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Abstract

Approachability has become a central tool in the analysis of repeated games and online learning. A
player plays a repeated vector-valued game against Nature and her objective is to have her long-term
average reward inside some target set. The celebrated results of Blackwell provide a 1/1/n conver-
gence rate of the expected point-to-set distance if this is achievable, i.e., if the set is approachable.
In this paper we provide a characterization for the convergence rates of approachability and show
that in some cases a set can be approached with a 1/n rate. Our characterization is solely based on
a combination of geometric properties of the set with properties of the repeated game, and not on
additional restrictive assumptions on Nature’s behavior.

Introduction

Approachability goes back to the seminal paper of Blackwell (1956a) who considered a repeated
game between a player and Nature. The stage outcome is a vector-valued reward and Blackwell
provided sufficient conditions — that happened to be necessary in some cases — under which the
player can guarantee that, asymptotically, her average reward vector belongs to some fixed (convex)
target set. Such a set is then called approachable, and Blackwell also exhibited a strategy ensuring
that the rate of convergence is independent of the dimension of the space (although it depends on
the maximal norm of possible rewards) as, no matter the sequence of moves of Nature, the distance
at stage n of the average payoff to an approachable set is smaller than O(n_l/ ).

Approachability theory is now a standard tool in the analysis of repeated games. For example,
Kohlberg (1975) proved that it can be used to construct optimal strategies in a class of games with
incomplete information; see also Aumann and Maschler (1995); Mertens et al. (1994). It is also
widely studied in machine learning, as Blackwell (1956b) himself noticed that regret minimization,
introduced by Hannan (1957) earlier, can be easily described as a special instance of approachabil-
ity. The number of modifications, generalizations and improvements of his original arguments has
increased dramatically during the last years; see Hart and Mas-Colell (2001); Cesa-Bianchi and Lu-
gosi (2006); Abernethy et al. (2011); Perchet (2013) and references therein. One of the advantages
of approachability theory is that it allows to treat and solve not only usual regret minimization, but
also with extra assumptions (cost constraints, variable stage duration, etc.; see Mannor and Shimkin
(2008); Mannor et al. (2009); Perchet (2013)) as well as other online learning problems such as
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calibration (Dawid, 1982; Foster and Vohra, 1998; Foster, 1999; Mannor and Stoltz, 2010; Rakhlin
et al., 2011a).

Regret minimization has become a standard problem in the machine learning community. Much
research has been devoted to min-max rates of convergence; see Cesa-Bianchi et al. (2006); Piccol-
boni and Schindelhauer (2001); Lugosi et al. (2008); Bartok et al. (2011); Foster and Rakhlin (2012);
Perchet (2011b). These papers focus on the finite case, when the player and Nature have a finite
number of pure actions (although they might choose to play at random at some stages) either in full
monitoring (when rewards are observed) or in partial monitoring (when rewards are not observed,
but only some signals related to them are received by the player). These papers provide convergence
rate for the regret based solely on the geometry of both the payoff and monitoring mappings, and not
on extra assumptions imposed on Nature’s behavior, such as imposing her to change moves slowly
as in Rakhlin et al. (2011Db).

In this paper, we focus only on the full monitoring case when both player and Nature have finite
action spaces. For regret minimization a player can only guarantee that the regret is always 0 (when
there is a dominating action) or of the order of n~1/2 (in other cases). Since approachability theory
is more general than regret minimization and is already used to treat other online problems, we
are looking to identify the possible convergence rates to an approachable target set. Naively, one
could think that as for regret minimization there should be two possible rates: either the rate is 0
(when the set is approached with a single action) or that the rate is of the order of n~1/2, recovering
the result for regret minimization. It turns out that this conjecture is trivially incorrect as some
straightforward examples we provide below show convergence in the intermediate speed of n .
Notice that in more general regret minimization frameworks, for instance with exp-concave losses,
see Cesa-Bianchi and Lugosi (2006), this specific faster ?ate can also be the optimal one.

To sum up, Blackwell proved that the distance to any approachable sets decreases faster than
n~1/2 in some cases this is tight (as in regret minimization), yet sometimes convergence is proved
to occur at n 1. We thus call the later sets are fast approachable, in contrast to slow approachable
for the former sets, as a parallel to fast learning rates in other frameworks Steinwart and Scovel
(2005); Audibert and Tsybakov (2007).

