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Abstract

We consider the problem of reconstructing a
specific connected community S C V in a
graph G = (V, E), where each node v is as-
sociated with a signal whose strength grows
with the likelihood that v belongs to S. This
problem appears in social or protein inter-
action network, the latter also referred to
as the signaling pathway reconstruction prob-

lem (Bailly-Bechet et al., 2011).

We study this community reconstruction
problem under several natural generative
models, and make the following two contribu-
tions. First, in the context of social networks,
where the signals are modeled as bounded-
supported random variables, we design an ef-
ficient algorithm for recovering most mem-
bers in S with well-controlled false positive
overhead, by utilizing the network structure
for a large family of “homogeneous” gener-
ative models. This positive result is com-
plemented by an information theoretic lower
bound for the case where the network struc-
ture is unknown or the network is heteroge-
neous. Second, we consider the case in which
the graph represents the protein interaction
network, in which it is customary to con-
sider signals that have unbounded support,
we generalize our first contribution to give
the first theoretical justification of why ex-
isting Steiner-tree type heuristics work well
in practice.

1 Introduction

In a community detection problem, we are given a
graph and the goal is to identify the nodes in the graph
that have strong ties to each others, or belong to so-
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called a “community”. In the context of social network
analysis, the graph refers to the social network; a com-
munity refers to a group of people who interact closely
with each others, such as researchers on the same topic
or college students living in the same dorm (Leskovec
et al., 2009; Chen et al., 2010; Sozio and Gionis, 2010;
Abraham et al., 2012; Arora et al., 2012; Balcan et al.,
2012). In systems biology, the network can represent a
protein-to-protein interaction process, with each node
representing a protein and each edge representing the
interaction between two proteins. Here, a commu-
nity refers to the molecules that belong to the same
functional unit of some kind (Newman, 2006; Dittrich
et al., 2008; Deo et al., 2010; Fortunato, 2010; Bailly-
Bechet et al., 2011).

This line of problems have been extensively stud-
ied. In this paper, we shall revisit it with a primary
focus on a signal detection component that deviates
from the standard literature. The following explains
this motivation.

Finding a highly asymmetric group in a social
network. We are interested in finding an important
group of individuals in a social network. Such a sub-
group, for example, could be a terrorist network. In
this case, one can use communication data from mobile
phone carriers to construct the social network (Shapiro
and Weidmann, 2012). Also, security agencies are of-
ten able to provide an incomplete list of terrorists. Our
goal is to find the rest of the terrorists in the net-
work. Another example is the placement of personal-
ized ads in social network services such as Facebook or
Linkedin. For instance, when Facebook wants to help
a local language school to find potential customers for
its French class, it essentially needs to find a commu-
nity in the town that is interested in foreign languages
or cultures. Beyond the social network structure of
the users in the town, Facebook also possesses user
profiles, which may be used to infer a subset of mem-
bers in the community. It remains for Facebook to
uncover the rest of the members.

Finding protein association from cell signal-
ing. Here, we are interested in using the trajectories
of external information propagation to identify func-
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tional modules in a protein-to-protein network (Bailly-
Bechet et al., 2011; Dittrich et al., 2008). Specifically,
in a graph that represents the protein-to-protein net-
work, we may initiate a signal propagation process as
follows: at the beginning a piece of signal starts to
propagate from an unknown node. The signal can
propagate from one node to another only if they are
connected in the graph. Also, one node may prop-
agate the signal to more than one of its neighbors.
At the end of the process, the subset of nodes visited
by the signal, namely the signaling pathway, often be-
longs to the same functional unit. Finding the signal-
ing pathway is important for medical studies because
such pathway could be connected with diseases such as
cancer or Alzheimer’s (See Bailly-Bechet et al. (2011)
and the references therein). The measurement tools
for these signals could bear reading errors. Thus we
can only observe a likelihood on each node being part
of the pathway. This problem is sometimes named as
the signaling pathway reconstruction problem.

Both of these problems essentially need to find a
specific subset of nodes in a network. Despite the dis-
similar motivations, they call for a natural and unified
model that simultaneously leverages the knowledge of
the network structure and the extra information avail-
able at the node level. Below are some highlights of
the key features in our setting and the differences with
the standard community detection problem.

