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Abstract

Probabilistic programs are intuitive and suc-
cinct representations of complex probability
distributions. A natural approach to per-
forming inference over these programs is to
execute them and compute statistics over the
resulting samples. Indeed, this approach has
been taken before in a number of probabilis-
tic programming tools. In this paper, we ad-
dress two key challenges of this paradigm: (i)
ensuring samples are well distributed in the
combinatorial space of the program, and (ii)
efficiently generating samples with minimal
rejection. We present a new sampling algo-
rithm Qi that addresses these challenges us-
ing concepts from the field of program anal-
ysis. To solve the first challenge (getting
diverse samples), we use a technique called
symbolic execution to systematically explore
all the paths in a program. In the case of pro-
grams with loops, we systematically explore
all paths up to a given depth, and present
theorems on error bounds on the estimates
as a function of the path bounds used. To
solve the second challenge (efficient samples
with minimal rejection), we propagate obser-
vations backward through the program us-
ing the notion of Dijkstra’s weakest precon-
ditions and hoist these propagated conditions
to condition elementary distributions during
sampling. We present theorems explaining
the mathematical properties of Qi, as well as
empirical results from an implementation of
the algorithm.
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1 INTRODUCTION

Probabilistic models, particularly those with causal
dependencies, can be succinctly written as probabilis-
tic programs. Recent years have seen a proliferation
of languages for writing such probabilistic programs,
as well as tools and techniques for performing infer-
ence over these programs (Gilks et al., 1994, Koller
et al., 1997, Pfeffer, 2007a, Minka et al., 2009, Good-
man et al., 2008, Kok et al., 2007, Gordon et al., 2013).
Inference approaches can be broadly classified as static
or dynamic. Static approaches compile the proba-
bilistic program to a graphical model, and then per-
form inference over the graphical model (Koller et al.,
1997, Minka et al., 2009, Kok et al., 2007) exploiting
its structure. Dynamic approaches work by running
the program several times using sampling to generate
values, and perform inference by computing statistics
over the results of several such runs (Pfeffer, 2007a,
Goodman et al., 2008).

Dynamic approaches (which are also called sampling
based approaches) are widely used, since running a
probabilistic program is easy to perform, regardless of
the programming language used to express the pro-
gram. However, there are two main challenges with
sampling based approaches. The first challenge is the
quality and diversity of samples obtained from the
joint probability distribution represented by the pro-
gram. The main issue here is that there are many
interdependent choices to be made during sampling,
and choices that are unlikely apriori, may be highly
likely aposteriori in light of observations or evidence.
In the context of probabilistic programs, these choices
correspond to exploring distinct paths in the program.
Straightforward sampling of the program fails to suffi-
ciently explore these paths, leading to poor estimated
results. A second challenge for sampling from prob-
abilistic programs (even along a single path) is that
many samples that are generated during execution are
ultimately rejected for not satisfying the observations.
This is analogous to rejection sampling algorithms in
various probabilistic models. In order to improve effi-
ciency, it is desirable to avoid generating samples that
are later rejected, to the extent possible.
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The main contribution of this paper is a new sampling
algorithm, called Qi1, which uses program analysis
techniques in order to address both the above chal-
lenges. Given a probabilistic program π as input, we
first systematically decompose π into a sequence of
feasible straight-line programs (corresponding to dif-
ferent paths in π), each of which can be sampled in-
dependently. The order in which these paths must
be explored becomes crucial when the set of paths in
the program becomes infinite, as in the case of proba-
bilistic grammars or non-parametric models; we must
ensure that the residual probability mass converges
to zero. We prove that exploring paths roughly or-
dered by their depth guarantees this condition. In or-
der to address the second challenge (avoiding many
rejections during sampling), we propose augmenting
sampling statements along each path (produced by
the above path exploration procedure) using Dijkstra’s
weakest preconditions (Dijkstra, 1976) together with
importance sampling weights in order to ensure that
no samples are rejected. Informally, this corresponds
to “hoisting” conditions on the joint distribution spec-
ified by a straight-line program to conditions on ele-
mentary distributions in the program. Together, these
two techniques enable us to improve the quality and
efficiency of sampling based estimation.

