision rules. It turns
out that the MDP problem can be decomposed into
minimization of stage-wise risk functions which incor-
porate costs from future stages. We emulate this de-
composition in the empirical setting by formulating a
stage-by-stage empirical risk and seek to minimize this
risk over a parametric class of decision strategies.

We also derive bounds for generalization error for our
sequential decision rules. We consider the binary clas-
sification setting for simplicity. In this setting our sys-
tem turns out to be a Boolean fusion of binary deci-
sion functions. Using this insight, we derive an upper
bound on the VC dimension of the multi-stage reject
classifier. We show that the VC dimension of a K-
stage system grows as K logK times the maximum
complexity of any stage. Our approach also enjoys
other advantages. We can utilize ”black box” classi-
fiers that are pre-programmed into a sensing modality.
In this context, our problem reduces to learning reject
regions at each stage assuming that there is a con-
fidence associated with each decision. In this setting,
the complexity of our system only depends on the com-
plexity of the highest reject region which is typically
not very high.

1.1 Related Work

The subject of this paper is not new and has been
studied in the Machine Learning community as early
as [15]. Our work is closely related to the so called
prediction time active feature acquisition (AFA) ap-
proach in the area of cost-sensitive learning. The goal
there is to make sequential decisions of whether or not
to acquire a new feature to improve prediction accu-

racy. Conventional methods can be divided into two
categories:

Generative & Parametric Modeling: In a
Bayesian setting, probability models are either known
or the data is sufficiently low-dimensional that these
models can be reliably estimated. Under these as-
sumptions, [10, 12] model the decision process and in-
fer feature dependencies while taking acquisition costs
into account. [17, 3, 24] study strategies for optimiz-
ing decision trees while minimizing acquisition costs.
The construction is usually based on some purity met-
ric such as entropy. [11] propose a method that ac-
quires an attribute if it increases an expected utility.
However, all these methods require estimating a prob-
ability likelihood that a certain feature value occurs
given the features collected so far. While surrogates
based on classifiers or regressors can be employed to
estimate likelihoods, this approach requires discrete,
binary or quantized attributes. In contrast, our prob-
lem domain deals with high dimensional measurements
(such as images consisting of thousands of pixels), so
estimating probability densities reliably is not possi-
ble. Instead, we develop a discriminative learning ap-
proach and formulate a multi-stage empirical risk op-
timization problem to reduce measurement costs and
misclassification errors.

Discriminative Learning Approaches: This paper
extends our previous research on this subject ([19]) to
the multi-class setting and incorporates general clas-
sifier families. Our approach is the first framework to
analyze the design of multi-class sequential decision
systems in a non-Bayesian setting. Multiple stages of
margin based reject classifiers have been considered
in a time efficient feature extraction (TEFE) algo-
rithm by [14] in the context image classification. This
method employs a sequence of SVMs, each operating
on features of increasing computational complexity.
The main contribution of the work in [14] is in effi-
cient training of each stage; the solution of previous
stage is used to initialize SVM optimization problem
of the following stage. However, the method uses a
myopic strategy that does not take into account the
performance of the entire system in learning the de-
cisions. We compare this myopic strategy in the Ex-
periments section and demonstrate significantly better
performance. Besides the method mentioned above,
we are not aware of any other approaches that seek
to reduce measurement budget in a multi-stage and
multi-class setting and are able to handle large dimen-
sional training data.

The detection cascade (popular in object detection)
can be considered as a special case of our multi-stage
sequential reject classifiers (MSRC). There is extensive
literature on cascade design (see [23, 4] and references
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Figure 2: Advantage of an adaptive 2 stage strategy: 10 samples, binary (squares, circles). The red line is the optimal
decision when using only 1st stage modality. The blue line is optimal if using both. (2nd stage) The curve is classification
error vs. average measurement cost. The red point corresponds to a non-adaptive strategy that uses only sensor 1 in
making a decision. The blue is a centralized strategy that classifies using both modalities. The green is an adaptive reject
strategy. The samples outside the green region are classified using only the first modality, and samples inside the region
are rejected to stage 2 and are classified using both modalities. Note that blue and green have the same error, while the
reject strategy (green) has to use 2nd stage sensor only for 1

2
of examples, reducing the cost by a factor of 2.