Contributions. As a first step to classify sets to fast and slow approachable, we provide two
easy to describe and verify conditions under which convex sets are fast approachable. We then
proceed to the general results. We exhibit a general sufficient, geometric condition ensuring fast
approachability. We also investigate slow approachability by providing a sufficient condition (which
is unfortunately not the precise contraposition of the former one) under which Nature has a strategy
that guarantee that the convergence rate to the target set is not faster than n~ /2. We note that,
however, not being fast approachable might not be equivalent to being slow approachable (a property
related to the fact that a minmax is not always equal to the associated maxmin). For pedagogic
purposes, we present in this version simpler proofs of main results when the underlying space is of
dimension two and we point out how to generalize them to higher dimensions.

1. Model and definitions

Consider a vector-valued game between two players, a decision maker (or player) and Nature, with
respective finite action sets Z and 7, whose cardinalities are referred to as I and J. We denote by
d the dimension of the reward vector and equip R with the norm || - ||o. The payoff function of the
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player is a mapping 7 : Z x J — R%, which is multi-linearly extended to A(Z) x A(J), the set of
product-distributions over Z x J; the support of a probability distribution is denoted by supp(-).

At each round, player and Nature simultaneously choose their actions ¢,, € Z and j, € J
(according to probability distributions denoted by z,, € A(Z) and y,, € A(J)). At the end of a
round, the player observe j, (or equivalently in this framework r,, := 7 (i, jn))-

The following notation will be used. We denote by R the uniform ¢5 bound on 7 and, for every
n € IN and sequence {am, fmen, an = (1/n) Y _; am. A behavioral strategy o of the player is
a mapping from the set of his finite histories Upen (Z x J)" into A(Z); similarly, a strategy 7 of
Nature is a mapping from Uy, (Z x J)" into A(J). As usual, we denote by IP,, - the probability
induced by the pair (o, 7) onto (Z x J)°°.

Definition and some properties of approachability

A closed and convex C C R? is approachable if there exist a strategy o of the player such that, for
every € > 0, there exists some N € IN satisfying, for all strategies 7 of Nature:

PJ,T{HTLEN;dC(fn)E&}S&

where d¢ is the point-to-set distance to C. We call ¢ an approaching strategy of C. Conversely,
a convex set C is excludable if, for some & > 0, the complement of the J-neighborhood of C is
approachable by Nature.

Blackwell (1956a) (see also Mertens et al. (1994)) provided the following characterization of
approachable convex sets; satisfying it referred as being a B-set:

A set C C R is a B-set if and only if any containing half-space H C R (i.e., such
that C C H) is one-shot approachable, meaning that there exists z[H| € A(Z) such
that 7(z,y) € H no matter y € A(J).

This naturally leads to the so-called Blackwell’s approaching strategy. At stage n, let m,, denote
the projection of 7, onto C and consider the containing half-space H,, 1 whose defining hyperplane
is tangent to C at 7, (in other words, this hyperplane is perpendicular to 7,, — 7, at m,,), see Figure 1.
Blackwell’s strategy consists of playing accordingly to 2,11 = x[Hn+1] € A(Z).

Proposition 1 Blackwell’s approaching strategy of a B-set ensures that

Elde(mn)] < \/E[d3(7n)] < \2/12 and Py, {3n > N ;de (7y) > e} < 542% .

Proof. The proof follows from the following property

2
_ _ n _
A3 (Prs1) < [P —mn)* = ( 2”7“n—7rnH2+

(n+1)2 )2\Irn+1—wn\|2+2<fn—wn,Tnﬂ_ﬂn)‘

(n+1
Taking conditional expectation with respect to 7,, gives that

2 2
n 2 4R
5de(Tnt1) + CESIch

E[dg (Frs1)|7n] < mt1)2
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T(ZTnt1, 1)
r(Tn+1, J2)

Tn,

HnJrl

Figure 1: An illustration of Blackwell’s approaching strategy. At stage n + 1, the expected payoff
E[rp+1] = r(2n41, ) will be on the other side of #H,,41 from 7,,.

The first part of the result follows from the convexity of d¢(+). For the second part, an additional
martingale (or concentration inequality) argument is required; see Mertens et al. (1994). |

It turns out that this result holds also for non-convex sets. Yet, in the specific case of closed
convex sets, the primal characterization can be transformed into the following dual characterization
using von Neumann min-max theorem:

A convex set C € R? is approachable <= Vy € A(Y), 3z € A(Z), r(z,y) €C.

Note that this might be simpler to formulate and to check, but it does not provide an explicit ap-
proachability strategy and it is of no use for the scope of this paper.