After computing estimates for each path of the pro-
gram using sampling, we need to combine these esti-
mates across paths by appropriately weighting samples
along every feasible path πi by the probability that
the program takes the path πi successfully (that is,
the program takes all the branches in π, and satisfies
all the observations along πi). We present a scaling
technique (see Section 5, Algorithm 3) by which we
can estimate the probability that a program executes
the path πi successfully by estimating an appropriately
defined indicator function. We show how to estimate
the expected value of this indicator function by scaling
the same samples obtained for estimating the result of
the program.

We have implemented Qi and evaluated it on various
benchmarks (see Section 6). Our empirical results are
promising —our technique produces comparable esti-
mates with the rejection sampling algorithm in Church
(Goodman et al., 2008) with far fewer samples on all
examples, and is able to produce more precise esti-
mates in some examples.

Related work. There has been prior work on ex-
ploiting program structure to perform efficient sam-
pling. Wingate et al. (2011) use nonstandard inter-
pretation during runtime execution to compute deriva-

1Qi = Quick Inference, and translates to “life force” in
Chinese.

1: bool earthquake, burglary, alarm,
phoneWorking, maryWakes, called;

2: earthquake = Bernoulli(0.0001);
3: burglary = Bernoulli(0.001);
4: alarm = earthquake or burglary;
5: if (earthquake)
6: phoneWorking = Bernoulli(0.7);
7: else
8: phoneWorking = Bernoulli(0.99);
9: if(alarm) {
10: if(earthquake)
11: maryWakes = Bernoulli(0.8);
12: else
13: maryWakes = Bernoulli(0.6);
14: } else
15: maryWakes = Bernoulli(0.2);
16: called = maryWakes and phoneWorking;
17: observe(called);
18: return burglary;

Figure 1: Probabilistic program for Pearl’s Burglar
Alarm example.

tives, track provenance, and use these computations
to improve the efficiency of MCMC sampling. Earlier
work by Milch and Russell on BLOG (Milch and Rus-
sell, 2006) has used program structure to come up with
good proposal distributions for MCMC sampling. Un-
like these papers which use MCMC sampling, our work
is based on importance sampling. Avi Pfeffer’s work on
general importance sampling (Pfeffer, 2007b) is closely
related to our work. Our work improves upon Pfeffer’s
work in several ways. We make a detailed comparison
with this work in Section 7.

2 OVERVIEW

We consider probabilistic programs written in a C-like
imperative language equipped with two special state-
ments to express probabilistic models:

1. The sampling statement allows sampling from
standard distributions such as Bernoulli, Gaus-
sian etc. For example, the statement “x =
Bernoulli(0.4)” samples from a Bernoulli distri-
bution with mean 0.4, and assigns the resulting
value to variable x.

2. The observe statement allows conditioning the
distribution with respect to an observation. For
example, the statement “observe(x = true)” con-
ditions the program to only consider executions
where the value of variable x is true.

We allow all other statements of the C language such
as conditionals, loops, function calls, pointers, arrays
etc. Such programs represent probability distributions
as in prior work (Koller et al., 1997, Pfeffer, 2007a,
Goodman et al., 2008, Gordon et al., 2013).
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We explain our ideas using the probabilistic pro-
gram shown in Figure 1. This program describes
a joint probability distribution with 6 boolean vari-
ables: earthquake, burglary, alarm, phoneWorking,
maryWakes and called. The return value of the pro-
gram (see line 18) is the value of the variable burglary.
Lines 2–16 specify how the 6 variables are assigned
values, and the dependencies between these variables.
The observe statement in line 17 conditions this dis-
tribution with the observed evidence that called is
true.

