
 415

Texture Modeling with Convolutional Spike-and-Slab RBMs and
Deep Extensions

Heng Luo Pierre Luc Carrier Aaron Courville Yoshua Bengio
{heng.luo, pierre-luc.carrier, aaron.courville, yoshua.bengio}@umontreal.ca

Department of Computer Science and Operations Research
University of Montreal

Montreal, H3C 3J7

Abstract

We apply the spike-and-slab Restricted
Boltzmann Machine (ssRBM) to texture
modeling. The ssRBM with tiled-convolution
weight sharing (TssRBM) achieves or sur-
passes the state-of-the-art on texture synthe-
sis and inpainting by parametric models. We
also develop a novel RBM model with a spike-
and-slab visible layer and binary variables in
the hidden layer. This model is designed to
be stacked on top of the ssRBM. We show
the resulting deep belief network (DBN) is a
powerful generative model that improves on
single-layer models and is capable of model-
ing not only single high-resolution and chal-
lenging textures but also multiple textures
with fixed-size filters in the bottom layer.

1 Introduction

Texture processing is an essential components of scene
understanding in human vision. Natural images can
be seen as a large mixture of heterogeneous textures.
Thus, to some extent, progress in modeling natural im-
ages requires that we make progress in modeling tex-
tures. To this end, texture modeling has been an active
research area of machine learning, computer vision and
graphics during the past five decades. Although non-
parametric approaches (Lin et al., 2006) have made
significant progress in synthesizing textures from ex-
ample images, capturing the statistical properties of
textures via a probabilistic model remains an active
area of inquiry. Such probabilistic models are impor-
tant for modeling natural images (Heess et al., 2009)

Appearing in Proceedings of the 16th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2013, Scottsdale, AZ, USA. Volume 31 of JMLR: W&CP
31. Copyright 2013 by the authors.

and understanding human vision (Zhu et al., 2000).

In this work we consider a probabilistic model of tex-
tures based on the spike-and-slab Restricted Boltz-
mann Machine (ssRBM) (Courville et al., 2011a,b).
The ssRBM has previously demonstrated the ability
to generate samples of small natural images that pre-
served much of their statistical structure (Courville
et al., 2011b), suggesting that the ssRBM may be well
suited to texture modeling. Following the recent ex-
ploration of Boltzmann machines for textures (Kivinen
and Williams, 2012), we have trained ssRBMs with
tiled-convolution weight sharing (Gregor and LeCun,
2010; Le et al., 2010) on the Brodatz-texture images1.
Tiled convolution allows weight sharing in filters with
non-overlapping receptive fields.

Kivinen and Williams (2012) concentrated their quan-
titative evaluation of the texture models on a sub-
set of the Brodatz textures that exhibit strong spa-
tial invariance, i.e. textures largely consisting of a
regular repeating pattern. While this is an impor-
tant problem in its own right, most natural textures
(i.e. those associated with a natural-looking world) ex-
hibit significant spatial non-stationarity and features
with a wide spatial frequency range. One popular
way to deal with images with a wide spatial frequency
range is to decompose the frequencies using, for ex-
ample, a Laplacian image pyramid. However, spatial
pyramid-based methods tend to relegate the model-
ing long-range spatial dependencies to the low-spatial-
frequency pipeline, and would likely have trouble cap-
turing features that interact across spatial resolutions
(eg. long thin edges). We propose that convolutional
deep belief networks based on ssRBM are well suited
to model these natural textures. In particular, by in-
creasing the effective receptive field with depth, we can
use higher layers of the model to efficiently communi-
cate information such as phase to spatially isolated
parts of the first layer model.

1http://www.ux.uis.no/~tranden/brodatz.html

 416

Texture Modeling with Convolutional Spike-and-Slab RBMs and Deep Extensions

Deep belief networks also have another important
property that we find useful in the context of tex-
ture modeling. As argued by Hinton (2012), Le Roux
and Bengio (2008) and Tijmen Tieleman (2012, per-
sonal communication), training the lower layers by
contrastive divergence (CD) (Hinton et al., 2006) al-
lows the lower layers to concentrate on modeling lo-
cal features of the data. We have found best results
by training the lower layers by CD and the upper-
most layer by a closer approximation to maximum
likelihood, such as persistent contrastive divergence
(PCD) (Younes, 1999; Tieleman, 2008), thus promot-
ing a better division of labour between the layers of
the DBN. On this account, the ssRBM offers an im-
portant advantage over other similar models in the lit-
erature. Unlike models such as the mcRBM (Ranzato
and Hinton, 2010) and mPoT (Ranzato et al., 2010a),
the structure of the ssRBM makes it readily amenable
to CD training through Gibbs sampling.

Our contributions are, first, the exploration of a
tiled-convolutionally trained ssRBM (TssRBM) tex-
ture model and its objective comparison with the other
similar models in the literature. We show that the Tss-
RBM is competitive with the state-of-the-art on tex-
ture synthesis and inpainting tasks on a selection of
Brodatz textures. Second, we develop a novel RBM
model with a spike-and-slab visible layer and binary
variables in the hidden layer. This model is designed
to be stacked on top of the TssRBM within a deep
belief network configuration, with each layer trained
convolutionally with a greedy layer-wise pretraining
strategy. We demonstrate how the resulting two and
three-layer DBN (the third layer is a standard RBM)
models are able to encode longer term dependencies in
the higher layers while simultaneously recovering more
detailed structure in the CD-trained lower layer, all
of which translates to superior texture model perfor-
mance – particularly when the textures being modeled
exhibit strong non-stationarity. Finally, we show how
depth helps in learning a generative model of multiple
textures by using fixed-size filters in the bottom layer.
Kivinen and Williams (2012) introduced a model of
multiple textures, however they made use of label in-
formation in the training process alleviating the diffi-
cult learning problem of constructing multiple modes
to represent each texture. In this work, we show how
a deep belief network based on the ssRBM is capable
of learning to model multiple textures based on purely
unsupervised training.