Rates of convergence in approachability are space-independent, yet n~Y2 is not be optimal in

some instances, as illustrated by the following two examples where the convergence rate is O(1/n).
The first one consists in a simple control problem.

Example 1 Convergence of empirical distribution to probability distribution. Consider a one
player game (Nature has no role) where r(i) = (0,...,1,...,0) € Rl is the i-th unit vector and
C = {x*} where z* = (x73,...,2%)} € A(Z) is a fixed probability distribution.

Consider the strategy consisting in choosing action in+1 € arg max;er x; — (Tp); which is
non-negative since both x* and 7, belongs to A(Z). As a consequence, any coordinates i € T in
excess (i.e., such that x; < (7y,);) is not played, thus for those coordinates, (T,); — x; decreases
in 1/n. The sums over all coordinates of excesses and in debts (i.e., the quantity x; — (Ty,); it is
non-negative) has to be equal to 0, therefore the sums of debts also decreases at a rate of 1/n. This
implies that d¢(7,,) < %I

This result can be immediately generalized to the framework where r(i) € R? are arbitrary
vectors and C is any subset of the convex hull of {r(i),i € L}. |

The second example is related to calibration, see Dawid (1982); Foster and Vohra (1998).

Example 2 Easy calibration. Assume that 7 = T = {0,1}, 7(i,j) = ¢ — j and C = {0}. This
represent the framework where Nature chooses at each stage whether it rains j, = 1 or not and
the player predicts it. The overall objective is that the average prediction matches the empirical
frequency of rain. The simple strategy that selects i, = j,—1 ensures that |7,| = d¢(7,) = 1/n. B
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This motivates the description of geometric conditions under which some set C has fast rates of
approachability. Notice that we seek a characterization that relies uniquely on the shape of C and not,
for instance, on additional assumption on the behavior of Nature as, say, that she can only moves
slowly. We are concerned with the worst case scenario, also called the adversarial framework.

Definition 2 A closed and convex set is fast approachable, if the player has a strategy o such that,
for some constant k > 0 and against any strategy T of Nature,

E,., [dc(fn)} < % Vn e IN.

Of course, there exist approachable sets that are not fast approachable; one can think of regret
minimization Hannan (1957); Cesa-Bianchi and Lugosi (2006) or the following toy example. Con-
siderZ = J = {0,1}, r(i,j) = 1{i = j} and C = {1/2}. If Nature chooses i.i.d. j, = 1 with
probability 1/2 then, no matter the strategy of the player,

1 -1 21
E[dc(fn)] = 2n<nn/2 > ~\ = for even n,

which gives a 1//n rate. Notice, on the other hand, that in this example d¢(IE[7,]) = 0, thus fast
approachability is a concept much stronger than fast convergence of expected payoffs.

Similarly to fast approachability, we introduce now the concept of slow approachability. It is a
stronger requirement than not being fast approachable, as we ask for the existence of a strategy of
Nature that guarantees slow rates.

Definition 3 A closed, convex and approachable set is slow approachable, if Nature has a strategy
T such that, for some constant k' > 0 and against any strategy o of the player,

Eor |de(F)| =

Brief reminder of convex geometry.

As our concepts and proofs rely on geometric properties, we discuss in this section some well
known facts from convex geometry that will be used later, see e.g., Rockafellar (1997); Rockafellar
and Wets (1998); Ziegler (1995). We recall that NC¢(c*), the normal cone to C at ¢* € C, is an
upper-hemi continuous correspondence from C to R¢ that can be defined by

NCe¢(c*) = {q e Res.t. (q,c*) = rileac)((q, c)}

Let us denote by S¢ the unit sphere of R%. Since NCc(c*) is a cone, it can be written as
cone{Q(c*)} where cone(.) stands for the positive conic hull and Q(c*) C $¢ is the intersection
between extreme points of NC¢(c*) and S¢.

If C is a polytope with finite set of vertices V), then the family of normal cones {NC¢(v);v € V}
forms a polyhedral decomposition of R? (known as the normal fan) and every set Q(c*) is finite.
Moreover, for any z € ¢* + NC¢(c*) (that is projected onto C at ¢*) there exists a constant .+ > 0,
see e.g., Perchet (2011b), property 3 in Appendix A.1, such that

de(z) = ||z = e[| < 7er Jax (g, 2 = V).
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NCe(c*)

Figure 2: Normal cones are lines on a curved part of C (from c3 to c2), constant on a face (from co
to ¢* not included) and might have non-empty interior on kinks as at c*.