Suppose we execute this program “as is” and perform
sampling. We note that earthquake and burglary

are true with very low probabilities and hence unlikely
to be set to true during sampling. As a result several
paths in the program above are likely to remain un-
traversed during sampling. Thus, the details of how
the joint distribution is specified along these paths are
ignored, resulting in inaccurate estimates for the value
of the result produced by the program. Further, even
along paths traversed frequently by the program, since
line 17 requires the variable called to be true, several
executions that set either maryWakes to false or set
phoneWorking to false are filtered out since called is
the conjunction of maryWakes and phoneWorking(see
line 16).

Our idea behind using program analysis in Qi is two
fold. Phase 1 of Qi replaces each probabilistic choice
(i.e., the Bernoulli sampling statements in lines 2, 3,
6, 8, 11, 13 and 15) with nondeterministic choice and
uses techniques from symbolic execution (Godefroid
et al., 2005) to traverse all the 3 feasible paths in this
program. The 3 paths are listed below as sequences of
line numbers from the program:

π1 : 2, 3, 4, 5, 6, 9, 10, 11, 16, 17, 18
π2 : 2, 3, 4, 5, 8, 9, 10, 13, 16, 17, 18
π3 : 2, 3, 4, 5, 8, 9, 15, 16, 17, 18

Note that simply traversing control flow paths in the
program may result in infeasible paths. For instance,
the path 2, 3, 4, 5, 6, 9, 10, 13, 16, 17, 18 is infeasible
since the branches taken at lines 5 and 10 are incon-
sistent with each other. In Section 3, we show how to
use symbolic execution (combined with concrete exe-
cution) to enumerate all the feasible paths of any prob-
abilistic program, using a theorem prover (de Moura
and Bjorner, 2008) (in other words, a logical inference
engine) to rule out inconsistent or infeasible paths.
In order to perform such path exploration in a scal-
able manner for large programs, we make use of ad-
vances in symbolic execution for test generation over
the past decade (Godefroid et al., 2005, 2012, Cadar
et al., 2008).

wp(S1;S2, φ) = wp(S1,wp(S2, φ))

wp(observe ψ, φ) = φ ∧ ψ

wp(x := e, φ) = φ[x := e]

wp(x ∼ e, φ) = ∃b.φ[x := b]

Figure 2: The wp(S, φ) computation. := denotes as-
signment and ∼ denotes sampling (or stochastic as-
signment).

Each of these paths can be thought of as straight-line
programs. For instance path, π1 corresponds to the
program given below:

earthquake = Bernoulli(0.0001);
burglary = Bernoulli(0.001);
alarm = earthquake or burglary; observe(earthquake);
phoneWorking = Bernoulli(0.7); observe(alarm);
observe(earthquake); maryWakes = Bernoulli(0.8);
called = maryWakes and phoneWorking; observe(called);
return(burglary);

In phase 2 of Qi, we desire to generate samples that
satisfy the observe statements in this straightline pro-
gram. In order to do this, we push the predicates
associated with observe statements back through the
program toward every sampling statement using the
technique of Dijkstra’s weakest preconditions (Dijk-
stra, 1976). We then condition each sampling state-
ment by its corresponding weakest precondition.

Doing this systematically involves weakest precondi-
tion computation (details in Section 5), and the re-
sult of such a computation for π1 is shown in Ta-
ble 1. For instance, the weakest precondition at line
17 is true, and since the statement at line 17 is
“observe(called)”, we have that the weakest precon-
dition at line 16 is given by wp(“observe(called)”,
true) = called (see Figure 2 for rules to compute wp).
Once the weakest preconditions are calculated for each
statement, we observe that as long as the sampling at
each statement ℓ is done conditioned on its weakest
precondition computed at ℓ, the generated sample is
guaranteed to satisfy all the observe statements along
the path. For instance, in our example, among the 3
sample statements at lines 2, 3 and 11, we have that
the sample statements at lines 2 and 11 (which gen-
erate values for earthquake and maryWakes respec-
tively) are conditioned to generate true values for these
variables (since there are observe statements along this
path that force these values to be true). On the other
hand, the sample statement at line 3 (for generating
the value of burglary) has the corresponding weakest
precondition set to earthquake, which is independent
of burglary. Thus, no conditioning is performed on
this sample statement.
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LINE# STATEMENT WEAKEST PRECONDITION AT LINE#

