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Abstract

In multi-output regression applications the
correlations between the response variables
may vary with the input space and can be
highly non-linear. Gaussian process regres-
sion networks (GPRNs) are flexible and effec-
tive models to represent such complex adap-
tive output dependencies. However, infer-
ence in GPRNs is intractable. In this pa-
per we propose two efficient variational infer-
ence methods for GPRNs. The first method,
GPRN-MF, adopts a mean-field approach with
full Gaussians over the GPRN’s parameters
as its factorizing distributions. The second
method, GPRN-NPV, uses a nonparametric
variational inference approach. We derive an-
alytical forms for the evidence lower bound
on both methods, which we use to learn
the variational parameters and the hyper-
parameters of the GPRN model. We ob-
tain closed-form updates for the parameters
of GPRN-MF and show that, while having rel-
atively complex approximate posterior dis-
tributions, our approximate methods require
the estimation of O(N) variational parame-
ters rather than O(N?) for the parameters’
covariances. QOur experiments on real data
sets show that GPRN-NPV may give a better
approximation to the posterior distribution
compared to GPRN-MF, in terms of both pre-
dictive performance and stability.

1 Introduction

Regression with multiple outputs is an important
problem in machine learning and has received consid-
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erable attention in the last few years (Bonilla et al.,
2008; Teh et al., 2005; Boyle and Frean, 2005; Alvarez
and Lawrence, 2009; Wilson et al., 2012). The chal-
lenge here is to develop flexible models able to capture
the dependencies between the outputs, while having
efficient inference methods that allow us to generalize
well on unseen data.

The applications of multi-output regression are
widespread including geostatistics, biology and finan-
cial applications. For example, in geostatistics, it has
been shown that it is possible to leverage the relation-
ships between different metal concentrations in a par-
ticular region in order to predict the concentration of
another metal, for which only very sparse observations
are available (see e.g. Goovaerts, 1997).

While various non-probabilistic approaches have been
developed to address structured prediction problems,
in many of these applications it is crucial to have full
posterior probabilities over the predicted outputs, for
example in order to use Bayesian decision-theoretic cri-
teria for risk minimization or for active sampling.

Within the Bayesian formalism for regression prob-
lems, Gaussian processes have proved very effective
tools for single and multiple output scenarios (Ras-
mussen and Williams, 2006). However, most popular
GP-based methods to multiple output regression prob-
lems assume that the dependencies between the out-
puts are fixed, i.e. they are independent of the input
space (see e.g. Bonilla et al., 2008; Teh et al., 2005).
For problems such as the metal concentration predic-
tion mentioned above, such an assumption may be too
strong as the correlations between the different metals
can vary according to their spatial locations. For ex-
ample, they may be different due to distinct rock types
or due to the presence of a geological fault.

Wilson et al. (2012) have recently proposed a general
framework for multi-output regression where the corre-
lations between the outputs can be spatially adaptive.
Their method is called Gaussian process regression
networks (GPRNs) and it is fundamentally an adap-
tive linear combination of latent Gaussian processes,
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where the weights of the linear combination are also
Gaussian processes.

This paper proposes efficient approximate inference
methods for GPRNs. These methods are under-
pinned by variational inference principles, and differ
on their approximating variational distributions. The
first method is a simple mean-field approach where we
use a factorized distribution over the parameters of
the GPRN. Each of the factor distributions is a full
Gaussian. For this method we show that: (a) we can
obtain an analytical expression for the evidence lower
bound and closed-form updates for the variational pa-
rameters; and (b) we can parametrize the correspond-
ing covariances with only O(N) parameters, instead of
O(N(N+1)/2), where N is the number of data-points.
We refer to this method as the mean-field GPRN.

The second method exploits recent advances in vari-
ational inference. In particular, it builds upon the
nonparametric variational inference of Gershman et al.
(2012) to approximate the posterior distribution of the
GPRN’s parameters with a mixture of isotropic Gaus-
sians. The advantage of this method over mean-field
approaches is that it can approximate relatively com-
plex distributions, which are not necessarily well ap-
proximated by a single Gaussian. As each covariance
is isotropic, it only needs O(N) variational parame-
ters. For this method we obtain an analytical solution
for the expected log joint, which leads to a tight bound
for the evidence lower bound. We note that, the orig-
inal method of Gershman et al. (2012), uses second-
order approximations at the expense of not having a
proper evidence lower bound. This is not the case in
our approach to non-parametric variational inference

for GPRNs.