2 Previous Work

The problem of texture synthesis has been extensively
studied in the computer vision community for decades
(Zhu et al., 2000). Probably the most popular tex-
ture synthesis strategies are currently example-based

or nonparametric methods (Wei et al., 2009). These
typically compose a target image with transformed
versions of patches drawn from the target texture.
While these methods are flexible, they are unlikely to
be readily applicable to natural textures, where some
aspects of the statistical structure are global in scope.

The Gaussian RBM (Welling et al., 2005) models
real-valued observations by adding quadratic terms on
the visible units to the RBM energy function. One
limitation of the Gaussian RBM is that changing its
hidden unit activations only changes the conditional
mean of the visible units. For modeling natural im-
ages, there is evidence that it is important to allow
the hidden unit configuration to capture changes in the
covariance between pixels. This observation has moti-
vated several of the models discussed below as well as
the ssRBM. The product of Student’s T-distributions
(PoT) model (Welling et al., 2003) is an energy-based
model where the conditional distribution over the visi-
ble units, conditioned on the hidden variables, is a mul-
tivariate Gaussian (non-diagonal covariance) and the
complementary conditional distribution over the hid-
den variables, given the visibles, is a set of independent
Gamma distributions. The PoT model has recently
been generalized to the mPoT model (Ranzato et al.,
2010b) to include nonzero Gaussian means by the addi-
tion of Gaussian RBM-like hidden units. Kivinen and
Williams (2012) explored the “Multi-Texture Boltz-
mann Machine” (Multi-Tm), training a single large
Gaussian RBM (up to 256 feature maps per tiling po-
sition, as opposed to 32 maps per tiling position) on
multiple textures. In modeling multiple textures, Kivi-
nen and Williams (2012) used label information during
the training process to enable the model to focus on
a single texture class at a time. In section 5.3, we
show how we can use a deep belief network, based on
the ssRBM, to learn a model of multiple textures with
fixed-size filters in the bottom layer and using no label
information at all.

In addition to validating the ssRBM as the basis of a
texture model, we also set out to study the impact of
adding layers to the tiled-convolutional ssRBM model,
in order to see if depth can help maintain coherence
of large scale texture features. Recent work (Ran-
zato et al., 2011) has shown that stacking additional
RBM layers on top of an mPoT model (also trained
using tiled-convolutional weight sharing) can have a
dramatic impact on the ability of the model to gener-
ate globally coherent natural image samples. Findings
such as these motivated our attempt to use depth to
synthesize textures with increased global coherence.

 417

Heng Luo, Pierre Luc Carrier, Aaron Courville, Yoshua Bengio

3 Spike-and-Slab RBM

The ssRBM describes the interaction between three
sets of random variables: the real-valued visible ran-
dom vector v ∈ RD representing the observed data of
dimension D, the set of binary “spike” random vari-
ables h ∈ {0, 1}N and the real-valued “slab” random
variables s ∈ RN . The ssRBM has the interpretation
that, with N hidden units, the ith hidden unit is as-
sociated with both an element hi of the binary vector
and an element si of the real-valued variable. In this
work we will concern ourselves with the ssRBM for-
mulation referred to as the µ-ssRBM (Courville et al.,
2011b) with the associated energy function:

E1(v, s, h) = −
NX

i=1

vTWisihi +
1

2
vT

Λ +

NX
i=1

Φihi

!
v

+
1

2

NX
i=1

αis
2
i −

NX
i=1

αiµisihi −
NX

i=1

bihi +
1

2

NX
i=1

αiµ
2
ihi,

where Wi ∈ RD denotes the ith weight (or feature)
vector, bi is a scalar bias associated with the spike
variable hi, µi and αi are respectively a mean and
precision parameter associated with the random slab
variable si, Λ is a diagonal precision matrix on the
visibles v, and Φi is an digonal matrix as an hi-gated
contribution to the precision on v. As is standard with
energy-based models, the joint probability distribution
over v, s = [s1, . . . , sN] and h = [h1, . . . , hN] is speci-
fied as: p1(v, s, h) = 1

Z exp {−E1(v, s, h)}, where Z is
the normalizing partition function. Note, we use the
subscript notation E1 to denote this as the 1st-layer
energy function.