therein) but most cascades roughly follow the set-up
introduced by [20] to reduce computation cost during
detection. The fundamental differences between detec-
tion cascades and MSRC is the architecture. Detection
cascades are primarily concerned with binary classifi-
cation problems. They make partial binary decisions
at each stage, delaying a positive decision until the
final stage. In contrast, MSRCs can deal with multi-
class problems and can make classification decisions
at any stage. Conceptually, this distinction requires a
fundamentally new approach; detection cascades work
because their focus is on unbalanced problems with few
positives and a large number of negatives; and so the
goal at each stage is to admit large false positives with
negligible missed detections. In contrast, our scheme
at each stage is composed of a multi-class classifier as
well as a rejection decision.

Sequential decisions have also been considered in such
areas as network intrusion detection ([8, 13, 6]) and re-
ducing the size of classifier ensembles ([7, 21]). How-
ever, these methods are domain specific and do not
easily extended to the budget constrained setting.

At a technical level our system consists of a sequence
of reject classifiers. Topic of reject classifiers have
been considered in the Bayesian framework by [5].
More recently in the non-bayesian setting, researches,
[22, 2, 16, 9], define a reject region within a small dis-
tance to the separating hyperplane in the SVM frame-
work. We similarly define our reject region in relation
to the decision boundary but allow it to be of higher
complexity.

2 Problem Statement

Let (x, y) ∈ X × {1, 2, . . . C} be distributed according
to an unknown distribution D. A data point has K

features, x = {x1, x2, . . . , xK}, and belongs to one of
C classes indicated by its label y. A kth feature is
extracted from a measurement acquired at kth stage.
We define a truncated feature vector at kth stage:
xk = {x1, x2, . . . xk}. Let X k be the space of the first
k features such that xk ∈ X k.

The system has K stages, the order of the stages is
fixed, and kth stage acquires a kth measurement. At
each stage, k, there is a decison with a reject option,
fk. It can either classify an example, fk(xk) : X k →
{1, 2, . . . , C}, or delay the decision until the next stage,
fk(xk) = r and incur a penalty of δk+1. Here, r indi-
cates the ”reject” decision. fk has to make a decision
using only the first k sensing modalities. The last stage
K is terminal, a standard classifier. Define the system
risk to be,

R(f1, . . . , fK , x, y) =

K∑
k=1

Sk(xk)Rk(fk,xk, y) (1)

Here, Rk is the cost of classifying at kth stage, and
Sk(xk) ∈ {0, 1} is the binary state variable indicating
whether x has been rejected up to kth stage.

Rk(xk, y, fk) =

{
δk+1, fk(xk) = r

1, fk(xk) 6= y ∧ fk(xk) 6= r

If x is active and is misclassified, the penalty is 1. If it
is rejected then the system incurs a penalty of δk, and
the state variable for that example remains at 1.

Sk+1(xk+1) =

{
Sk(xk), fk(xk) = r

0, else
, S0 = 1 (2)

2.1 Markov Decision Problem (MDP)

In this section, we will digress from the discriminative
setting and analyze the problem under the assumption
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that the underlying distribution D is known. In doing
so, we hope to discover some fundamental structure
that will simplify our empirical risk formulation in the
next section.

If D is known the problem reduces to an MDP and the
optimal strategy is to minimize the expected risk,

min
f1,...,fK

ED
[
R(f1, . . . , fK ,xk, y)

]
(3)

If we allow arbitrary decision functions then we can
equivalently minimize conditional risk,

min
f1,...,fK

E
[
R(f1, . . . , fK ,xk, y) | x

]
(4)

This problem—by appealing to dynamic
programming—remarkably reduces to a single stage
optimization problem for a modified risk function. To
see this, we denote the cost-to-go,

δ̃k(xk) = δk+1+ (5)

min
fk+1...fK

E

[
K∑

t=k+1

St(xt)Rt(f
t,xt, y) | xk, Sk(xk) = 1

]
and the modified risk functional,

R̃k(xk, y, fk, δ̃k) =

{
δ̃k(xk), fk(xk) = r

1, fk(xk) 6= y ∧ fk(xk) 6= r

and prove the following theorem (see Suppl. for proof),

Theorem 1. The optimal solution f1, f2, . . . fK to
the multi-stage risk in Eq. 4 decomposes to single stage
optimization,

fk = arg min
f

E
[
R̃k(xk, y, f, δ̃k) | xk

]
(6)

and the solution is:

fk(xk) =

{
ŷ, P̄(xk) > 1− δ̃k(xk)

reject, P̄(xk) ≤ 1− δ̃k(xk)
(7)