The remainder of this paper is organized as follows.
In section 2 we describe the Gaussian process regres-
sion networks and its main inference task. We then
introduce two efficient variational inference methods
for approximating the posterior distribution of the
GPRN model. In section 4 we assess the predictive
performances and computational behaviors of the pro-
posed methods on a geostatistic dataset and a high-
performance concrete dataset. Finally, related work is
discussed in section 5.

2 Gaussian Process Regression
Networks

Here we describe the Gaussian process regression net-
work (GPRN) model of Wilson et al. (2012) and ex-
plain the main inference task in GPRNs, mainly pos-
terior inference over the parameters of the model.

Let y(x) € RY be a vector-valued function of x € RP,
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where P and D are the dimensionality of the output
and input spaces respectively. In the GPRN model,
our observations y(x) are assumed to be linear combi-
nations of @ noisy latent functions, f(x) € R¥, cor-
rupted by Gaussian noise. The distinctive feature
of the GPRN model is that the coefficients W(x) €
RP x R? of the linear combination of the latent func-
tions are stochastic and so are the latent functions
f(x). Thus, the GPRN model is defined as follows:

y(x) = Wx)[f(x) + oy€| + oyz, (1)
fi(x) ~GP(0,kf), j=1...Q, (2)
Wij(x) ~GP(0,ky), i=1,...,P;j=1,...Q, (3)
e ~N(c0,1p), (4)

z ~ N(z;0,1p), (5)

where each f; is independently sampled from a Gaus-
sian process (GP) with covariance function k; and
each W;; is also independently sampled from a GP
with covariance x,,. Here Ip and Iy denote the iden-
tity matrices of dimension P and @ respectively. Al-
though not necessary in a general GPRN model, we
have constrained all latent function values to share the
covariance function (and its parameters) and similarly
for the weights.

One of the main advantages of the GPRN model is
that the dependencies of the outputs y are (efficiently)
induced via the latent functions f. More importantly,
as the mixing coefficients W (x) explicitly depend on
the input x, these correlations are spatially adaptive.

Let X = {(x;)}}, be the set of observed inputs and
D = {(yi)}, be the set of observed outputs. We
denote u as the concatenation of the latent function
parameters and the weights, i.e. u = (f'7 w), evaluated
at all training points x € X'. Here f is the noisy version
of the latent function values, i.e. f = f + ose, and
w = vec W, with vec being the Vec operator. Let us
refer to @ = {0,0,,,0¢,0,} as the hyper-parameters
of the GPRN, where 6 and 6,, are the parameters of
the covariances k¢ and k,, respectively.

As defined by equations (2), (3) and (4), the prior over
u evaluated at the training points is a NQ(P + 1)-
dimensional Gaussian with block diagonal covariance:

(6)

where the first @ blocks of C, are induced by the
covariance function ¢ and the last PQ blocks are in-
duced by k. To keep the notation simple, we omit
the training inputs X from the conditioning sets in the
above equation and in the rest of this paper.

p(ul@s,0,,07) = N(u;0,C,),

Given the parameters u and the hyper-parameters 6,
the conditional likelihood given by Equations (1) and
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(5) evaluated at the targets D can be written as:

HN(

Hence, our main inference task in GPRN is to compute
the posterior:

p(D|u, 0) W (x,) (%), a;IP) . (7)

p(u|D,9) o<p(u|0f,0w,af)p(D\u, Uy)a (8)

which is intractable in general. In the next section
we propose methods that approximate this posterior
using variational inference.

3 Variational Inference for GPRNs

This section describes our inference methods to ap-
proximate the posterior p(u|D, 0) using variational in-
ference (Jordan et al., 1999). Our goal is to find an
approximating distribution g(u) from a restricted fam-
ily of distributions that is closest to the true posterior
with respect to the KL divergence:

where, for simplicity in the notation, we have omit-
ted the dependency of the posterior on the hyper-
parameters 6. However, as we shall see later, the
hyper-parameters of the GPRN model can be learned
under the same variational framework.

q(u)
p(ulD)

KL (g(u) || p(ulD)) = E, [log ©)

Minimizing the KL divergence in Equation (9) is equiv-
alent to maximizing the evidence lower bound, which
for the GPRN is given by:

L(q) = Ey[log p(D|f, w)] + Ey[log p(f, w)] + Hy[q(f, w

(10)
where H, is the entropy of ¢(f, w).