An interesting property of the ssRBM is that de-
spite having higher-order interactions of variables, the
model maintains the bipartite graph structure of the
standard restricted Boltzmann machine where the ith
hidden unit consists of the product of the random vari-
ables si and hi. This property makes it easy to use
efficient block Gibbs sampling, using the conditionals:

p1(v | s, h) = N

Cv|s,h

NX
i=1

Wisihi , Cv|s,h

!
,

P1(h | v) =

NY
i=1

σ

„
1

2
α−1

i (vTWi)
2 + vTWiµi

−1

2
vT Φiv + bi

«
,

p1(s | v, h) =
NY

i=1

N
““
α−1

i vTWi + µi

”
hi , α

−1
i

”
,

where N (µ,C) denotes a Gaussian distribution with
mean µ and covariance C, σ represents a logistic sig-

moid, and Cv|s,h =
(

Λ +
∑N
i=1 Φihi

)−1

is the diagonal
conditional covariance matrix.

ssRBM training: Like the standard RBM, learn-
ing and inference in the ssRBM is rooted in the ability
to efficiently draw samples from the model via block
Gibbs sampling. In training the ssRBM we are free
to use either CD, PCD and fast persistent contrastive
divergence (FPCD) (Tieleman, 2008). CD training in-
volves approximating the negative phase component
of the likelihood gradient by a few steps (often just
one) of Gibbs sampling away from the data presented
in the positive phase. In PCD, one maintains a persis-
tent Markov chain to approximate the negative phase
and simulates a few Gibbs steps between each param-
eter update. These samples are then used to approx-
imate the expectations over the model distribution
p1(v, s, h). Details regarding PCD training of the ss-
RBM are available in Courville et al. (2011a).

Our use of block Gibbs sampling marks an important
distinction between our approach to learning and that
used by Kivinen and Williams (2012), who use Hy-
brid Monte Carlo (HMC) (Neal, 1994) to draw sam-
ples from the model distribution. Their use of HMC
is likely motivated by their need to train models such
as the PoT model where the conditional over visible
vectors do not factorize and hence is not amenable to
efficient block Gibbs sampling. Our use of Gibbs sam-
pling from the ssRBM model also makes it amenable
to CD training. As we show in the experiments with
deeper models, the use of CD training is crucial to
achieving our best results.

Tiled-Convolutional ssRBM: Gregor and LeCun
(2010) introduced tiled-convolutional weight shar-
ing (Ranzato et al., 2010a; Le et al., 2010) and is
similar to convolutional weight sharing (LeCun et al.,
1998; Desjardins and Bengio, 2008; Lee et al., 2009)
except that spatially neighboring features (with over-
lapping receptive fields) do not share weights. Within
the tiled-convolutional structure, every specific filter
tiles the input images without overlap. The tiled-
convolution architecture has the advantage that it re-
sults in less correlation in the activations of the hidden
units in comparison to traditional convolutional achi-
tectures which could lead problems when training.

To make comparisons easier, our TssRBM uses the
same architecture as Kivinen and Williams (2012) in-
cluding the same receptive field size of 11×11 and the
same diagonal tiling pattern with a stride of one pixel
(neighboring receptive fields are offset by one pixel).
This diagonal tiling (which reduces considerably the
number of free parameters) makes for 11 sets of fil-
ters (one for each offset). We also kept constant the
number of filters (32 per set).

 418

Texture Modeling with Convolutional Spike-and-Slab RBMs and Deep Extensions

4 Spike-and-Slab Deep Belief Network

In this section, we describe how we extend the Tss-
RBM to a hierarchical generative model in the form
of a deep belief network (DBN). In the satandard pre-
training procedure of DBN(Bengio et al., 2007), train-
ing the bottom layer ssRBM, either by CD, PCD or
FPCD is straightforward and discussed above in Sec.
3. We now consider the form of the model we intend
to stack on top of the ssRBM.

Following the DBN approach, we express the ssRBM
model as

p1(v) =
∑
s,h

p1(v|s, h)p1(s, h).

As discussed in the previous section, due to the fac-
torial nature of p1(v|s, h), it is convenient to consider
this the bottom layer of our DBN and focus on how
to model the spike-and-slab latent state. Let p̂(v)
denote the data distribution. We introduce another
higher-layer model of the spike-and-slab state p2(s, h)
to model the aggregated posterior distribution, p̂(s, h),
of the ssRBM

p̂(s, h) =
∑
v

p1(s, h|v)p̂(v)

If p2(s, h) models the aggregated posterior p̂(s, h) bet-
ter than does p1(s, h) (defined by the ssRBM), then
adding the second layer can improve the model of the
training data (Hinton et al., 2006).

Formally, the two layer DBN is,

pDBN(v) =
∑
s,h

p1(v|s, h)p2(s, h)

From a generative perspective, the sampling procedure
consists of generating a sampling pair (s, h) from the
top (second here) layer, followed by mapping them to
image space through p1(v|s, h).

In specifying the form of p2(s, h), we follow the com-
mon practice of using another model of the RBM
family to model the distribution over s and h. To
this end, we introduce a 2nd-layer latent variable
model: p2(s, h, g), which models the aggregate poste-
rior p̂(s, h) through a hidden a binary random vector:
g ∈ {0, 1}M . We choose to use a binary hidden layer
in order to transition to a more standard binary repre-
sentation. When we include a third layer to the DBN,
then that layer will be formed by training a standard
binary-binary RBM.