1. Only one asymmetric group. In standard com-
munity detection problems, the goal is to recover
all the (possibly overlapping) communities in the
network. Here we are interested in recovering only
one community. Furthermore, it is often expected
that the size of this community is small compared
to the size of the entire network.

. Rich node level information is available. In the
standard setting, the algorithm needs to infer the
community structure by using only the (possibly
weighted) network structure. In our scenario, we
often possess a rich amount of information at the
node level.

Tradeoff between false positive and false negative.

In the standard setting, the notion of false pos-

itive and false negative is often missing. In our

problems, the costs of false positives and false neg-
atives are often asymmetric, with false negatives
being substantially higher.

1.1 Existing community detection algorithms

Despite the differences with the standard literature,
one might still be hopeful to tweak existing solutions
to solve our problems. Here we briefly review the ex-
isting community detection algorithms. We shall then
discuss the fundamental barriers from using these solu-
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tions that are unlikely to bypass, and hence it becomes
necessary to design and analyze a new model. A com-
prehensive survey on community detection algorithms
can be found in Fortunato (2010).

Roughly speaking, the existing community detec-
tion algorithms can be divided into two categories. We
refer to the first category as the data mining approach.
In this approach, one starts with identifying intuitive
combinatorial structures of the communities in a net-
work. One then proceeds to execute combinatorial al-
gorithms to find the clusters with the combinatorial
properties they want. These properties often imply
that the nodes in the same community have stronger
ties than those belonging to different communities. Al-
gorithms that minimize the network modularity (New-
man, 2006) or the conductance (Leskovec et al., 2009)
are examples in this category.

The second category is referred to as the inference
based approach. Here one describes the formation of
the social network as a stochastic process governed by
a set of hidden parameters that characterizes the com-
munity structure. The social network is treated as an
observed dataset from the process and inference algo-
rithms are designed to learn the hidden parameters.
One well-known example is the planted random graph
model (Hastings, 2006). In this model, the node set
V is partitioned into two subsets V; and V5 so that
Pr[{u,v} € E] is p if u and v belong to the same par-
tition and is g otherwise, where p > ¢ are two param-
eters controlling the density of the graph. The corre-
sponding inference algorithm will assume the network
is generated from this process to recover the set Vi and
V5. Other examples in this category include Ball et al.
(2011), Balcan et al. (2012), and Arora et al. (2012).

The following three obstacles make these existing
solutions unsuitable to our setting.

Deficiency in stand-alone use of a data mining
solution or an inference-based solution. The
data-mining approach is not a principled approach in
that it does not allow us to reason probabilistically
why a community is formed in a specific way. This
is undesirable in many social network analysis appli-
cations. For example, when Facebook wants to use
community information to place personalized ads, it
needs to explain to the clients (who buy the ads) why
they think they correctly find the communities. On
the other hand, inference-based algorithms usually are
not robust and are designed only for very specific and
simple generative models. It is quite unrealistic to be-
lieve a social or protein network is generated from a
set of simple rules, and it is unclear what an inference-
based algorithm can give us when the formation of the
network deviates from the assumed generative model.
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Profound computational barriers. We also
observe that many algorithms (in both categories)
are grounded in the assumption that the interactions
among nodes in the same community are stronger than
interactions among nodes from different communities.
Such assumption often inevitably leads to solving some
variations of the densest subgraph, the conductance, or
the modularity problem. All these problems have been
known to be difficult to tackle both in theory and in
practice.

No usage of the node level information. All
the existing community detection algorithms take the
network structure but nothing else as input. We do not
have a unified model that allows us to leverage both
the network structure and the node level information
simultaneously.

1.2 Our contribution

We position our contributions in both modeling and
algorithmic design: We propose a natural theoretical
model that allows us to use both the network structure
and the node level information to model the formation
of the communities. Then we design efficient commu-
nity detection algorithms for our model. In particular,
we make the following two distinct contributions for
social networks and protein interaction networks.

Asymmetric group detection. Our model is the
first unified and tractable model to solve the prob-
lem of this kind. Moreover, our model bypasses the
aforementioned computational barriers by not using
the assumption that the interaction in the same com-
munity is dense, thus avoiding computationally in-
tractable problems. Furthermore, our algorithm is not
designed for a specific generative model. Instead, it
works for networks that come from a wide range of
generative models.