In the following sections, we propose two approximat-
ing distributions for GPRN posterior inference: a fac-
torized distribution and a mixture distribution. They
give rise to the mean-field method and to the nonpara-
metric variational inference method respectively.

We will show that for the mean-field method: (a) we
can obtain an analytical expression for the evidence
lower bound and closed-form updates for the varia-
tional parameters; and (b) we can parametrize the cor-
responding covariances with only O(N) parameters,
instead of O(N(N + 1)/2), where N is the number of
data-points. We refer to this method as the mean-field
GPRN.

Additionally, for the nonparametric variational
method we will show that we can obtain an analyt-
ical solution for the expected log joint, which leads to
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a proper evidence lower bound and that, as the mean-
field approach, it only requires O(N) variational pa-
rameters for each corresponding GPRN parameter.

3.1 Mean-Field Inference for GPRIN

In mean-field inference we use a family of factorized
distributions:

Q P
H q(f H q(wij), with:

(11)

j=1 i=1
q(fj) = N(£5; g, X ), and (12)
(W’LJ) N(W1j7 ll’wu le)' (13)
where f; = [fj(x1),....fj(xn)]T and w;; =
[Wij(x1),...,w;j(xn)]?. Here the approximating dis-

tributions in Equations (12) and (13) being full Gaus-
sians is handy for exploiting the fact that the priors
p(f;) and p(w;;) are generated by GPs. However, as
we shall see below, we only need O(N) parameters to
characterize these full Gaussian distributions.

3.1.1 Closed-Form Evidence Lower Bound

For the full Gaussian mean-field approximation, we
can compute the evidence lower bound in Equation
(10) in closed form. The expectation of the conditional
likelihood wrt ¢ (first term in Equation (10)) is

NP
E, [logp(D\f7 w)] = ——5 10g(27ra§)

1 T T
205 = Qy,vr,) (Y5, — Qu,vr,)
n= 1
P Q
0-2 Z dlag Ei I’LWU p'Wij)
Y i=1j=1

+ diag(zwu )T(/'l’fj ® :u’fj)] ’ (14)

where the subscript n corresponds to the nth obser-
vation; Y1 is the P-dimensional vector of training
targets corresponding to observation n; €2y, is the
(P x @Q)-dimensional matrix containing the means for
the weight parameters; vy, is the @-dimensional vec-
tor of means for the latent function parameters; diag(-)
turns the diagonal elements of a matrix into a vector
(or vice versa); and e denotes the Hadamard product.

The expectation of the log prior wrt ¢(f,w) (second
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term in Equation (10)) is given by:

Eq[log p(f, w)] =

Q
1 B _
-5 j<1og|Kf| + I K g+t (Kflzfj))

j=1
1 _ _
- 5 Z (1Og|KUI| + /’LW;ijllJ’w;j + tr (lezwij)> B}
Y]
(15)

where Ky and K, are the covariance matrices ob-
tained by evaluating the covariance functions xy and
Ky on the training data respectively.

Finally, the entropy of the approximating distribution
(third term in Equation (10)) is:

Z log| X3, | + const.

]

Q
1 1
Hlg(f, w)] = 5 Z:llogmfj\ t3
=
(16)
3.1.2 Efficient Closed-form Updates for
Variational Parameters

Using standard mean-field theory we obtain the fol-
lowing closed-form updates for the parameters of the
variational distribution ¢(f;):

P
1
K = §2f1 Z (Yl o Zu’wik ® u’fk) ® Hyy; (17)
v o=l kAj
1 & )
gy = (Kfl T2 z:diag(ﬂwij ® [y, + Var(wi;)))

Y i=1

(18)

where Y ; is the N-dimensional vector of observations
corresponding to output i and Var(w;;) = diag(Z;).