2 earthquake = Bernoulli(0.0001) earthquake
3 burglary = Bernoulli(0.001) earthquake ∧ (earthquake ∨ burglary) = earthquake
4 alarm = earthquake or burglary earthquake ∧ alarm
5 observe(earthquake) earthquake ∧ alarm
6 phoneWorking = Bernoulli(0.7) phoneWorking ∧ earthquake ∧ alarm
9 observe(alarm) phoneWorking ∧ earthquake
10 observe(earthquake) phoneWorking
11 maryWakes = Bernoulli(0.8) maryWakes ∧ phoneWorking
16 called = maryWakes and phoneWorking called
17 observe(called) true

18 return(burglary) true

Table 1: Computation of weakest precondition for path π1.

We note that once such conditioning is done, the above
path program is equivalent to the program:

burglary = Bernoulli(0.001); return(burglary)

Sampling this program results in an estimated value
close to 0.001. Note that 0.001 is the expected value of
burglary in path π1, assuming all the observe state-
ments and conditions are satisfied. Let us call this
value y1. Similarly, estimated values y2 and y3 can be
calculated for each of the other paths π2 and π3 re-
spectively. Qi combines the estimated values of each
of the paths by weighting the estimated value yi at
each path πi with a weight θi, where θi is the prob-
ability that the full program π executes path πi and
satisfies all the observe statements and conditionals.
For example, the weight θ1 associated with path π1 is
given by 0.0001 ∗ 0.7 ∗ 0.8 = 56 ∗ 10−6. In Section 5,
we show how to estimate the value of θi during the
estimation of yi, by sampling the program πi.

3 THE Qi ALGORITHM

Algorithm 1 describes the Qi algorithm for efficiently
sampling and performing inference on probabilistic
programs. Qi takes a probabilistic program π as in-
put together with two parameters κ1 and κ2, which
are user-specified bounds on number of paths explored
(useful in the case of programs with an infinite num-
ber of paths, or a large finite number of paths) and the
number of samples used per path respectively. In line
1, Qi calls a procedure Explore that generates a se-
quence of straight-line programs Π, one for each path
in P . Informally, Explore transforms P to a non-
deterministic program (where all sample statements
are replaced by nondeterministic assignments), and
uses well-known path coverage techniques that com-
bine concrete execution with symbolic execution in or-
der to generate valid program paths (Godefroid et al.,
2005). A feasible path is a path where there exists some
value for all the variables that satisfies all the condi-
tional and observe statements in it. Every such path
is encoded as a straight-line program and added to the

set Π. A precise description of Explore is given in
Section 4. For every straight-line program πi ∈ Π,
the algorithm does the following (lines 3 – 6). Every
program πi ∈ Π is given as input to the procedure
Estimate which generates samples from its posterior
distribution by using Dijkstra’s weakest conditions and
likelihood weighting techniques. The procedure Esti-

mate estimates the following two quantities.

Algorithm 1 Qi(π, κ1, κ2)

1: Π := Explore(π, κ1)
2: Ω := ∅
3: for πi ∈ Π do

4: (θ, y) := Estimate(πi, κ2)
5: Ω := Ω ∪ {(θ, y)}
6: end for

7: return Ω̄

1. θ: the probability that executing the program re-
sults in the path πi being exercised, and

2. y: the expected value returned by the program πi
conditioned on its path being exercised.

These estimates (θ, y) are accumulated in the set Ω.
The details of the procedure Estimate are described
in Section 5. Finally, Qi returns the weighted average
Ω̄ (line 8) that computes the expectation of the value
returned by the program. The weighted average Ω̄ is
defined as follows.