Finding undetected protein association. For
the “signaling pathway reconstruction” problem, a
few heuristics that are quite effective in practice have
already been proposed, e.g., Dittrich et al. (2008)
and Bailly-Bechet et al. (2011). Our model gives
the first mathematically grounded explanation on why
these heuristics work. Specifically, if the protein in-
teraction network comes from a random graph fam-
ily, namely the exponential tail graph (defined in
the forthcoming sections), then some of the existing
heuristics are guaranteed to work well. The expo-
nential tail graph family is a large family of graphs
that include the Erdds-Rényi model, Kleinberg’s small
world model (Kleinberg, 2000), and other latent space
models such as the inner product model (Kim and
Leskovec, 2012).
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1.3 Organization

In Section 2, we describe our model and summarize our
theoretical results. Section 3 presents a lower bound
for the case where the network structure is unknown.
In Section 4 we present our main results. Finally in
Section 5, we use our results to explain why existing
signaling pathways algorithms work.

2 The model

We now describe our model. A social or protein inter-
action network is represented by an undirected graph
G ={V,E}, where V = {vy,..., v, }.

The goal of the problem. In this network, there is
a subset S C V of special nodes that we need to find
out. Let k = |S|, where k = o(n).

We make the following assumptions regarding the
combinatorial structure of S and the structure of the
information associated with each individual node.

The community structure. We make only the
weakest combinatorial assumption here that the sub-
graph induced by S is connected. In the context of de-
tecting a social community, violating this assumption
would imply that the community could be unrealisti-
cally decomposed into two subgroups so that members
in different subgroups do not know each other. This
connectedness assumption is also very natural in the
context of finding pathways in protein interaction net-
works (Bailly-Bechet et al., 2011).

The signal structure. We shall assume each node
is associated with a signal that represents how likely it
is that the node belongs to S. The stronger the signal
is, the more likely the node belongs to S. Specifically,
we shall assume that each signal is a real number. The
real numbers are independently sampled from one of
two possible distributions. When v; € S, its associ-
ated signal is generated from D;. When v; ¢ S, its
signal is generated from Dy. Furthermore, we shall
assume both distributions are from the same distri-
butional family but the mean of D; is higher. For
exposition purpose, we shall assume that both Dy and
D, are uniform distributions with the same support
size but D; has higher mean, i.e., Dy is a uniform dis-
tribution from [0, 1] and D; is a uniform distribution
from [1 — ~,2 — 4] for some constant 0 < v < 1. Sec-
tion 5 will explain how our results can be generalized
to Gaussian distributions.

The community detection algorithm. Given the
network G = {V, E} and the signals associated with
the nodes, our goal is to output a set S so that S is as
close to S as possible. Specifically, we call an algorithm
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an (a, f)-detector if and only if the algorithm can out-
put a set S such that |S| < ok and |S — S| < Bk (with
high probability). Notice that the parameters o and
indirectly control the tradeoffs between false positive
rate and false negative rate: when o« and 3 are fixed,
the total number of false negatives is at most Sk and
the sum of false positives and false negatives is at most
(a+26 —1)k. In our applications, we want « = 1+ ¢
for a small constant § and 8 be as small as possible
because it is more costly to miss a member in S than
to make a mistaken claim on a non-member.

Before we continue, we remark on some aspects of
our model.

Applying the model.  In a social network, the sig-
nals can be interpreted as a lousy classifier that makes
mistakes with constant probability. Often times, im-
plementing a high quality classifier may not be com-
pletely infeasible (e.g., one can hire human beings to
monitor the communication among individuals in or-
der to accurately label the set of terrorists). But ex-
ecuting high quality classifiers is usually very costly
and thus cannot scale to giant networks. Thus, it is
important to use a time-efficient classifier even at the
cost of having reduced accuracy. Another way of in-
terpreting our problem is to find an algorithm to boost
the performance of a low-quality classifier by leverag-
ing the network structure information. As mentioned
before, we shall also use a generalization of this model
to explain why some existing algorithms for finding
pathways in protein interaction networks work.

Relationship to the sparse signal recovery problem.
If the network structure is not given, our problem
degenerates to the sparse signal recovery problem
(See Haupt et al. (2011) and the references therein).
In the latter context, one is given a set of real numbers
r1,T3, ..., Ty such that most of the numbers are sam-
pled from a zero-mean distribution and only a small
portion, say S, are sampled from an alternate positive-
mean distribution. The goal is to identify the set of
positive-mean variables. One major result in this pa-
per is to show that knowing the structure of the net-
work can substantially improve the algorithmic perfor-
mance to recover S.