Similarly for the parameters of g(w;;) we have:

1
HPw,; = ﬁzwij (Yl B Zy’fk * lJ’Wik) ® g (19)
Y kit
_ 1 . —1
S = (K5 L ding(rag o g + Var()) ', (20)

Y

where Var(f;) = diag(3s,). We turn our attention to
the analysis of Equations (18) and (20). We see that
the estimated covariances are in terms of Ky and K,
plus a diagonal term. Hence, we approximate the pos-
terior of the GPRN as a product of full covariances
with a parameterization that requires only O(N) pa-
rameters. This result is similar to that obtained by
Opper and Archambeau (2009), albeit more general,
since we consider a larger class of likelihood models as
given by the GPRN framework. We refer to the above
updates as statistically efficient.
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3.1.3 Hyper-parameters Learning

We learn the hyper-parameters @ = {07,0.,,,07,0,}
of the GPRN model by gradient-based optimization
of the evidence lower bound in Equation (10), which
can be computed for the mean-field approximation us-
ing Equations (14), (15), and (16). Note that using
the point-estimates for hyper-parameters means we
are assuming the posterior distribution of the hyper-
parameters to be sharply peaked at one point. This
assumption works well for GP models in practice (see
e.g. Rasmussen and Williams, 2006, for a more thor-
ough discussion). Detailed derivations of the gradients
are given in the supplementary material.

3.2 Nonparametric Variational Inference for
GPRN

Here we build upon the nonparametric variational in-
ference framework of Gershman et al. (2012)!. We
approximate the posterior distribution of the GPRN
model using a mixture of K isotropic Gaussian distri-
butions:

LN B — S e ) o2
alw) = = a®w) = 2 S N p®, 071 (21)
k=1 k=1

where (%) denotes the mean parameters and ai de-
notes the variance of the mixture component k. The
advantage of this approach is that we can approx-
imate relatively complex posterior distributions effi-
ciently using only O(K N) parameters for each factor.
In practice K is very small (typically less than 5) so
the complexity is essentially O(N).

3.2.1 Closed-form Evidence Lower Bound

In general, the expectations in equation (10) when us-
ing Equation (21) cannot be computed analytically
and one needs to resort to approximations. Here we
show that for the GPRN likelihood and prior model we
can obtain exact analytical expressions for the first two
terms in Equation (10). The main trick here is to real-
ize that under the likelihood model of the GPRN and
the isotropic nature of the covariances of the approxi-
mating distributions, the expectations decompose and
we can apply our results from mean-field theory in the
previous section.

In particular, we have that the expectation of the con-
ditional likelihood wrt ¢ (first term in Equation (10))

'We follow the name used in the original paper but note

that this is a parametric inference method.
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is given by:
E [logp(le w)| =

QKUQ ZZ D) (Y
1 P
‘ﬁ(z%{“f RO

k,j kyi,j

k
-l

Wn

Ok (k))

2 I“'LWU W‘J

1

oK (22)

%% NPO 4+ NP log(2n0”
(Zk:o_g Q+ Og( ﬂ-o—y))v

where u( )7 u&,) denote the mean parameters for the

latent functions and weights, respectively, for com-
ponent k. Here ng) (P x @ matrix) and ng) (Q-
dimensional vector) merely select the weight and latent
mean parameters of the n-th sample — they are not ad-
ditional parameters. The sums are over k = 1,... K,
n=1...N,i=1,...,Pand j=1,...,Q.

Similarly, the expectation of the log prior wrt to the
mixture distribution ¢(u) in equation (21) (second
term in Equation (10)) is given by:

E [logp<f,w>] = 5 (QuoglK | + PQloglK..|)

k (k
[ZN() N Hf)JFUktr (Kfl)

+ 3wk,

k,t,j

ol 4 o2 tr (K;l)]. (23)

The only remaining term in the evidence lower bound
in Equation (10) is the entropy H,[g(u)]. Here we use
the result in Huber et al. (2008) to provide a lower
bound for this term:

Hqlg(u)] =
(24)

Simulation results from Huber et al. (2008) showed
that this lower bound is closer to the true entropy
value compared to the previously well-known single
Gaussian bound. Hence, Equations (22), (23) and (24)
define a tight analytical lower bound of the evidence
lower bound in the nonparametric variational inference

method for GPRNSs.

3.2.2 Optimization of Variational Parameters
and Hyper-parameters

We carry out optimization of the variational param-

eters {/,Lg , u&f?} and hyper-parameters 8 by maxi-
mization of the evidence lower bound in Equation (10)

using Equations (22), (23) and (24) and gradient-based
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K K
1 1 ,
K E log e E N(p®; p9), (0} + o)),
k=1 j=1

optimization. Unlike the original method of Gersh-
man et al. (2012), our algorithm naturally guaran-
tees optimization of the evidence lower bound in the
model. Detailed derivations of the gradients of the
lower bound w.r.t all parameters are given in the sup-
plementary material.

