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1 Proofs

Proof of Theorem 1 To simplify our derivations, we assume uniform class prior probability: P, [y = 9] =
%, g =1,...,C. However, our results can be easily modified to account for a non-uniform prior. The expected
conditional risk can be solved optimally by a dynamic program, where a DP recursion is,

Tie (!, §%) = min B, [$% (<) Rily, x", £9)] (1)
Ji(x*,5%) = min {Ey [S*(x*) Ry, x*, /)] + )
Bt [0, 85 | ] | 3)

Consider kth stage minimization, f* can take C' + 1 possible values {1,2,...C, r} and Ji(x*, S¥) can be recast
as an conditional expected risk minimization,

J(xF, Sk =1) =
I’I}}QH PU [y 7& :& ‘ Xk} ) 6k + Exk+1‘..xK [JkJrl (Xk+17 1) | Xk] (4)
fr(xk)=g fr(xk)=r

Define, ~
5(z%) = F T+ Eprirpx [Jipr (2T, SFT = 1)

and rewrite the conditional risk in

fk:argmfin 1-P, [y:gﬂxk],@ (5)
f(xk)=g f(xF)=r
Reject is the optimal decision if,
min{1 P, [y =7 [x"]} > O (x") (6)
| my;xx {Pyly=171| xk]} < 1— 0% (x") (7)

If reject is not the optimal strategy then a class is chosen to maximize the posterior probability:

which is exactly our claim.
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Proof of Lemma 2 Define an auxiliary variable corresponding to the error penalty term and absolute value
of the maximizing codeword projection respectively:

€ = 1[dk‘(xf)7§yi]7 2% = ogr(x}) (9)

Ri.() = eilig(ary—z,<0) + 01 Lg(ar)—z20) (10)
Sk

= €iljg(ek)—z <0 {1 - 1[9(96")—z7:<0]} (11)

= {ei - 55} Lig(ok)—z<0) + OF (12)

Define weights w; = e; — 6F and drop the §F term since it does not depend on g(-). Our goal is to minimize
> SERE over g. We will split the summation into two sets:

- koo K,
= 2 Sttty * 2 St )< 0
k k
= XZ:O STl gty ) <o) F w%g Siwi {1 - 1[(9(35?)_%)”}} (14)
If discard the constant term Y., _, SFw; and introduce pseudo labels b; = { ) Wi = 0 then,
‘ —1, w; <
N . N
arg m;nz SFR! = arg mginz SF |w] 1[bi(g(xf)—zi)50] (15)
i=1 i=1

Proof of Theorem 3 At each stage the reject decision can be expressed in terms of three boolean decisions:

L{jhk (k)| — g () <0] = Link(xk)>0] Link (k) —gh (x)<0] T Link(xky <] L[—hk (k) — gk (x*)<0] (16)

Decision 1 Decision 2 Not Decision 1 Decision 3

If the rejectors (g% € G*) and stage classifiers (k¥ € H*) belong to families with finite VC dimensions then the
complexity of Decision 2 and Decision 3 is VC[G*] + VC[HF]

The system classifier, F', is composed of K stages. Each of the first K — 1 stages can be expressed as a boolean
function of 3 boolean decisions. The last stage is a single boolean decision. So the output F' can be expressed as
a boolean function of 3(K — 1) + 1 = 3K — 2 functions. We know the VC dimension for each of the functions.
Using this fact and Lemma 2 in [?] we obtain our result.

2 Implementation Details

For large datasets (N > 1000), we split them 50/10/40% into train, validation and test sets. The performance
reported is on the test set. For smaller datasets (N < 1000), we perform 50 random 70/10/20% splits and
report the average performance over the trials. Each subproblem reduces to minimizing a weighted binary error
problem with respect to a logistic loss. Polynomial kernel classifier of degree ¢ is parametrized by a vector a:

N
h(z) = Zai(xgx +1)¢

The optimization over the polynomial kernel classifier is performed using newton gradient descent method. Table
1 shows the degree of polynomial kernels used in our simulations.
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Table 1: Stage Complexity: we use polynomial kernel classifiers. This table displays the degree of the polynomial
kernel used at each stage for the rejector and the stage classifier
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