Combinatorial constraints in statistical models. Be-
cause our model takes into account both the network
structure and the signal structure, the combinatorial
constraints naturally melt with the statistical inference
problem. We notice that recent works of Arias-Castro
et al. (2008), Addario-berry et al. (2010), Abra-
ham et al. (2012), and Soufiani and Airoldi (2012)
also studied relevant latent space inference problems
in networks.
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Highlight of results and techniques. @ We now
informally describe our results. We focus on under-
standing “the value of the network structure”, i.e.,
how much the connectivity constraints can help in our
community detection algorithm.

Roughly speaking, our main result states that in
a homogeneous and sparse network, the knowledge of
the network structure and the connectivity constraint
is very helpful in detecting S. In Section 3, we first
show a lower bound for the case where the network
structure is not given, i.e., for any constants « and
7, there does not exist an («,0.9997)-detector (no-
tice that getting an («, (1+0(1))7)-detector is trivial).
Then in Section 4, we show that when the network
is generated from an “exponential tail random graph
family”— a family of homogenous and sparse random
graphs — then there exists an (1.55, Ay)-detector for
any arbitrarily small A.

The power law graph family is a natural set of
graphs that is not homogenous. For this case, we have
a negative result: knowing the structure of the graph
is information-theoretically wvalueless. On the other
hand, if none of the highly connected nodes are in S,
then finding S in a power law network becomes easy
again. To summarize, we may interpret the value of
the network structure as follows: when the nodes are
homogenous and have sparse connections, the network
structure has the highest value. When the degrees
start to become skewed and some nodes are better con-
nected than others, the value of knowing the network
structure starts to decrease. Finally, when the network
exactly follows the power law distribution, knowing the
network structure will not be helpful at all.

Regarding methodology, central to our analysis is
an understanding of how likely a random subset of
nodes can be connected in a random graph. Intu-
itively, the less likely a random subset is connected,
the more “powerful” the connectivity constraint is. In
our analysis, we derive a set of coupling techniques to
reduce the connectivity problem for different genera-
tive models into simpler objects, such as the sum of
independent variables and branching processes. These
techniques for understanding subgraph connectivities
could be of independent interest.

3 Lower bound

This section presents a lower bound result when the
network structure is unknown (the proof is in Ap-
pendix B). This result can also be viewed as a special
case of the sparse signal recovery problem.

Theorem 3.1. Let v and « be arbitrary constants.
Consider the community detection problem where the
graph structure is not given. When k = o(n), for any
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algorithm that returns a set S of size < ak, we have
B[ls -8l = (1 - o(1)h.

We shall imagine « as a sufficiently small constant
and « a large constant. Theorem 3.1 implies that there
exists no (O(1), (1 — o(1))~)-detector for any constant
~ when the network structure is unknown.

4 Algorithms for generative models

We next move to analyze the scenarios where the net-
work structure is known. We focus on two genera-
tive models: Erdos-Rényi graphs and Kleinberg’s small
world (Kleinberg, 2000). The result for the small
world model can be further generalized for the so-
called “family of exponential tail graphs” (defined in
Section 4.2). The technique developed for the small
world model is strictly stronger but is more compli-
cated. The connectivity analysis for subgraphs in G, ,
appears to be a folklore. For completeness, we also
present the analysis.

The reader is also referred to Appendix C for the
analysis of a toy example, namely the line graph case,
to get a quick intuition on how knowledge on the net-
work structure may help. We also remark that our
analysis assumes we know the value of k. This assump-
tion can easily be relaxed because k can be estimated
accurately from the signals.

4.1 The Erd6s-Rényi random graph model.

We now analyze the Erdés-Rényi model. The following
is our main theorem in this subsection.

Theorem 4.1. Letp = = for some constant c and X be
an arbitrary small constant. Consider the community
detection problem where the network is sampled from
Gnp and k = o(n) is a polynomial in n. There exists
a constant o such that for all v < 7o:

o There is no (1.55,v(1 — o(1)))-detector that does
not use the network structure information.

e There is an efficient (1.55, Ay)-detector that uses
the network structure.