3.3 Predictive Distributions

For a new input location x* we can use the approxi-
mate posterior to predict its noiseless outputs y*. For
both approximations, the predictive distributions are
analytically intractable due to the non-Gaussian like-
lihood wrt to the parameters f and w of the GPRN
models. However their predicted means can be com-
puted, which for mean-field approximation is

Ely*|x*, D] = K K, 1 KK e (25)
where W* = W(x*) and f* = f(x*). Here K, and
K? are the covariance matrices corresponding to the
covariance functions k., and xy evaluated on the test
point x* wrt all of the training data; p., and pe are the
mean of the latent and weight functions, respectively.
Intuitively, the predictive mean is a linear combination
of the predictive latent means with predictive weight

means as the mixing coefficients.

For nonparametric variational inference, the predictive
mean turns out to be the average of the predictions
made by all components:

Ely*|x*, D] = ZK*K LK ) (26)

where the notations are the same as in Equation (25).
The subscript k& denotes the variational parameters of
the k-th component in the approximate mixture pos-
terior. Detailed derivations are in the supplementary
material.

4 Experiments

We compare the performance of nonparametric vari-
ational inference (GPRN-NPV) and mean-field (GPRN-
MF) using two real datasets. We use an independent
GP model (1GP) as a reference method. However, we
emphasize that our goal here is not to evaluate the
GPRN as a multi-output regression model. Instead
we aim at assessing the quality of our inference meth-
ods. The same preprocessing of data is done for all
methods.

We use the squared exponential covariance functions
with automatic relevance determination (ARD) for
the two priors p(w) and p(f). We learn their hyper-
parameters by optimizing the evidence lower bound
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while holding the variational parameters fixed. This
procedure is similar to variational EM and is guaran-
teed to converge. L-BFGS is used as the optimization
method. We found that it is effective to fix the sig-
nal variance of the latent processes and let the weight
processes adapt to the scale of the response variables.

For all methods we repeat the experiments ten times
with different random initializations of the hyperpa-
rameters and variational parameters (where applica-
ble). All experiments are executed on a Intel(R)
Core(TM) i7-2600 3.40GHz CPU with Matlab R2012a.

4.1 Description of the Datasets

We use two real world datasets. In the first dataset
we are interested in estimating the concentrations of
a metal using observations from other metals, which
is a very common setting in geostatistics. In the sec-
ond dataset we are interested in predicting for three
quality measurements of concrete simultaneously. It
is expected a priori that the outputs in both datasets
have complex dependencies.

4.1.1 Jura Geostatistics

This dataset consists of measurements of concentra-
tions of heavy metals in a 14.5 km? region of the Swiss
Jura. Following previous work (see e.g. Goovaerts,
1997; Alvarez and Lawrence, 2009; Wilson et al., 2012),
the task here is to predict the concentrations of cad-
mium at 100 locations represented by two-dimensional
spatial coordinates. We use for training the concentra-
tions of cadmium, nickel, and zinc at 259 nearby loca-
tions in conjunction with the measurements of nickel
and zinc at the 100 locations where we want to make
prediction for cadmium. This setting is important as
we can collect samples from related, more accessible
metals and enhance prediction for less accessible ones
based on the learned correlations of metal concentra-
tions. We standardize each input dimension to have
zero mean and unit variance and log-transform the
outputs before normalizing them.

4.1.2 Concrete Quality

Concrete has been used extensively in construction yet
modelling its behavior is still a very difficult task due
to its complex composite structure. A concrete mix-
ture composes primarily of ingredients such as cement,
water content, chemical and mineral admixtures. Dif-
ferent combinations of the constituents produce vary-
ing properties of concrete. For example, one important
property of high-performance concrete is slump flow,
which partially indicates the consistency in concrete
workability. It increases with the level of water but
decreases slightly after the water content passes a cer-
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tain threshold. It also increases with the amount of
the mineral admixture fly ash but decreases rapidly
after the fly ash content reaches a certain level. All
other concrete materials can similarly influence the fi-
nal outcome of a concrete mixture, which is not only
determined by the slump flow but also other quality
indicators such as compressive strength.