ŷ = arg max
j

P(y = j | xk), P̄(xk) = max
j

P(y = j | xk)

The main implication of this result is that if the cost-
to-go function δ̃(xk) is known then the risk R̃k(·) is
only a function of the current stage decision fk. There-
fore, we can ignore all of the other stages and minimize
a single stage risk. Effectively, we decomposed the
multi-stage problem in Eq. 4 into a stage-wise opti-
mization in Eq. 6. 2

2Note that the modified risk functional, R̃k, is remark-
ably similar to Rk except that the modified reject cost
δ̃k(xk) replaces the constant stage cost δk. Also, consider
the range for which δk(xk) is meaningful. If we have C
classes then a random guessing strategy would incur an
average risk of 1 − 1

C
. Therefore the risk for rejecting,

δ̃k(xk) ≤ 1 − 1
C

in order to be a meaningful option. The
work in [5] contains a detailed analysis of single stage reject
classifier in a Bayesian setting.

2.2 Stage-Wise Empirical Risk Minimization

In this section, we assume that the probability model
D is no longer known and cannot be estimated due
to high-dimensionality of the data. Instead, our task
is to find multi-stage decision rules based on a given
training set: (x1, y1), (x2, y2), . . . , (xN , yN )

We will take advantage of the stage-wise decomposi-
tion of the MDP solution in Theorem 1 and formu-
late an empirical version of the stage risk R̃k(·) in Eq.
6. However, this requires an empirical estimate of the
cost-to-go, δ̃k(xki ) → δ̃ki , since we are not estimating
probability models. Note that by definition, δ̃k(xki )
is a only function of fk+1, . . . , fK . So the cost-to-go
estimate is conveniently defined by the recursion,

δ̃k−1i = Ski R̃k(xki , yi, f
k, δ̃ki ) + δk, ∀i (8)

Now, we can form the empirical version of the risk in
Eq 6 and optimize for a solution at stage k over some
family of functions, Fk.

fk(xk) = arg min
f∈Fk

1

N

N∑
i=1

Ski R̃k(yi,x
k
i , f, δ̃

k
i ) (9)

Note, the stage-wise decomposition significantly sim-
plifies the ERM. The objective in Eq. 9 is only a func-
tion of fk given δki and the state Ski . To minimize
an empirical versions of a multi-stage risk in Eq. 4 is
much more difficult due to stage interdependencies.

Multi-class decision with a reject option: Re-
call that at each stage, fk(xk), is a C + 1 decision
function where the extra decision is due to the reject
option. Because of this additional decision, minimiz-
ing the empirical risk at each stage is still difficult. In
order to simplify the problem, we factorize the reject
option from the multi-class decision.

Assume that at each stage, our system has a fixed
stage classifier, dk : X k → {1, . . . C} and its associ-
ated confidence function σdk : X k → R+. σ(·) reports
how confident dk(·) is in classifying xk. Our choice for
σ(·) (described in Sec. 3) is based on the absolute mar-
gin of a binary classifier, which evidently is a popular
heuristic for confidence [2]. Using this reduction, we
propose the following parameterization of a multi-class
classifier with a reject option at each stage.

fk(xk) =

{
dk(xk), σdk(xk) > gk(xk)

reject, σdk(xk) ≤ gk(xk)
(10)

We designate g(·) as a rejector at stage k. The reject
region is constructed by thresholding the confidence
measure σ(·) by g(x). In the space where g(x) is small,
few examples are rejected. In the space where g(x) is
large, rejection is high. Note that g(x) varies with x.
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This dependence on x is important because it enables
g(x) to selectively reject specific regions in the space.
Our choice in parameterization mimics the optimal re-
ject region: maxj P(y = j | xk) ≤ 1 − δ̃k(xk). Recall
that the optimal binary classifier is arg maxj P(y =
j | xk). So the reject region is the space around the
boundary whose size varies as a function of δ̃k(xk).