Before proceeding to our analysis, let us make a
few remarks.

Setting = 1.55.  First, our detector is only able
to return a set of size 1.55k instead of k. This is be-
cause an intermediate step in our algorithm is to solve
a Steiner tree problem and 1.55 is the best approxima-
tion ratio among Steiner tree algorithms (Robins and
Zelikovsky, 2005).

The interpretation of . The parameter A can
be viewed as the “value” of the network structure:
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when the network structure is unknown, the portion of
misses from S is approximately 7; but when we know
the network structure, the portion of misses can reduce
to \y.

We now proceed to our analysis. First, we need
to show a combinatorial property about G,, p.

Lemma 4.2. Let G be a sample from Gy, ,, where p =
< for some c. Let Cy(G) be the number of connected
subgraphs of size £. There exists a constant 179 such

that for any e, we have Pr |Cy(G) > é(m)é <e.

Proof. We shall first compute the expected number of
connected subgraphs of size ¢. Let J be a subset of
size £. Let G(J) be the subgraph induced by J and let
x(J) be an indicator random variable that sets to 1 if
and only if the subgraph induced by J is connected.
We have Egeq,,, [Ce(G)] = 3 5. =0 EIX(I)].

Thus, we only need to find E[x(J)], i.e., the prob-
ability that J is a connected subgraph. Wlog, let
J = {v1,...,u¢}. A necessary condition for J to be
connected is that the number of edges in J is at least
|J|—1. Thus, we focus on finding Pr[E(G(J)) > {—1].

Let us define an indicator random variable X ;
(¢ < j) that sets to 1 if and only if {v;,v;} € E(G).
We can see that {X; ;}i<;j<¢ are independent Bernoulli
random variables with parameter p. We have

£(e—1)

T2 ee=1) e

P X, >0—1| = 2 \pt(1 — p) T

SDIEFETEY Z( : )p(l P
i,jeJS t=0—1

(1)

Let us consider the terms Pr[37, ., X;; =t] =

(=)

([ % )p'(1 = p) ~t for all ¢. One can see that
Pr[>°jesXi; = t] is maximized when ¢ is near
the expectation of >, ;. ; X; j, i.e., when ¢ is either
[p@] or [p@] + 1. Using the assumption that
p= @(%), we have @ < £ — 1. Thus, the largest
term in the summands at the right hand side of (1)
is the term with t = ¢ — 1, i.e., (Z(ZZI))pe_l(l -
p){==t+1 " Therefore, Pr {Z X >0— 1] <

i<jeJ <t
€2pz_1(£“2_1))- We thus have E |:ZJ:‘J|:£ X(J)}

e—1)
2

<

=1 =
76/p for a suitable constant 75. Finally, by us-
ing a Markov inequality, we complete the proof of

Lemma 4.2. O

We now prove Theorem 4.1. The analysis for the
first part is similar to the one for Theorem 3.1 (whose
proof is in Appendix B). Thus, we focus on proving
the second part of the theorem. Specifically, we shall
design an algorithm that works for a sufficiently small

—t
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~. Our algorithm also needs to invoke the following
building block:

Definition 4.3. Let G = {V, E} be an arbitrary graph
and W be a subset of V. The MinConnect problem
finds the smallest superset U of W so that the subgraph
induced by W is connected.

It is not difficult to see that the MinConnect
problem is equivalent to the Steiner tree problem (See
e.g., Vazirani (2001) or Definition A.1 in Appendix)
when the edges have uniform weights, i.e.,

Lemma 4.4. The MinConnect problem is equivalent
to the Steiner tree problem in which all the edges have
the same weight.

The proof of Lemma 4.4 is in Appendix D.
Since there exists a 1.55-approximation algorithm for
the Steiner tree problem, there also exists a 1.55-
approximation algorithm for the MinConnect prob-
lem. We next describe how we use the MinConnect
problem to solve the community detection problem.

The algorithm: We first partition the nodes into three
sets: Vi contains the set of nodes whose associated sig-
nals are in H £ [1,2—+]; Vas contains the set of nodes
whose associated signals are in M £ [1 —~,1], and V,
contains the set of nodes whose associated signals are
in L £ [0,1 —~]. Notice that when v € Vy, we are
sure v € S. When v € Vi, we are sure v ¢ S. Our
algorithm consists of the following two steps:

e Step 1. Truncate: Let G’ be the subgraph induced
by VH and V]V[.