The energy function of the second layer model is de-
fined as follows:

E2(s, h, g) = −
NX

i=1

MX
j=1

gjUijsihi −
MX

j=1

ρjgj +
1

2

NX
i=1

αis
2
i

−
NX

i=1

αiµisihi +
1

2

NX
i=1

αiµ
2
ihi −

NX
i=1

bihi

Input Feature Maps Feature Maps

Multiple Texture Boltzmann Machines

Synthesis D6 D21 D53 D77

TmPoT 0.9329± 0.0356 0.8961± 0.0696 0.8527± 0.0559 0.8699± 0.0080
TPoT 0.5641± 0.0916 0.7388± 0.1055 0.7583± 0.1082 0.6870± 0.0973
Tm 0.9301± 0.0207 0.8901± 0.0792 0.8485± 0.0606 0.8663± 0.0084

Multi-Tm (96) 0.8038± 0.1344 0.8800± 0.0533 0.8610± 0.0586 0.8175± 0.0394
Multi-Tm (128) 0.8890± 0.0821 0.9067± 0.0319 0.8881± 0.0462 0.8326± 0.0235
Multi-Tm (256) 0.9304± 0.0280 0.9346± 0.0205 0.9231± 0.0103 0.8610± 0.0096

Bi-FoE 0.7573± 0.0594 0.8710± 0.0317 0.8266± 0.0869 0.6464± 0.0215

Inpainting D6 D21 D53 D77

TmPoT 0.9106± 0.0138 0.9127± 0.0128 0.8782± 0.0166 0.7735± 0.0273
TPoT 0.8711± 0.0130 0.8764± 0.0176 0.9028± 0.0125 0.6859± 0.0290
Tm 0.9029± 0.0135 0.9039± 0.0179 0.8679± 0.0162 0.7709± 0.0245

Multi-Tm (96) 0.8773± 0.0202 0.8879± 0.0090 0.8537± 0.0172 0.7097± 0.0402
Multi-Tm (128) 0.8891± 0.0203 0.8948± 0.0101 0.8701± 0.0195 0.7124± 0.0488
Multi-Tm (256) 0.8997± 0.0246 0.9068± 0.0095 0.8826± 0.0208 0.7032± 0.0725
Efros&Leung 0.8746± 0.0239 0.8724± 0.0262 0.8732± 0.0412 0.6211± 0.0582

Bi-FoE [4] 0.8769± 0.0163 0.8653± 0.0244 0.9145± 0.0125 0.6567± 0.0205

Table 1: Sample means and standard deviations of the texture synthesis (top) TSS- and inpainting (bottom)
NCC-scores. We thank Nicolas Heess for providing the Bi-FoE results for the synthesis task. The inpainting
results for Bi-FoE [4] are shown for rough comparison/indicative purposes, as they were obtained using a slightl
different experimental setup. See supplementary material for the inpainting results w.r.t MSSIM and TSS.

D4 D16 D68 D103

R
aw

T
m

M
u
lt
i-

T
m

D6 D21 D53 D77

Fr
am

es
T
m

M
u
lt
i-

T
m

Figure 4: Synthesis (top block) and inpainting (bottom block) results. Example data patches/inpainting frames
(top row), and representative results for Tm-models (middle row) and a 128-feature multi-Tm (bottom row).

Figure 1: The architecture of the lowest two layer. The
first layer possesses tiled-convolutional weight sharing in a
diagonal arrangement (tilings are represented by different
colors). Each second layer unit has a 2 × 2 receptive field
over all the feature maps in the first hidden layer. The sec-
ond layer is arranged with traditional convolutional weight
sharing and a stride of 1.

where Uij refers to the ijth element of the weight ma-
trix encoding the interactions between gj and spike-
and-slab variables hi and si respectively. The term ρj
controls the bias on the binary gj . All other param-
eters have the same interpretation as their first layer
analogues.

Similar to the standard ssRBM, the conditionals
P2(h | g), p2(s | h, g) and P2(g | s, h) are factorial and
given by:

P2(hj | g) =σ

0@1

2
αi

α−1

i

DX
j=1

gjUij + µi

!2

+ bi − 1

2
αiµ

2
i

1A
p2(s | g, h) =N

α−1

i

MX
j=1

gjUij + µi

!
hi , α

−1
i

!

P2(gj | s, h) =σ

NX

i=1

Uijsihi + ρj

!

We refer to this model, when stacked on top of a Tss-
RBM (a ssRBM with tiled-convolution weight shar-
ing), as the TssDBN.

2nd-layer training: After pretraining the first layer
ssRBM, given training data v, we sample h̃ from P1(h |
v), then take Ep1(s|v,h̃)[s] and Ep1(h|v)[h] as the new
training data to train the second layer. Just as we
do for the bottom-layer ssRBM, we train this second-
layer RBM with either PCD or with CD. We typically
see best results if we train with PCD for the top-layer
model and with CD for all other layers.

Sampling and inference in 2-layer TssDBN:
Once the second layer has been trained with PCD it
can be used to generate samples. We run Gibbs sam-
pling in the top layer, getting the sample g̃. Next, we
sample h̃ from P2(h | g̃) then pass Ep2(s|g̃,h̃)[s] to the
bottom layer. The final sample in image sapce will
be generated through p1(v | h̃,Ep2(s|g̃,h̃)[s]) without
adding noise. Inference in TssDBN is exactly the same
to the process of converting training data into the new
representation. Given v, we sample h̃ from P1(h | v),

 419

Heng Luo, Pierre Luc Carrier, Aaron Courville, Yoshua Bengio

then pass Ep1(s|v,h̃)[s] and EP1(h|v)[h] to higher layer.