+1

-1

reject

xk

�dk(xk) = gk(xk)

dk(xk)

Figure 3: To illustrate our parametrization, consider a
binary classification setting. dk(·) is a hyperplane and the
confidence σdk (·) is the distance to this hyperplane. A
possible reject region is constructed by thresholding the
confidence by a rejector gk(·). Note how the width of the
reject region varies with xk because gk is a function of xk.

Furthermore, we can rewrite the empirical risk in Eq.
9 using our parametrization,

R̃k(xki , yi, d
k, gk) = 1[dk(xk

i ) 6=yi]︸ ︷︷ ︸
error penalty

1[σdk
(xk

i )>g(x
k
i )]︸ ︷︷ ︸

not rejected

+ δ̃ki︸︷︷︸
cost to go

1[σdk
(xk

i )≤g(xk
i )]︸ ︷︷ ︸

rejected

(11)

Next, If we use this simplified form and hold the rest
of the system constant then minimizing Eq. 9 with re-
spect to gk(xk) over a family of functions Gk reduces to
a supervised learning problem: (see Suppl. for proof)

Lemma 2. If dk(x), Ski and δ̃ki are held constant then
minimization over g(·) in Eq 9 reduces to:

gk(xk) = arg min
g∈Gk

N∑
i=1

Ski |wi|1[bi(g(xk
i )−zi)≤0]

(12)

wi = 1[dk(xk
i )6=yi]

− δ̃ki , zi = σdk(xki ), bi = sgn [wi]

This simplified problem closely resembles minimizing
weighted binary misclassification error. The pseudo
labels bi play an important role. Note the weight wi
is the difference between the risk of the current stage
dk(·) and the cost of rejecting, δ̃ki . The label bi is +1, if
it is more costly to classify xi at present stage and −1
if the penalty for rejecting is higher than classifying.
This optimization finds a rejector g(·) such that the ex-
amples of pseudo class +1 are rejected and examples
of class −1 are classified. Pseudo class +1 consists
of examples with higher misclassification risk than re-
jection cost. Recall that Ski are just binary variables
indicating whether xi is still active at stage k.

In summary, given Ski , δ̃
k
i , d

k(xk), to solve for the re-
jector gk(xk) requires finding a binary decision with

�̃k(xk) > 1(dk(xk) 6=y)

�̃k(xk)  1(dk(xk) 6=y)

�dk(xk) = g(xk)

Figure 4: The figure illustrates the simplified optimization
problem for gk(xk) in Lemma 2. The objective is to find
a rejector function to fit the decision regions in the figure.
The data in the green region has cost-go smaller then the
risk of classifying at the current stage and therefore is to be
rejected. The data outside the green has higher cost-to-go
than misclassification risk and is to be not rejected.

pseudo labels bi and weights |wi| on the training set
with respect to the indicator loss offset by zi’s.

3 Algorithm

In this section, using the simplified rejector subprob-
lem from Lemma 2, we provide one possible implemen-
tation of the multi-stage in the setting of mulit-class to
binary reduction and explain our stage-wise optimiza-
tion. In our problem, we assume that we are either
provided with stage classifiers d1, d2, . . . , dK or train
them a-priori. So our objective is to find the rejectors
g1, g2, . . . gk−1 at each stage.

Embedding the reject option: Before we pro-
ceed to finding the rejectors, gk, we explain how
we implement pre-training of dk. We utilize a well
known technique for multi-class classification: reduc-
tion from multi-class to binary [1]. For each class
j ∈ {1, 2, . . . C}, we choose a binary codeword
cj ∈ {+1,−1}M of length M . Let

h(xk) = [h1(xk) h2(xk) . . . hM (xk)]

be a vector valued classifier such that hm : X k →
R. This approach reduces a multi-class problem to
findingM binary classification functions, hm(xk), with
respect to code labels cjm. For each sub-problem m,
we take the usual ERM approach and upper-bound
the indicator error by a convex loss: 1[z] ≤ L [z] and

fix a family of classifiers Hk.

hkm(xk) = arg min
h∈Hk

N∑
i=1

L
[
cyimh(xki )

]
(13)

We use the logistic loss function, L [z] = log(1 +
exp(−z)) and set Hk to be a family of polynomial
kernel classifiers 3. Given an output hk(xk), we use
maximum projection decoding to assign a class esti-
mate to the best matching codeword. We define a
stage classifier as

dk(xk) = arg max
j={1...C}

cTj h
k(xk)

3Polynomial kernel classifier of degree q is parametrized
by a vector a : h(x) =

∑N
i=1 ai(x

T
i x + 1)q
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For example, in our implementation, we use one vs all
coding. Here the length of the codeword is M = C
and, for class j, each element of the codeword cj is
−1 except that the jth position is +1, and dk(xk) =
arg maxj={1...C} hkj (xk).