Step 2. Solve MinConnect: Find the minimum
connected subgraph in G’ that contains all nodes
in V. When the returned subset contains less
than k nodes, we add arbitrary nodes in G’ to
the solution, as long as the solution remains con-
nected, until the size reaches k.

We remark that this algorithm appears to be one
of the most natural heuristics. We next analyze the
algorithm’s performance. Let us define a collection
of subgraphs C(e) parametrized by ¢ as C(e)

{G L (@) < LR for any 1< £ < 1.55k},

p
where 7( is the constant defined in Lemma 4.2. By

using straightforward analysis, one can see that

Pr{GeC(e)} >1—c¢

Next we shall show that when G is in C(¢), our
algorithm succeeds with high probability. First ob-
serve that the subgraph induced by the set S contains
k nodes, is connected (by definition), and contains all
nodes in Vg (by definition). Thus the optimal solu-
tion for our MinConnect problem contains at most
k nodes. Therefore, a Steiner-tree based approxima-
tion algorithm will give us a set of size < 1.55k.
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We then argue that with low probability our al-
gorithm returns a subset S’ such that |S — S| > Avk.
We need the following definition.

Definition 4.5. A subset of nodes T is a good subset
if and only if 1. its size is between k and 1.55k, 2.
the subgraph induced by T is connected, and 3. T C
Vi UV, ie., all signals associated with nodes in T
are either in H or in M.

It suffices to show that with probability at least
(1 —€/(1.55k)), any good subset S’ of size £ (k < ¢ <
1.55k) will be that |[S — S| < Ayk. To prove this,
consider, on the contrary, any S’ such that |S — S’| >
Ayk. Since |[S'NS| < (1—Ay)k, we have |S'— S| > £ —
(I=My)k = ({—=k)+Xvk. Let Ak = £—k. We then have
|S” — S| — Ak > Ayk =: kg. Observe that a necessary
condition for S’ being a good subset is that all the
signals associated with nodes in S’ — S are in M. This
happens with probability < ~*+2k  On the other
hand, the total number of connected subgraph of size
¢ is bounded above by M with high probability.
By using a union bound, the probability there exists
at least one good S’ with |S — S'| > yAk is at most

€
1.55k
(2)
for a suitable constant cg. Appendix J.1 explains the
deviation of (2) in detail.

otk 1.55k(m0)" _ 1'55k,yko+AkTéc+Ak <e
€ep ep

k<

0

To sum up we have shown that 1. Pr[G € C(¢)] >
1 —¢ 2. When G € C(€), the probability that our
algorithm will output a good S’ but |S — S| > A\vk
is < e. Therefore, with probability at most 2e our
algorithm will output a set S’ such that |S—S’| > Ak,
which proves Theorem 4.1.

4.2 The small world model and its
generalization

We next move to the small world model. Appendix A.2
reviews the definition of the model. We have the fol-
lowing main proposition of this subsection.

Proposition 4.6. Let G be a sample from the
small world model with normalization constant C' =
O(logn). Let Ci(G) be the number of connected
subgraphs of size £, where ¢ < n'/3.  There ex-
ists a constant 1o such that for any €, we have

Pr [Cy(G) = 2(m0)"] < e.

The requirement that ¢ < n'/3 is chosen rather
arbitrarily and is not optimized. Proposition 4.6 is
the small world model’s counterpart of Lemma 4.2.
Thus, from Proposition 4.6 we use the same algo-
rithm that appeared in Section 4.1 to achieve the same
performance as described in Theorem 4.1, as long as
k = o(n'/3) and is a polynomial in n.
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Our analysis, which presents a major technical
contribution, couples the random subgraph induced by
S with a branching process (See Appendix E for the
proof).

We can continue to generalize Proposition 4.6 to
cover a wider family of random graph models. Let us
define the exponential tail family of random graphs as
follows: the node set is V= {vq,...,v,}. Each node
v; is associated with a hidden state s;. A generative
model in the exponential tail family defines a function
h such that:

e The edge between v; and v; is included in the
graph with probability h(s;, s;), which is indepen-
dent of the rest of the edges.

e Let D; be the degree of the node v;. Then: 1.
E[D;] = O(1) and 2. There exists a constant go
such that for any g > go and D;, Pr[D; > ¢] <
279,

We have the following Corollary.