Convolutional Structure: The second layer pos-
sesses a convolutional weight sharing structure (not
tiled-convolutional). Based on our use of patches of
size 98×98 randomly cropped from the texture images,
the tiling structure of the first layer model results in a
set of 32× 11 feature maps of size 8× 8 (the receptive
field size was 11 × 11). Second layer hidden units are
each connected to all 32 × 11 feature maps with the
same 2× 2 receptive field across all feature maps. Us-
ing a stride length of 1, this implies that each second
layer feature is associated with a feature map of size
7 × 7. For our experiments with a 3-layer model, we
keep the same convolutional weight sharing structure
for the third layer and use receptive fields of size 2×2.

5 Experiments

We evaluate our texture models on 8 texture images
(D4, D6, D16, D21, D53, D68, D77 and D103) from
the Brodatz texture dataset. Acording to Lin et al.
(2006), we can roughly classify them into 4 different
types, regular textures (D6, D21, D53, D77), near-
regular textures (D16, D103), irregular textures (D68)
and stochastic textures (D4). The regular textures
are simpler: shallow models (such as mPoT, Gaus-
sian RBM and ssRBM with tiled-convolutional weight
sharing) are able to model them with high fidelity.
However, the other textures (D4, D16, D68 and D103)
remain challenging for shallow models. We show that
2-layer TssDBNs give better results.

5.1 TssRBM texture modeling

In this section, we compare TssRBM and 2-layer Tss-
DBN with other related models in the literature. We
base our comparison on the results reported in Kivinen
and Williams (2012). To provide a fair comparison, we
follow the general experimental protocol established by
Heess et al. (2009) and Kivinen and Williams (2012).
Specifically, we rescaled the original 640×640 textures
(all but D16) to either 480 × 480 (D4, D21 and D77)
or 320× 320 (D6, D53, D68 and D103). Each texture
image was divided into a top half for training and a
bottom half used for testing. For additional compari-
son, we implemented a 2-layer DBN (2-layer TGDBN)
with a tiled-convolutional Gaussian RBM as the bot-
tom layer. For sampling from this 2-layer TGDBN, we
run Gibbs sampling in the top layer and thus project
the samples into the image samples without adding
noise in the bottom layer. All of these models are im-
plemented with Theano (Bergstra et al., 2010).

We report the performances of the TssRBM, 2-layer
TGDBN and 2-layer TssDBN on two tasks: texture
synthesis and inpainting. All models, in all experi-
ments, are trained on 98× 98 sized patches randomly

cropped from the preprocessed training texture images
which are normalized to have zero mean and standard
deviation of 1. We use a minibatch size of 64.

The TssRBM is trained with FPCD. For deep mod-
els, we always pretrain the lower layer with one step
CD and train the top layer with PCD (We find that
in the higher layer RBMs, the mixing of the negative
phase Gibbs chain is relatively fast, so we use PCD).
In both PCD and FPCD training processes, at the be-
ginning of learning the persistent chains are initialized
with noise and for some textures (especially for those
regular textures) restarting the Markov chains with
a small probability, like 0.01, seems advantageous to
further promote mixing. After training, we aply our
models to the following two task: texture synthesis
and inpainting.

Texture Synthesis: For this task we generate un-
constrained samples from our models by the usual
DBN generative procedure2. Following Kivinen and
Williams (2012), after a large number of “burn-in”
samples, we collected 128 samples of size 120 × 120
for both the 1-layer and 2-layer models. A quantita-
tive measure of the quality of the samples is provided
by the Texture Similarity Score (TSS) (Heess et al.,
2009), comparing each generated sample with the test
patches from the test region of the image. For a sample
s and test texture x, the TSS is given by the maximum
normalized cross correlation (NCC):

TSS(s, x) = max
{

xT1 s

‖x1‖‖s‖
, . . . ,

xTLs

‖xL‖‖s‖

}
,

where xi denotes patch i within the test region of the
image and L is the number of possible unique patches
in the test region. A patch (and sample) of size 19×19
was used to compute the score. We only use TSS for
those regular textures (D6, D21, D53, D77). Fig. 2
compares images of textures synthesized by some of
the methods under consideration. Table 1 provides a
quantitative comparison based on the TSS and shows
that the TssRBM-based models are competitive with
these other probabilistic models of texture.

Inpainting: The inpainting (constrained texture
synthesis) task requires the models to generate a tex-
ture which is consistent with a given boundary. Fol-
lowing Kivinen and Williams (2012), we randomly cut
76 × 76 texture patches from the test texture images
and set the center (54 × 54) to zeros. The resulting
images as the inpainting frames were fed to our mod-
els. The inpainting was done by running 500 Gibbs

2Gibbs sampling in the top-level RBM, followed (in the
case of deep models) by stochastic projection (except for
the visible units, as usual, and except for the slab units,
where we take the expectation) in image space.

 420

Texture Modeling with Convolutional Spike-and-Slab RBMs and Deep Extensions

 D6 D21 D53 D77 D4 D16 D68 D103

Textures:

TGRBM:

2-layer TGDBN:

TssRBM:

2-layer TssDBN:

Figure 2: Examples of texture synthesis for the models under consideration (rows) for different textures (columns). The
top row has original data.

 D6 D21 D53 D77 D4 D16 D68 D103

TGRBM:

Textures:

2-layer TGDBN:

2-layer TssDBN:

TssRBM:

Figure 3: Examples of texture inpainting for the models under consideration (rows) for different textures (columns).