The original dataset contains 103 samples with 7 in-
put variables corresponding to the 7 concrete mixing
ingredients. The 3 output variables (slump, flow, and
compressive strength) are concrete quality measures.
For a detailed description of the dataset the reader is
referred to Yeh (2007). We randomly split it into a
training set of 80 points and a test set of 23 points.
We use the water, fly ash, and superplasticizer con-
tent as the input features as they have been shown to
have interesting correlations with the quality of con-
crete (Yeh, 2007). All input and output dimensions
are normalized to have zero mean and unit variance
for training.

4.2 Results

In this section we first present experimental results on
the two data sets. For exploratory purposes, we re-
port GPRN-NPV where the approximate posterior is a
mixture of 1, 2 and 3 components, which we denote
as NPV1, NPV2, NPV3, respectively. From our experi-
ence using 3 modes is enough to capture major aspects
of the true posterior. However harder problems may
require higher multimodal approximations. An analy-
sis of the computation and convergence aspect of the
methods is also discussed at the end of this section.

4.2.1 Results for Jura Geostatistics

We assess the performance of all methods using Mean-
absolute-error (MAE) as done in previous work (Al-
varez and Lawrence, 2009; Wilson et al., 2012). The
average MAE and two standard errors across 10 runs
are shown in Figure 1. The GPRN-NPV method with
multimodality (NPV2 and NPv3) has better predictive
performance compared to the unimodal counterpart
(NPv1 and GPRN-MF). They also exhibit less variabil-
ity in different runs. This perhaps can be attributed
to the posterior having multiple modes, which was in-
deed our main motivation for using GPRN-NPV from
the beginning. GPRN-MF and NPV1 has only a single
mode and hence may converge to a bad local minimum.
NPV2 and NPV3, on ther other hand, can fit multiple
modes in the posterior and is thus more robust against
the extreme local minima. However we note that the
performances of NPV1 and GPRN-MF are still superior
compared to IGP’s. This shows that mean-field varia-
tional inference for GPRN can still be a good method,
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Mean absolute error (MAE)

Figure 1: Mean absolute error for the Jura geostatis-
tics dataset of IGP, GPRN-MF, and GPRN-NPV with 1,2
and 3 modes. The mean value is averaged across 10
runs and the error bars show 2 standard errors.

particularly in cases where the true posterior has a few
modes that represent the data equally well.

4.2.2 Results for Concrete Quality

For this dataset we use the standardized mean squared
error (SMSE, as in Rasmussen and Williams, 2006,
Sec. 2.5). SMSE is a reasonable measure of predictive
performance when there is large variation in the values
of the test outputs, which is what we have in this case.
The SMSE and two standard errors of the 3 outputs
averaged across 10 runs are shown in Figure 2.

The non-parametric method with 1, 2 and 3 modes
outperforms 1GP for all 3 outputs. They also outper-
form GPRN-MF with respect to the prediction of slump
and flow but mean-field performs better for the com-
pressive strength output. This is an interesting result
as it suggests the multimodality of the posterior distri-
bution and the power of GPRN-NPV to match this mul-
timodality. Here GPRN-MF seems to always converge to
a local minium that explains the concrete compressive
strength well. However such over-representation di-
minishes the information from the two remaining out-
puts and is likely to lead to an underfit for these out-
puts. GPRN-NPV on the other hand does not place all
of its mass on any particular single mode in the poste-
rior distribution. Therefore it tries to fit the data from
all outputs, leading to better prediction in general. In
fact, average SMSEs across all outputs for GPRN-MF,
NPV1, NPV2 and NPV3 are 0.8717,0.8256,0.8206 and
0.8240 respectively.

4.2.3 Computational Cost and Convergence
of Parameter Optimization

We now present the computation and convergence be-
havior of the GPRN-MF and GPRN-NPV methods. In
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I (GP
. MF

Standardized mean squared error (SMSE)
N

Slump Flow Compressive Strength

Figure 2: Standardized mean squared error for the
Concrete dataset of 1GP, GPRN-MF, and GPRN-NPV
with 1,2 and 3 modes. The mean is averaged across 10

runs and the error bars show 2 standard errors.