Corollary 4.7. Let G be a random sample from an ar-
bitrary exponential tail family of grpahs. There exists
a constant vy such that for all v < ~y: 1. There is no
(1.55,v(1 —o(1)))-detector when the network structure
is unknown, and 2. There is an efficient (1.55, \y)-
detector when the network structure is given.

We remark that a large number of generative
models can be characterized by a set of latent states
{s1, ..., $n } and the probability function h, such as the
inner product model, the exchangeable graph model,
the planted random graph model, and the Chung
and Lu’s random graph model with expected de-
gree (Chung and Lu, 2002; Hastings, 2006; Goldenberg
et al., 2009; Kim and Leskovec, 2012). So long as the
degree variables have small expectations and exponen-
tially small tails, Corollary 4.7 is applicable.

4.3 The power law graph

It is also natural to ask whether there exist algorithms
for the family of power law graphs, which clearly does
not belong to the exponential tail family. In this sec-
tion, we focus on understanding a specific power law
graph model, namely Chung and Lu’s model (Chung
and Lu, 2002) when the expected degrees follow a
power law distribution. We shall present a negative
result and a positive result for this model. In our
negative result, we show that no algorithm will per-
form better than the optimal algorithm for the case
where the network is not given. In other words, the
network structure does not add any value to solving
the community detection problem. In our positive
result, we show that, under the additional informa-
tion that the community does not contain, say, the
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top 1% most densely connected nodes, there exists a
sufficiently small constant v so that our algorithm pre-
sented in Section 4.1 works well.

Recall that in Chung and Lu’s random graph
model, each node v; is associated with a value w; that
represents its expected degree. The probability that
{vi,v;} € E is w;w;p, where p is a normalization term
that is linear in n. Here, we shall make standard as-
sumptions that the sequence w; follows a power law
distribution and the average degree is a constant.

Let us start with our negative result.

Proposition 4.8. Consider Chung and Lu’s random
graph model, in which the largest expected degree is
©(y/n) and k o(v/n). Then with high probabil-
ity there exists a connected group S such that any
algorithm, that outputs S with |S| = O(k) satisfies
B|S = S| > (1 - o(1))yk.

This proposition shall be contrasted with Theo-
rem 3.1: in the present setting, the structure of the
graph is essentially useless. We remark on the choice of
the parameters in Proposition 4.8. Here, we implicitly
assume that the largest expected degree is larger than
the size of the community. This assumption is sup-
ported by existing experiments (Mislove et al., 2007;
Leskovec et al., 2009). The proof of Proposition 4.8 is
deferred to Appendix F.

With Proposition 4.8, a natural question is
whether we can do better if the highly connected nodes
are known to be not in the set S. Our observation here
is that for any constant ¢, if we remove the e-portion
of highly connected nodes, the subgraph induced by
the remaining nodes will have constant expected de-
gree everywhere. In this case, the problem will be no
harder than the problem for the G, , case. Thus, we
have the following corollary:

Corollary 4.9. Consider Chung and Lu’s model with
the same set of parameters described in Proposi-
tion 4.8. Let € and X be arbitrary positive constants.
There exists a -y such that if the top € most connected
nodes (in expectation) are not in the community, we
can use the algorithm described in Section 4.1 to find
a subset S of size 1.55k and |S — S| < (1 + o(1))\yk.

5 The Gaussian signal case: why
existing pathways algorithms work.

We now generalize our result to explain why existing
algorithms for finding signaling pathways in protein-
to-protein networks work. In this problem, given a
network GG, we are required to recover the pathways
of a signal cascading process, which means that we
need to find a special subset of nodes S whose induced
subgraph is connected. Furthermore, we also know
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the p-value of each node between the hypotheses of
being and not being in S (see our discussion on the
Gaussian hypotheses that will come shortly). Exist-
ing solutions (Ideker et al., 2002; Dittrich et al., 2008;
Deo et al., 2010; Bailly-Bechet et al., 2011; Jahid and
Ruan, 2012) use the following algorithmic framework
to recover the pathways: first, the algorithm assigns
scores to each of the nodes according to their p-values.
Nodes with low p-values will get high scores. Then
the algorithm proceeds to find a subset of nodes whose
score sum is maximized subject to the constraints that
the nodes are connected, hoping to find a connected
component with a large number of nodes having small
p-value. In order to control the size of the output, the
algorithm also introduces a regularization term to fa-
vor solutions with smaller number of nodes. Different
algorithms have different ways of assigning the scores
and the regularization terms. For example, in Bailly-
Bechet et al. (2011), the score of a node v; is defined
as —log(p;), where p; is the p-value of v;; next, with
each edge assigned a weight, the regularization term of
an output set S is the cost of the minimum spanning
tree of S. The final score of S is then the sum of the
scores of all nodes in S minus the cost of the minimum
spanning tree of S.