Synthesis D6 D21 D53 D77
Bi-FoE 0.7573 ± 0.0594 0.8710 ± 0.0317 0.8266 ± 0.0869 0.6464 ± 0.0215
TmPoT 0.9329 ± 0.0356 0.8961 ± 0.0696 0.8527 ± 0.0559 0.8699 ± 0.0080
TPoT 0.5641 ± 0.0916 0.7388 ± 0.1055 0.7583 ± 0.1082 0.6870 ± 0.0973

T-GaussRBM 0.9301 ± 0.0207 0.8901 ± 0.0792 0.8485 ± 0.0606 0.8663 ± 0.0084
2-layer TGDBN 0.8689 ± 0.0187 0.9108 ± 0.0135 0.9030 ± 0.0111 0.7799 ± 0.0177
Multi-Tm (256) 0.9304 ± 0.0280 0.9346 ± 0.0205 0.9231 ± 0.0103 0.8610 ± 0.0096

TssRBM 0.9365 ± 0.0468 0.9482 ± 0.0249 0.9412 ± 0.0215 0.8410 ± 0.0121
2-layer TssDBN 0.9516 ± 0.0164 0.9465 ± 0.0322 0.9499 ± 0.0264 0.8638 ± 0.0161

Inpainting D6 D21 D53 D77
Efros&Leung 0.8524 ± 0.0318 0.8566 ± 0.0344 0.8558 ± 0.0578 0.6012 ± 0.0760

TmPoT 0.8629 ± 0.0180 0.8741 ± 0.0116 0.8602 ± 0.0234 0.7668 ± 0.0322
TPoT 0.8446 ± 0.0172 0.8609 ± 0.0275 0.8935 ± 0.0159 0.6379 ± 0.0373

T-GaussRBM 0.8578 ± 0.0160 0.8662 ± 0.0185 0.8494 ± 0.0233 0.7642 ± 0.0267
2-layer TGDBN 0.8096 ± 0.0203 0.8485 ± 0.0198 0.8470 ± 0.0246 0.6696 ± 0.0405
Multi-Tm (256) 0.8452 ± 0.0173 0.8673 ± 0.0103 0.8554 ± 0.0284 0.7328 ± 0.0615

TssRBM 0.8881 ± 0.0227 0.9119 ± 0.0139 0.9156 ± 0.0237 0.7627 ± 0.0314
2-layer TssDBN 0.8894 ± 0.0246 0.9060 ± 0.0160 0.9242 ± 0.0285 0.7738 ± 0.0232

Table 1: A comparison of TssRBM and 2-layer TssDBN results with other models. All reported results other than
2-layer TGRBM and the TssRBM-based results were taken from Kivinen and Williams (2012) (including their Multi-Tm:
a multiple texture model trained with 256 hidden units). The synthesis results are based on the TSS criterion while the
inpainting results are based on MSSIM-scores. In both cases, larger numbers are better.

 421

Heng Luo, Pierre Luc Carrier, Aaron Courville, Yoshua Bengio

D4:

D53:

D103:

TssRBM: FPCDTextures 2-DBN: FPCD-PCD 2-DBN: CD-PCD 3-DBN: CD-CD-PCD

Thursday, November 15, 2012

Figure 4: LEFT: Synthesized texture D53, D4 and D103 at full resolution. The training algorihtms are shown in the
layer-order, e.g. 3-DBN: CD-CD-PCD denotes a 3-layer TssDBN trained with CD for the first two layers and with PCD
for the upppermost layer. Both depth and the choice of inductive bias have a significant impact on the quality of the
model. RIGHT: The autocorrelation spectrum of Monte Carlo Markov Chain samples of the texture D103 for our one,
two and three-layer models (centered to the mean of the data). All layers are trained with CD, except the uppermost
which is trained with PCD (TssRBM trained with FPCD).

sampling iterations in our models while the border was
held fixed. The number of inpainting frames was 20 for
each texture, and the inpainting were each done with
5 different random seeds, making it a total of 100 in-
paintings for each model and each texture. The quality
of the inpainting was evaluated using the mean struc-
tural similarity index (MSSIM) (Wang et al., 2004)
that compares the inpainted region and the ground
truth. Fig. 3 compares the texture results of some of
the methods under consideration. Table 1 provides the
quantitative MSSIM comparison against other similar
models. Here again, the TssRBM-based models are
competitive with these other probabilistic models of
texture.

5.2 Exploring High-Resolution Textures

To further explore the generative power of the DBN
models, we move to a more challenging task, specifi-
cally, modeling high-resolution textures while keeping
the first layer structure unchanged: the same number
of filters, the same size (11×11) of the receptive fields
and the same size (98 × 98) of the training patches.
This implies that the first layer will face a much more
challenging learning task. We show that by adding
more hidden layers these difficult tasks are handled
very well. In these experiments we consider 1, 2 and
3-layer variants of the TssDBN (with the 1-layer vari-
ant being the TssRBM). There are 128 filters with
convolutional weight sharing in both of these two lay-
ers. Due to the limited space, we only show the results
of textures D53, D4 and D103. The other 5 textures
yield a similar pattern of results. While the quanti-
tative measures used in the previous experiments are
useful to establish an objective comparison between
methods, we feel that they are rather imperfect mea-
sures of the quality of the texture model and therefore

in this section we forgo these measures in favour of
simply presenting texture synthesis results for visual
inspection. Fig. 4 (right) illustrates the impact of both
depth and the inductive bias (FPCD versus CD train-
ing) on the training of TssRBM-based models of tex-
ture. Overall, we see a clear pattern of improvement
with depth. Notably, we also see superior performance
with CD-trained lower layers over FPCD-trained lower
layers