For the confidence function, σ(·), we select an absolute
maximum projection:

∣∣maxj={1...C} cTj h
k(xk)

∣∣. Our
choice in σ(·) is inspired by an absolute margin of a bi-
nary classifier, |h(x)|, which is a popular heuristic mea-
sure of classifier confidence [2]. However, in a multi-
class setting, we use the absolute value of the best
matching projection onto the codeword as a measure
of confidence instead of a single margin. For exam-
ple, cThk(xk) is maximized when the classifier output
matches the codeword exactly. A small value of the
projection indicates that hk(·) has lower confidence in
its classification.

Algorithm 1 Our Method

Input: {xi, yi}Ni=1, {dk(·)}Kk=1, σdk(·), {δk}Kk=1, P
Initialize: Ski = 1,∀(i, k)
for p = 1, 2, . . . , P do
for k = K − 1,K − 2, . . . , 1 do

Update δ̃ki according to Eq. 8
Train gk(xk) according to Eq. 15
Update Ski according to Eq. 2

end for
end for
Output: for k = 1, . . .K − 1,

fk(xk) =

{
dk(xk), σdk(xk) > gk(xk)

reject, σdk(xk) ≤ gk(xk)

Substituting multi-class to binary reduction into our
parameterization in Eq. 10 yields a multi-class deci-
sion with a reject option:

ŷ = arg max
j

cTj h
k(xk), h̄(xk) = max

j
cTj h

k(xk)

fk(xk) =

{
ŷ,

∣∣h̄(xk)
∣∣ > gk(xk)

reject,
∣∣h̄(xk)

∣∣ ≤ gk(xk)
(14)

Stage-wise optimization: To compute a rejector
gk(xk), every stage except the kth is held constant.
We upper-bound the 1[z] ≤ L [z] in Lemma 2. For a

convex loss L [·] and a family of polynomial kernels Gk,
the resulting optimization is a convex program,

gk(xk) = arg min
g∈Gk

N∑
i=1

Ski |wi| L
[
bi(g(xki )− zi)

]
(15)

Once d1, d2, . . . , dK are precomputed, to train gk’s, we
proceed by cyclic optimization of stages one at a time
in reverse order: gK−1, gK−2, . . . g1. Note that the
weights wi’s capture the difference in risk between the

current stage and the cost-to-go. The order of cyclic
optimization is reversed due the recursive nature of the
cost-to-go; δki is a function of the next stage. Initially,
state variables Ski are set to one for all examples and
stages. After the first pass through the stages outputs
gk’s, the Ski ’s are updated. Using the updated state
variables, gk’s are retrained in the second pass and
so on. In our experiments, we found that one pass
is sufficient. For details refer to Algorithm 1. Here,
P is the number of passes of cyclic optimization over
stages.

Complexity of a Multi-Stage System: Using this
particular parametrization, we can bound the VC-
dimension of the entire system in the binary classi-
fication setting. (see Suppl. for proof)

Theorem 3. Let F (x) be the decision of our K-stage
system in the binary class setting, and F (·) ∈ F . Let
Hk be the family of stage classifiers, Gk is the family
of rejectors at each stage,

VC[F ] ≤ cK max
k=1...K−1

{
VC[Hk] + VC[Gk],VC[HK ]

}
where cK = 2(3K − 2) log (e(3K − 2)) (16)

Remarkably, the complexity increases as K logK in
the number of stages K and is proportional to the most
complex stage in the system. Also, note that since
the rejector class Gk is typically of lower complexity
than the stage classifiers, the overall complexity will
be dominated by the VC dimension of stage classifiers
maxk VC[Hk]. However, if we are provided with ”black
box” classifiers dk, then the complexity is bounded by
maxk VC[Gk]. In this case, σdk(xk) is simply an affine
transformation of the class G which does not effect its
VC dimension. ([18])