Table 1 we show the average training time per op-
timization iteration on both data sets (one iteration
updates all variational parameters and hyperparam-
eters in the model). Recall that the variational pa-
rameters in GPRN-NPV scales linearly with the num-
ber of mixture components. This is reflected in the
average training times per iteration where we see the
training time indeed scales linearly with the number
of modes. In theory GPRN-MF should be faster than
GPRN-NPV with one mode as updates for the varia-
tional parameters in mean-field are done with closed-
formed in contrast to GPRN-NPV where parameter up-
dates are done via gradient-based search. However
GPRN-NPV exhibits better convergence property (i.e.,
it converges at a much faster rate), and hence the aver-
age training time per iteration can be lower as seen in
Table 1 for the Jura dataset. A more illustrating view

Table 1: Average training time per iteration (seconds)
for each of the variational inference algorithms.

GPRN-MF NPVl NPV2 NPV3
Jura 3.32 2.86 5.30 9.07
Concrete 0.29 1.27 2.54 3.80

on the convergence of both GPRN-MF and GPRN-NPV
can be found in Figure 3 where we show two plots of
the evidence lower bound in a sample run of GPRN-MF
and NPV2. Both methods get close to a good value of
the evidence lower bound very quickly but GPRN-MF
moves slowly towards the maximum (see the long tail
until the 200th iteration) whereas NPV2 achieves con-
vergence after only 60 iterations. Our final observation
concerns the optimization of the hyper-parameters for
both methods. When the number of variational pa-
rameters is small, the main work of one optimization
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Figure 3: Convergence of the evidence lower bound for GPRN-MF and NPV2 from 2 example runs. The evidence
lower bound is shown as a function of the number of iterations.

iteration is dominated by the cost of updating the hy-
perparameters. This requires taking inverses of the
N x N covariance matrix which has the computation
complexity of O(N?), where N is the maximum num-
ber of observations of all outputs. In our experience,
especially for GPRN-NPV, the hyper-parameters con-
verge to an optimum relatively quickly after a dozen it-
erations. This means the optimization procedure does
not perform many searches in the later iterations and
the cost of inverting a matrix decreases as the number
of iterations increases.

5 Related Work

Various multi-task models have been proposed in the
machine learning literature. Here we briefly describe
how these models relate to the GPRN. The closest
model to GPRNSs is the semi-parametric latent factor
model (SLFM, Teh et al., 2005), where the correla-
tions between the P outputs are also induced through
the linear combination of @) latent Gaussian processes.
However, unlike the GPRN, these correlations are not
spatially adaptive, as the weight matrix does not de-
pend on the input x. The SLFM is a generalization
of the multi-task model of Bonilla et al. (2008), with
P = @ and all the latent processes share the same
covariance function. The convolved GP (Alvarez and
Lawrence, 2009) is somewhat a generalization of the
SLFM, and consequently of the multi-task GP, where
each output is a combination of latent GPs across the
whole input domain. This yields a useful “smoothing”
effect but it implies that the output dependencies are
global and do not vary as a function of x.

As highlighted by Wilson et al. (2012), the GPRN
has the following advantages over previous multi-task
models: (a) the dependencies between the outputs are
spatially adaptive; (b) the noise correlations also de-
pend on the input x; and (c¢) inference only scales lin-
early with the number of outputs. These are the main
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reasons why this paper focuses on efficient inference
for this model.

Wilson et al. (2012) propose an MCMC-based method
and a variational-message passing technique for infer-
ence. Their experiments show that the variational
method can be as accurate as the MCMC method but
is more efficient. In the limit, the solution of their vari-
ational method should tend to our GPRN-MF approach,
and hence we have considered the GPRN-MF as a rea-
sonable baseline. However, as highlighted throughout
this paper, we derive closed-form updates for the vari-
ational parameters of this model and and we obtain an
efficient parameterization of the full Gaussians used as
the approximating factorizing distributions.

Discussion We have shown that our GPRN-NPV
method is superior to the mean-field approximation
in both accuracy and stability. Furthermore, we have
derived a proper evidence lower bound for this model,
which we use for the optimization of the variational
parameters and hyper-parameters of latent Gaussian
processes. In future work we aim to extend our in-
ference methods to other types of likelihoods, such as
those used in classification or preference learning. We
will also incorporate sparse approaches into our varia-
tional methods so that they scale to large datasets.
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