Depth helps mixing. One key aspect that might
help to explain the improvements in the models with
depth is that as the models get deeper the mixing rate
of the negative phase Gibbs chain improves, as already
demonstrated and argued in Bengio et al. (2012). Im-
proved mixing of the Gibbs chain improves the per-
formance of training methods such as PCD that rely
on it for the estimation of negative phase statistics. It
also helps the generation of the samples shown. To
demonstrate the improvement in mixing with depth,
we assess the mixing rate of three models (one, two
and three layer model) trained on D103 via a gen-
eralization of autocorrelation to multivariate Markov
chains:

R(τ) =
∑N
t=1 v̂

T
t v̂t+τ[∑N

t=1 v̂
T
t v̂t

]1/2[∑N
t=1 v̂

T
t+τ v̂t+τ

]1/2
where v̂t is the image patch sample, vt, generated at
iteration t of Gibbs sampling, centred by the mean, µv,
of the training data: v̂t = vt − µv. After training, we
run a Markov chain in all of three models and plot the
autocorrelation spectrum in Fig. 4 (left). As seen in
the figure, mixing becomes relatively very fast in the
three-layer model, i.e., samples separated by some dis-
tance in the chain are less correlated with each other.

 422

Texture Modeling with Convolutional Spike-and-Slab RBMs and Deep Extensions

Figure 5: LEFT: Multi-texture samples generated by the TssRBM model. RIGHT: Multi-texture samples
generated by our 3-layer DBN.

CD pretraining vs. PCD and FPCD pretrain-
ing. We find that pretraining the lower layers with
CD-1 results in better DBN texture models. More
specifically, worse results were obtained by PCD pre-
training than FPCD pre-training (not shown), and
substantially better with CD, as can e.g. be seen in
Figure 4 (right). This is consistent with the claims
made by Hinton (2012) regarding the advantage of
CD vs PCD. It is also consistent with the results of
Le Roux and Bengio (2008), which show that maxi-
mum likelihood training of the lower layers of a DBN
is sub-optimal, and that assuming a high-capacity top
layer, the optimal way to train the first layer would
be to minimize the KL divergence between the visi-
ble units and the stochastic one-step reconstruction,
something much closer to what CD does than what
PCD does. Another hypothesis is that CD helps here
because it makes sure to extract good features that
preserve the input information, without the constraint
that the lower level RBMs do a good job of modeling
the density over their inputs (i.e. avoiding spurious
modes far from the training samples). Leaving the job
of learning an accurate distribution to the top-level
RBM, which is trained using PCD – a good approxi-
mation to maximum likelihood.

5.3 Learning with Multiple Textures

In this section, we try to further assess the power of
the TssDBN by training it on multiple high-resolution
heterogeneous textures. We train a 3-layer TssDBN
on all 8 textures. The first layer is a TssRBM with 96
filters. The second layer is our new convolutional ss-
RBM variant introduced in Sec. 4 with 256 filters and
receptive fields of size 2× 2. The third layer is a con-
volutional binary RBM with 256 filters and receptive
fields of size 2 × 2. We compare TssDBN with a one
layer model (TssRBM with 128 filters). After training,
we generate samples from both models and show the
results in Fig. 5. We can see that the samples gen-
erated by the single layer TssRBM are dominated by
those morst regular textures in the training data and
fail to capture other more complicate textures. On the

other hand, the deep model seems to capture much of
the 8 textures that occur in the training set. There are
7 different textures apparent in these 32 samples. We
are missing samples of D4, which is a stochastic tex-
ture and hard to capture, particularly when most of
the training data are highly structured images. Kivi-
nen and Williams (2012) also trained Gaussian RBM
with tiled-convolution weight sharing on multiple tex-
tures with labels. Training with labels can help the
model pick different filters for different textures and
thus make the learning problem easier.

6 Conclusions

In this paper, we apply the ssRBM with tiled-
convolution weight sharing on texture modeling task.
We show that not only is the ssRBM competitive as
a single layer model of texture, but that, by being
amenable to CD training based on block Gibbs sam-
pling, it is well suited to being incorporated into even
more effective deep models of texture. Interestingly,
we find that CD training of lower layers yields bet-
ter models, and that mixing is better in deeper layers.
Our integration of the ssRBM into a DBN necessitated
the development of a novel RBM with a spike-and-
slab visible layer and a binary latent layer. Finally we
show our new TssDBN is capable of modeling multiple
high-resolution textures when trained in a completely
unsupervised fashion.

Acknowledgements

The authors acknowledge the financial support of the
NSERC-Ubisoft chair and CIFAR. Special thanks also
go to the Theano development team.

References

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H.
(2007). Greedy layer-wise training of deep networks. In
Adv. Neural Inf. Proc. Sys. 19 , pages 153–160.

Bengio, Y., Mesnil, G., Dauphin, Y., and Rifai, S. (2012).
Better mixing via deep representations. Technical Re-
port arXiv:1207.4404, Universite de Montreal.