4 Experiments

Discriminative Myopic Strategy: For compari-
son, we consider a myopic strategy. This method is
closely related to TEFE algorithm to [14]. The single
stage multi-class classifier with reject option remains
the same except that the confidence σdk(xk) is thresh-
olded by a constant tk to achieve a reject option:

fkmyop(x
k) =

{
dk(xk), σdk(xk) > tk

reject, σdk(xk) ≤ tk
(17)

The threshold tk is chosen such that the kth stage will
reject a constant fraction of the N examples in the
training set. This strategy is completely myopic be-
cause tk is chosen without considering the performance
of stages before or after the current stage. Disadvan-
tage of such strategy is illustrated in Fig. 5.
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Dataset Size Stage 1 Stage 2 State 3 Stage 4 # Classes

synthetic 4,000 Sensor 1 Sensor 2 .. .. 2
mammogram 830 CAD feat’s expert rating .. .. 2

pima 768 weight, age, .. glucose test insulin test .. 2
threat 1230 PMMW image IR image AMMW image .. 2

covertype 581012 soils wild. areas elev, aspect, .. .. 7
letter 20000 pixel counts moments edge feat’s .. 26
mnist 70000 4 x 4 image 7 x 7 image 14 x 14 image 28 x 28 image 10

landsat 6435 Band 1 Band 2 Band 3 Band 4 7

Table 1: Dataset Descriptions
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Figure 5: We display the decision boundaries of our
method and the myopic approach for a fixed budget of
1.3. 1st stage classifier, d1, is in blue. 2nd stage classifier,
d2, is black. The space that is rejected to 2nd stage is
in green. Observe how our method only rejects the area
around the first blue boundary. In contrast, myopic uni-
formly rejects samples around both boundaries even if the
samples will be misclassified at the second stage. This is
because our strategy anticipates that the 2nd stage classi-
fier cannot really classify examples around the second blue
boundary and does not suffer the acquisition cost for those
examples. This results in higher error for the same budget
for myopic.
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Figure 6: Here, we com-
pare our method to myopic
on the MNIST data. We
construct four stages of in-
creasing resolution by av-
eraging the original digit
images. The experiment
demonstrates the advantage
of our approach. Also note
that the performance of a
full resolution sensor can be
achieved using a much lower
resolution measurement.

Performance Metric: A natural way to evaluate
performance of a sequential decision system is to show
the trade-off between system error and average acqui-
sition budget. Recall that our algorithm requires pa-
rameters: δ1, . . . , δK . δk can be thought of as a sensor
cost such that the cost of being classified at stage k
is
∑k
l=1 δl. To achieve different operating points on

the error vs budget curve, we can scale these param-
eters by a constant: αδ1, . . . , αδK . For small values
of α, measurement costs are small so more examples
are rejected down the stages resulting in higher aver-

age acquisition budget. For large α, acquisition costs
are high resulting in smaller budget. If we sweep α,
we generate the error vs budget operating points of
our system. For the myopic method, we simply sweep
the constant fraction rejected at each stage. In the
experiments, we designate a centralized performance
as a strategy that uses all sensors for every example.
For more implementation details please refer to the
supplemental material.