Ω̄
def
=

∑
(θ,y)∈Ω(θ × y)
∑

(θ, )∈Ω θ

It is important to note that the set of all paths of the
input program π can be infinite in general, particularly
in programs with unbounded loops and recursion. For
instance, probabilistic programs modelling probabilis-
tic context-free grammars (PCFG) may have an un-
bounded number of paths, each corresponding to a dif-
ferent parse tree. If Explore were to explore paths in
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Algorithm 2 Explore(πi, κ)

1: π∗
i := pp to np(πi)

2: Π := {};
3: F := {σ0};
4: d := d0;
5: loop

6: (C ,F ) := Execute(π∗
i ,F , d)

7: Π := Π ∪ C ;
8: if |Π| ≥ κ then

9: break

10: else

11: d := d + δ;
12: end if

13: end loop

14: return Π

such programs in a depth-first fashion, it would never
consider some paths having a finite probability mass.

In the next section, we describe the Explore pro-
cedure together with conditions that ensure that the
probability mass of the programs in the tail of the se-
quence Π (as described in Algorithm 1) vanishes as we
explore an increasing number of programs.

4 SYSTEMATIC PATH

EXPLORATION

Let us first consider programs without loops (and
hence a finite number of paths). For such programs,
we can systematically enumerate all the control paths
in the program by running dynamic programming al-
gorithms on the control flow graph of the program.
However, we desire to generate only paths that are
feasible (as discussed in Sections 2 and 3). One way
to do this is to perform symbolic execution along the
path. Symbolic execution runs the program using a
fresh symbolic value for every variable and generates
path constraints (which are formulas) and check if the
formulas are consistent using an automated theorem
prover. Over the past decade, theorem provers that
support SMT (Satisfiability Modulo Theories) such as
Z3 (de Moura and Bjorner, 2008) have shown the abil-
ity to scale for large formulas.

In addition, we perform an optimization pioneered by
Dart (Godefroid et al., 2005) to cut down on the num-
ber of theorem prover calls, and scale symbolic execu-
tion to very large programs. The optimization works
by simultaneously performing both symbolic and con-
crete execution along the program path, and using
concrete values to make feasibility decisions, instead
of invoking the theorem prover at every conditional.

Finally, in order to handle programs with loops (and
hence an infinite number of paths), we use depth
bounding and iteratively explore paths with larger
depths until the number of paths explored exceeds the
user supplied bound κ, as shown in Algorithm 2. The
input probabilistic program π is first transformed into
a nondeterministic program π∗, where all the sam-
pling statements (probabilistic choice) are converted
to nondeterministic choice (line 1). We maintain a
“frontier” F , which is the set of incomplete paths we
have explored so far, and a “depth bound” d , which
is a bound on the length of the paths we want to ex-
plore. We initialize F to a path which contains the
program counter of the first statement of π∗, denoted
σ0 (line 3), and d to an initial value d0 < κ (line
4). In the main loop of the algorithm (lines 5-13),
we progressively increase d by δ (line 11), and invoke
Execute to explore paths starting from the current
frontier F , bounded by depth d . The return value of
Execute is a pair (C ,F ), where C is a set of straight-
line programs corresponding to the set of complete
paths within the depth bound d , and F is the set of
incomplete paths whose depths exceed d . We accumu-
late the set of paths C in the variable Π (line 7), until
the cardinality of Π exceeds the user specified bound
κ (line 8).

The following conditions on the Explore procedure
ensure that the probability mass of straight-line pro-
grams in the tail of the sequence Π vanishes as we
explore an increasing number of programs.

Definition 1. Explore is a valid exploration proce-
dure if the sequence of straight-line programs Π gener-
ated by it satisfy the following properties.

1. Each πi ∈ Π is unique.

2. For any d, there exists an N , such that for all
n > N , |πn| > d, where |πn| is the number of
branches taken in the program π to generate πn.