 423

Heng Luo, Pierre Luc Carrier, Aaron Courville, Yoshua Bengio

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pas-
canu, R., Desjardins, G., Turian, J., Warde-Farley, D.,
and Bengio, Y. (2010). Theano: a CPU and GPU math
expression compiler. In Proceedings of the Python for
Scientific Computing Conference (SciPy).

Courville, A., Bergstra, J., and Bengio, Y. (2011a). A
Spike and Slab Restricted Boltzmann Machine. In AIS-
TATS’2011 .

Courville, A., Bergstra, J., and Bengio, Y. (2011b). Unsu-
pervised models of images by spike-and-slab RBMs. In
ICML’2011 .

Desjardins, G. and Bengio, Y. (2008). Empirical evalua-
tion of convolutional RBMs for vision. Technical Report
1327, Dept. IRO, U. Montréal.

Gregor, K. and LeCun, Y. (2010). Emergence of complex-
like cells in a temporal product network with local re-
ceptive fields. Technical report, arXiv:1006.0448.

Heess, N., Williams, C. K. I., and Hinton, G. E. (2009).
Learning generative texture models with extended fields-
of-experts. In BMVC .

Hinton, G. E. (2012). Tutorial on deep learning. IPAM
Graduate Summer School: Deep Learning, Feature
Learning.

Hinton, G. E., Osindero, S., and Teh, Y. (2006). A fast
learning algorithm for deep belief nets. Neural Compu-
tation, 18, 1527–1554.

Kivinen, J. J. and Williams, C. K. I. (2012). Multiple
texture Boltzmann machines. In Proceedings of the Fif-
teenth International Conference on Artificial Intelligence
and Statistics (AISTATS’2012), volume 22 of JMLR:
W&CP.

Le, Q., Ngiam, J., Chen, Z., hao Chia, D. J., Koh, P. W.,
and Ng, A. (2010). Tiled convolutional neural net-
works. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor,
R. Zemel, and A. Culotta, editors, Advances in Neu-
ral Information Processing Systems 23 (NIPS’10), pages
1279–1287.

Le Roux, N. and Bengio, Y. (2008). Representational
power of restricted Boltzmann machines and deep be-
lief networks. Neural Computation, 20(6), 1631–1649.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient based learning applied to document recogni-
tion. IEEE , 86(11), 2278–2324.

Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y. (2009).
Convolutional deep belief networks for scalable unsuper-
vised learning of hierarchical representations. In L. Bot-
tou and M. Littman, editors, ICML 2009 . ACM, Mon-
treal (Qc), Canada.

Lin, W.-C., Hays, J. H., Wu, C., Kwatra, V., and Liu, Y.
(2006). Quantitative evaluation on near regular texture
synthesis. In Computer Vision and Pattern Recognition
Conference (CVPR ’06), volume 1, pages 427 – 434.

Neal, R. M. (1994). Bayesian Learning for Neural Net-
works. Ph.D. thesis, Dept. of Computer Science, Uni-
versity of Toronto.

Ranzato, M. and Hinton, G. H. (2010). Modeling
pixel means and covariances using factorized third-order
Boltzmann machines. In Proceedings of the Computer
Vision and Pattern Recognition Conference (CVPR’10),
pages 2551–2558. IEEE Press.

Ranzato, M., Mnih, V., and Hinton, G. (2010a). Gen-
erating more realistic images using gated MRF’s. In
J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. Zemel,
and A. Culotta, editors, Advances in Neural Information
Processing Systems 23 (NIPS’10), pages 2002–2010.

Ranzato, M., Mnih, V., and Hinton, G. (2010b). Gen-
erating more realistic images using gated MRF’s. In
NIPS’2010 .

Ranzato, M., Susskind, J., Mnih, V., and Hinton, G. E.
(2011). On deep generative models with applications to
recognition. In CVPR’11 , pages 2857–2864.

Tieleman, T. (2008). Training restricted Boltzmann ma-
chines using approximations to the likelihood gradient.
In W. W. Cohen, A. McCallum, and S. T. Roweis, edi-
tors, ICML 2008 , pages 1064–1071. ACM.

Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P.
(2004). Image quality assessment: From error visibility
to structural similarity. IEEE TRANSACTIONS ON
IMAGE PROCESSING, 13(4), 600–612.

Wei, L.-Y., Lefebvre, S., Kwatra, V., and Turk, G. (2009).
State of the art in example-based texture synthesis. Eu-
rographics’09 State of the Art Reports.

Welling, M., Hinton, G. E., and Osindero, S. (2003). Learn-
ing sparse topographic representations with products of
Student-t distributions. In NIPS’2002 .

Welling, M., Rosen-Zvi, M., and Hinton, G. E. (2005). Ex-
ponential family harmoniums with an application to in-
formation retrieval. In NIPS’04 , volume 17, Cambridge,
MA. MIT Press.

Younes, L. (1999). On the convergence of markovian
stochastic algorithms with rapidly decreasing ergodicity
rates. Stochastics and Stochastic Reports, 65(3), 177–
228.

Zhu, S. C., Liu, X. W., and Wu, Y. N. (2000). Explor-
ing texture ensembles by efficient Markov chain Monte-
Carlo - towards a ”trichromacy” theory of texture. IEEE
Trans. PAMI , 22(6), 554–569.