Most of the other algorithms also select the scores
and regularization terms in a way that the problem
reduces to variations of the Steiner tree problem.

In this section we explain why the Steiner tree
type algorithms work in practice. In particular, we
shall focus on explaining the algorithm proposed in
Bailly-Bechet et. al; we believe our arguments remain
valid for many other similar algorithms.

In our analysis, we shall model the signals as be-
ing drawn from Gaussian distributions instead of from
uniform distributions. When we model the signals as
uniformly distributed, we implicitly assume that there
is a constant portion of nodes have p-values either 0 or
1, which does not appear to be realistic (Dittrich et al.,
2008; Bailly-Bechet et al., 2011). Instead, we assume
that when v € S, the signal associated with v is sam-
pled from N(u,1) with p being a positive constant;
when v ¢ S, the signal associated with v is sampled
from N(0,1). We emphasize here that p does not grow
with the size of the network.

Let us recall the solution given in Bailly-Bechet
et al. (2011): each edge e is assigned a positive cost
c(e) and each node v; is associated with a positive
“price” b(v;) = —log(p;) with p; being v;’s p-value.
The goal is to find a connected subgraph G’ = {$, £}
that maximizes the following function:
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Let us further assume that & = O(n'/4) and the output
S is required to be O(n'/3) so that the false discovery
rate does not approach 1 rapidly (no effort was made
to improve the exponents). The following is our main
proposition in this section.

Proposition 5.1. Consider the signaling pathway re-
construction problem where the network is sampled
from an exponential tail family of random graphs and
k = O(n'/*) is a polynomial in n. Let ¢ be an arbi-
trary small constant. There exists a sufficiently large
constant po and a cost function c(-) such that for any
> o, the optimal solution Sepy for (8), subject to the
constraint |Sopt| < n'/3, satisfies |S — Sopt| + [Sopt —
S| < ek with high probability.

The proof of Proposition 5.1 is in Appendix G.
Two natural questions remain to be answered. First, is
it plausible to assume the protein-interaction network
is an exponential tail graph? Second, the optimization
problem in (3) is an NP-hard problem and we cannot
exactly solve the problem in polynomial time. What
kind of performance guarantee can we get if we use a
p-approximate algorithm?

Let us start with addressing the first issue. We ob-
serve that the proteins reside in a Euclidean space and
it is reasonable to assume the likelihood that two pro-
teins interact decreases as their distance grows. These
two conditions already give us a model that is very
close to Kleinberg’s small world model, which belongs
to the exponential tail family of graphs.

We now move to the second question. We have
the following corollary.

Corollary 5.2. Let us consider the signaling path-
ways reconstruction problem such that k = O(n/*) is
a polynomial in n. Let A be an p-approximation algo-
rithm for (3) (where p = O(1)) and outpuls a set S of
size O(n'/?). Then for any constant e, with high proba-
bility, we have |S| < (2+e—p)k and |SNS| > (1—e)pk.

In other words, a (2, (1—¢€)p)-detector exists. Fur-
thermore, Corollary 5.2 is complemented by the follow-
ing lower bound for the case where the network struc-
ture is unknown (the proof appears in Appendix H).

Theorem 5.3. Consider the signaling pathways re-
construction problem with p = O(1), where the net-
work structure is unknown and p = O(1). For any
(o, 1 — p)-detector, its o has to be Q(pn).

Thus, if we want |S N S| = (1 + o(1))pk, knowing
the structure of the network will bring down « from
pn to O(1). Notice that Theorem 5.3 gives a much
stronger lower bound than Theorem 3.1.
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