Lemma 1. Definition 1 is a sufficient condition
for the sequence {πi} to have a probability mass∑∞

i=0 P (πi) that converges.

Proof. Suppose that the exploration procedure did not
satisfy the conditions of Definition 1. Then, there ex-
ists a d such that for every N , there is a i > N with
|πi| < d. As |πi| measures the number of branch condi-
tions taken, this quantity has a minimum of pd, where
p is the minimum branch probability, and is necessarily
finite. Thus, for all N , there exists an i > N such that
P (πi) > pd; in other words, if the conditions in Defini-
tion 1 do not hold,

∑∞
i=0 P (πi) does not converge by

the limit test.
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It is easy to see that the Explore procedure described
in Algorithm 2 is a valid exploration procedure. With
this definition of Explore, we are able to prove the
following theorem.

Theorem 1. Let Π = {πi} be the sequence of straight-
line programs returned by a valid exploration proce-
dure on a probabilistic program π. Let x be the ex-
pression computed by π. Then, when Eπ[x] exists, for
every ǫ > 0, there exists an N , such that for n > N ,
|Eπ[x]−

∑n

i=1 P (πi)Eπi
[x]| < ǫ.

Proof. For finite Π, Eπ[x] =
∑|Π|

i=1 P (πi)Eπi
[x] by def-

inition.

We now consider the case when Π is unbounded.
P (πi) is simply the product of the probabilities of each
branch taken along the path defined in πi. Let p be
the smallest branch probability; thus, p|πi| < P (πi) <
(1 − p)|πi|. In other words, P (πi) ∈ O((1 − p)|πi|).
Note also, that there are at most 2d paths of depth
d. In order for

∑
i P (πi) to converge, p < 1

2 (i.e., p
cannot be 1

2 ). From the condition that Eπ[x] is con-
vergent, we know that limi→∞ P (πi)Eπi

[x] → 0, or
Eπi

[x] ∈ o( 1
P (πi)

).

Now, to show the condition of the theorem, we prove
that the remainder,

∑N
i=n+1 P (πi)Eπi

[x] < ǫ. To do
so, let us first group together branches of equal depth,

N∑

i=n+1

P (πi)Eπi
[x] <

∞∑

d=d′

2dO((1 − p)d)o(p−d)

<

∞∑

d=d′

(2(1− p))d

< (2(1− p))d
′ 1

1− 2p
.

If we choose an n such that d′ > log((1−2p)ǫ)
log(2(1−p)) , then the

inequality is guaranteed to hold.

5 CONDITIONAL SAMPLING

WITH WEAKEST

PRECONDITIONS

In this section, we will focus on sampling from straight-
line programs containing conditions and describe the
Estimate procedure (line 4 in Algorithm 1). The con-
ventional approach to sampling from programs is rejec-
tion sampling (Pfeffer, 2007a, Goodman et al., 2008).
Unfortunately, this approach can be prohibitively ex-
pensive, particularly when the observations are low
probability events. Our main idea is to hoist observed
conditions using Dijkstra’s weakest preconditions (Di-
jkstra, 1976) in a straight-line program to the elemen-
tary probability distributions in it. Assuming that

Algorithm 3 Estimate(πi, κ)

1: Θ := ∅, Ω := ∅
2: τ := WP(πi, true)
3: for j = 1 to κ do

4: α := 1.0, β := 1.0
5: for l = 1 to lines(πi) do
6: if stmt(l, πi) is x ∼ E(θ̄) then
7: (w, x) := sample(E(θ̄)|τ [l])
8: α := α× w

9: β := β ×
PE(θ̄)(x)

PE(θ̄)|τ[l](x)