Datasets: We evaluate performance of our method on
several datasets (see Table 1). Since for most datasets
measurement cost is not specified, we consider uni-
formly increasing cost structure. A sample using the
1st stage sensor incurs a cost of 1. To reach the sec-
ond stage sensor the cost is 2 and so on. So for a
four stage system, if a sample passes all four stages,
it incurs a cost of 4. To demonstrate the difference
in decision regions between our and myopic strategies
we use a binary two stage synthetic data with two
dimensions corresponding to two sensors. (Fig. 5)
For another illustrative example, we convert a popu-
lar digit recognition data, MNIST, into a four stage
decision system. (Fig. 6) We designate the full reso-
lution 28x28 pixel image as the last stage. To simu-
late the first three stages of increasing sensor quality,
we average the original image down to three resolu-
tion levels, 4x4, 7x7 and 14x14 pixels. The next four
datasets are from UCI. (Fig. 7) Landsat data con-
sists of 3x3 pixel neighborhoods taken from a satellite
image at four different hyper spectral bands. The ob-
jective is to correctly classify the soil type. We set four
bands to be the four stages in our system. Covertype
deals with classifying forest cover type. We set the first
stage to be 10 measurements indicating soil type. The
second stage is 4 measurements indicating wilderness
area type. The last (3rd) stage consists of 40 measure-
ments such as aspect, elevation, etc. Letter consists of
features extracted from handwritten images. The 1st
stage are 5 features describing letterbox position and
pixel counts. The 2nd stage consists of more complex
features such as spatial moments. The last stage is
most complex consisting of edge information. Pima is
a dataset dealing with diabetes diagnoses with spec-
ified costs. The 1st stage consists of 6 simple tests
(1 dollar each) such as body mass index, age and etc.
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Next stage consists of a glucose blood test (17 dol-
lars). The last stage is an insulin test (23 dollars).
Threat dataset contains images taken of people wear-
ing various explosives devices. The imaging is done
in three modalities: infrared (IR), passive millimeter
wave (PMMW), and active millimeter (AMMW). All
the images are registered. We extract many patches
from the images and use them as our training data.
A patch carries a binary label, it either contains a
threat or is clean. Since PMMW and IR are the fastest
modalities but also least informative, we set them to
stages 1 and 2. Stage 3 is an AMMW sensor that re-
quires raster scanning a person and is slow but also
the most useful. Overall, simulations demonstrate the
advantage of our approach over a myopic strategy. In
many datasets, performance close to the centralized
(best) strategy can be achieved with much lower av-
erage budget. Table 2 summarizes our experiments.

Dataset Target Error Myopic Ours Utility

synthetic .147 52% 28%
pima .245 41% 15%

threat .16 89% 71%
covertype .285 79% 40%

letter .25 81% 51%
mnist .085 90% 52%

landsat .17 56% 31%
mam .173 25% 65%

Table 2: In this table we report an average percent of
the maximum budget required to achieve the target error
rate. The target rate is chosen to be close to the error
of the centralized strategy. Thus if there is a maximum
of 2 stages and we obtain a value of 28% for our strat-
egy it means that for only 28% of examples a 2nd stage
is utilized without any degradation in error. Note that we
only evaluate the expected utility approach on the mam-
mogram dataset. The dimensionality of the other datasets
is too high to parametrize the likelihood density reliably.

Parametric Expected Utility Strategy: To
illustrate the difficulty of estimating likelihoods, we
compare to an expected utility in [11]. An expected
margin difference measures how a new attribute, if
acquired, would be useful for an example. U(xk) =∑
xk+1∈Xk+1

∣∣fk(xk)− fk+1([xk, xk+1])
∣∣P(xk+1|xk).

An xk is rejected to the next stage if its utility
U(xk) ≥ tk is greater than a threshold. Here, Xk+1

denotes the possible values that xk+1 can take.
Note this approach requires estimating P(xk+1|xk)4,
therefore the (k+1)th measurement has to be discrete
or distribution needs to be parametrized. Also,
it is unclear how to utilize utility in systems with
more than two stages. Due to these limitations,
we only compare this method on the mammogram
dataset. (Fig. 8) Here, the second stage is an integer

4While there are many different ways to estimate a
probability likelihood we used a Gaussian mixture due to
its computational efficiency
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(b) covertype
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(c) landsat
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(d) letter
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(e) threat
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(f) pima

Figure 7: (a - f) illustrate error vs budget trade-off for our
method and myopic various dataset. Clearly, our method
is superior to myopic and can achieve performance of a
centralized classifier (black diamond) with a significantly
lower acquisition budget.

radiologist rating on the scale 1 : 5 while the first
stage is a three dimensional feature extracted form a
CAD image.
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Figure 8: We compare our
method to an expected util-
ity approach on the mammo-
gram dataset with the last
stage consisting of integer
expert rating. Our method
has a clear advantage over
utility.
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vector machine classifiers for sequential decision
problems. In IEEE CDC, 2009.

[17] V. S. Sheng and C. X. Ling. Feature value acquisi-
tion in testing: A sequential batch test algorithm.
In ICML, pages 809–816, 2006.

[18] E. D. Sontag. Vc dimension of neural networks.
In Neural Networks and Machine Learning, 1998.

[19] K. Trapeznikov, V. Saligrama, and D. A.
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