10: else

11: execute(πi, l)
12: end if

13: end for

14: Ω := Ω ∪ {(α, ret(πi))}
15: Θ := Θ ∪ {β}
16: end for

17: return (Θ̄, Ω̄)

the elementary distributions can be sampled from ef-
ficiently given these conditions, we can guarantee that
no sample is ever rejected. Algorithm 3 describes the
Estimate procedure for estimating θ and y (as de-
scribed in Section 3) for an input straight-line program
πi. The call to WP in Line 2 computes the weakest
precondition (defined formally in Figure 2) at every
program point, and is maintained as a map τ from
line number to the wp predicate. A property of this
predicate is that every program state (assignment of
variables to values) that satisfies it is guaranteed to
satisfy all the subsequent observations in the straight-
line program πi. Therefore, it follows that making a
random choice conditioned on the wp predicate at that
point, will ensure that samples never get rejected. Ta-
ble 1 illustrates the computation of the weakest pre-
condition for the example straight-line program from
Section 2. This entails pushing the predicate true from
the last line of the program to the first line using the
rules in Figure 2. We make two observations about
weakest preconditions and the way we use them : (1)
weakest preconditions are computed using substitu-
tions and they are inexpensive to compute, and (2)
weakest precondition computation only needs to hap-
pen once, irrespective of how many samples we wish
to draw from the program.

Next, Estimate iterates through a loop (lines 3–16)
κ times (a parameter that defines the number of sam-
ples). Line 4 initializes to parameter α and β to 1.0.
Lines 5–13 execute the program the following way. If
the program statement at line number l is a probabilis-
tic assignment x ∼ E(θ̄) (lines 6–9), then x is drawn
with the condition that it satisfies the wp predicate at
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that line number l (denoted by τ [l]). This conditional
sampling can be implemented by any importance sam-
pling algorithm sample over the elementary distribu-
tion E(θ). The result of such a sampling is the tu-
ple (w, x) where w is the importance weight (which is
equal to 1 if a true sample is drawn) and x is the vari-
able being assigned to (line 7). The parameters α and
β are updated on lines 8 and 9 respectively. On the
other hand, if l is not a probabilistic assignment, then
the statement at l is executed (line 11). Finally, the
sets Ω and Θ accumulate the samples and the weighted
average and average respectively over these sets is re-
turned by Estimate in line 17.

Theorem 2. Let πi be a straight-line probabilistic pro-
gram with conditions ϕ and let κ be the sampling pa-
rameter. Then Estimate(πi, κ) returns the correct
estimates (over the k samples) of the conditional prob-
ability of ret(π|ϕ) and the probability of the path asso-
ciated with πi.

Proof. We use importance sampling to estimate
ret(π|ϕ) and the path probability. Each sample re-

turned must be weighted by P (x)
Q(x) , where P (x) is the

true distribution, andQ(x) is the proposal distribution
from which the samples were drawn.

The w returned at each line x ∼ E(θ̄) correspond the

weight E(θ̄)

Q(θ̄)
, where an appropriate proposal distribu-

tionQmay be chosen to draw the conditioned samples.
Thus, the total weight associated with each sample will

be πi(x)
Q′(x) , where Q

′(x) is the combination of proposal

distributions from which the program was sampled.

The computation of P (ϕ) is taken as an expecta-
tion over all x. Thus, P (ϕ) =

∑
x I[ϕ(x)]P (x) =∑

x:ϕ(x) 1 × P (x) +
∑

x:¬ϕ(x) 0 × P (x), where I[ϕ(x)]
is the indicator function taking value 1 iff x satisfies
the condition ϕ. We exploit the fact that we only need
to compute the expectation over the x that satisfy ϕ
by using πi itself as the proposal distribution. Thus,

we require that the weights β be E[ P (x)
P (x|ϕ) ], which

is the quantity computed in lines 9 and 15 of Algo-
rithm 3.

6 EMPIRICAL EVALUATION

We evaluated our algorithm on several popular prob-
abilistic programs and compared performance against
the rejection sampling algorithm in Church (Goodman
et al., 2008). A brief summary of the programs and
their characteristics are presented in Table 2. We im-
plemented both algorithms in the F# programming
language. We used the theorem prover Z3 (de Moura
and Bjorner, 2008) to check constraints during sym-
bolic execution.

The results of experiments are summarized in Table 3.
The results show that our Qi algorithm is able to per-
form as well or better than Church’s rejection sampling
algorithm with far fewer samples (with corresponding
reduction in execution time). The actual marginals
(worked out analytically) are shown in the rows for
algorithm Oracle. For the Burglar Alarm example,
Qi was able to produce an exact solution. We also
note that Red Light Game has an infinite number of
paths. Qi produces good results due to the path or-
dering heuristic from Section 3, however we would like
to point out that the variance reported is inaccurate
because it does not consider unexplored paths.

7 DISCUSSION

We presented a new algorithm Qi which uses program
analysis techniques to efficiently perform sampling on
probabilistic programs. Our algorithm first considers
the probabilistic choices as nondeterministic, and uses
symbolic execution to generate feasible paths of the
program. Then, along each path of the program, we
hoist observations made backward using weakest pre-
condition computation. We weight the estimated value
computed along each path πi with the probability that
the path is executed and all the observations and con-
ditions are satisfied, and combine all the weighted es-
timates from all paths. If the program has a large
number or infinite number of paths, we show how to
pick a fixed number of paths such that we can bound
the error in estimation due to omitting paths.

Our work generalizes earlier work by Pfeffer (2007b)
on importance sampling. Pfeffer’s work presents sev-
eral structural heuristics (such as conditional checking,
delayed evaluation, evidence collection and targeted
sampling) to help make choices during sampling that
are less likely to get rejected by observations. The sec-
ond phase of our algorithm unifies and generalizes all
these heuristics using one concept – weakest precondi-
tions. This enables us to handle not only all the ex-
amples in Pfeffer’s paper using one technique, but also
enables us to handle examples with predicates such as
linear arithmetic, which are beyond the reach of Pf-
effer’s heuristics, but can be handled using weakest
preconditions and theorem provers. Further, there are
no analogs for path selection phase of our algorithm in
Pfeffer’s work. Using our symbolic execution, we are
able to efficiently enumerate paths, and also handle re-
cursive programs and programs with loops by carefully
choosing the order in which we explore paths.

Acknowledgements

We thank Selva Samuel for very helpful comments on
an earlier draft of this paper.



     160

Efficiently Sampling Probabilistic Programs via Program Analysis

NAME DESCRIPTION REFERENCE

Grass Model
Small model relating the probability of rain, having
observed a wet lawn.

(Kiselyov and Shan, 2009),

(Goodman et al., 2008)
Burglar Alarm Example given in Figure 2. Adapted from Pearl

Noisy OR
Given a DAG, each node is a noisy-or of its parents. Find
posterior marginal probability of a node, given observations

(Kiselyov and Shan, 2009)

Red Light Game
Planning-as-inference example in which the probability
of winning the game given the first action is modeled.
Notably, this program exhibits unbounded recursion.

(Goodman et al., 2008)

Table 2: Evaluated Programs.

NAME ALGORITHM SAMPLES (REJECTIONS) ESTIMATED VALUE TIME TAKEN(s)
Grass Model Qi 600 0.70107 ± 1e − 4 1.1
Grass Model Church 600 (940) 0.70391 ± 1e − 4 4.9
Grass Model Oracle - 0.7079 -
Burglar Alarm Qi 30 0.0743 ± 0 1.0
Burglar Alarm Church 200 (1925) 0.0675 ± 3e − 4 12.7
Burglar Alarm Oracle - 0.0743 -
Noisy OR Qi 2000 0.465 ± 1e − 4 1.9
Noisy OR Church 5000 (16573) 0.463 ± 3e − 4 84.3
Noisy OR Oracle - 0.4626 -
Red Light Game Qi 200 0.7683 ± 0 7.1
Red Light Game Church 200 (24732) 0.5985 ± 7e − 4 163.1
Red Light Game Oracle - 0.768 -

Table 3: Evaluation Results.
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