Normal cones are constant in the relative interior of a face F' of C, so we can define normal cones
to a face as the normal cones of any of its interior points, i.e., NC¢(F') = NC¢(v) for any v in the
relative interior of F. By definition, F' + NC¢(F) consists in all the points in R? that project onto
F. Therefore R? is covered by the union, over the faces of C, of the sets F' + NC¢(F) that forms a
polytopial complex (every intersection between two different set has empty interior), as in Figure 3.

‘ F +NCc(F)

Figure 3: The space R? is covered by the unions of sets v+NC¢(v) (in dark gray) and F+NC¢(F)
(in light gray). The whole polytope C is a face itself, so it is actually equal to C+NC¢(C).

Finally, given two closed and convex sets C and C’, we say that C’ is a §-shrinkage of C if there
exists some ¢ > 0 such that C contains a d-neighborhood of C’.

Refinements of the concepts of B-set

First, let us define for every ¢ € C and ¢ € NC¢(c) (or more generally for any ¢ € R?) the projected

zero-sum game G (¢, ¢) between the player (the minimizer) and Nature (the maximizer) with payoff
defined by

Ve € A(Z),Vy € A(T), U (z,y) = (r(z,y) = ¢,q).

Notice that if ¢ € NC¢/(c), then for every ¢’ € C, one has by definition of normal cone

r(z,y) = Uz, y) + (c -, q) > r(x,y). (1)
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Let Val(c, ¢) denote the value of G(c, ¢) and ValP""(c, ¢) the min-max in pure actions, i.e.,

Val(c,g) = min max r“Y(zx and ValP"¢(c, g) = min max r“(, §).
(c,q) L ma (z,9) (¢,q) = mir max (4,5)

For notational purpose and given ¢ € C and g € NC¢(c), we also denote by Z*(¢, g) C Z the union
of the support of every optimal mixed actions of the player in G7; the subset J*(c,q) C J is
defined similarly for Nature. The value of G(c, ¢) when both players are restricted to Z*(c, ¢) and
J* (e, q) is denoted by ValP™**(c, ¢) < ValP'¢(c, q). Notice that the equality holds for instance as
soon as there exists a completely mixed Nash equilibrium in G(c, q).

The B-set condition can be rephrased in terms of normal cones, yielding a geometric flavor:

Ve € C, Vg € NCe(c), Val(e,q) <0. 2
We now turn to the following geometric categorization of approachable B-sets.

Definition 4 A closed convex approachable set C is said to be a

— PURELY APPROACHABLE B-SET (PAB) if it satisfies the B-set condition in pure actions, i.e.,
Ve € C, Vg € NC¢(c), ValP™® (¢, q) < 0.

In particular, there exists a deterministic approaching strategy of C.

— FINITELY APPROACHABLE B-SET (FAB) if there exists 5 > 0 such that
Ve € C, Vg € NCe(c), if Val?™®(c,q) > 0 then Val(c,q) < —0.
— MIXED APPROACHABLE B-SET (MAB) if it satisfies
Jde € C, Jq € NC¢(c), ValP" (¢, q) > ValP""™ (¢, q) > 0 and Val(c,q) = 0.

We use the word finite in the second condition as it yields, by upper-hemi continuity of normal
cones, the existence of a finite set of mixed actions {x) € A(Z),k € K} such that, if the B-set
condition is not satisfied in pure action, then max, e () 7%(7k, y) < —9/2. It is not required that
xy, is optimal in these games G(c, ¢) but an approaching strategy can only play accordingly to x
and can therefore consists of alternating between a finite set of mixed actions.

Being (MAB) implies that it is necessary to randomize the actions and therefore obtain random
rewards in order to approach C. It is not the exact contraposition of (FAB) since the latter does
not require that ValP""* (¢, ¢) is also strictly positive. On the other hand, we will use the (MAB)
condition to deduce slow approachability, which is stronger than no-fast approachability.

Main results

Our overall objective is to categorize sets depending on their speed of approachability. This catego-
rization is provided in Theorem 6, but we state before the following simpler properties that might
be more practical (and its proof is simpler and gives insights for the general case).

Proposition 5 (Simple Characterization of Fast Approachability)

i. A set that contains an approachable 6-shrinkage is fast approachable.
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ii. A polytope that is a purely approachable B-set (PAB) is fast approachable.

For the sake of clarity, proofs of these intuitive result are deferred to the following section. Since
the case of d-shrinkable set is settled, we focus on minimal approachable sets, that is, sets that do
not contain any approachable strict subset. We refer to Spinat (2002) for a proof of their existence.

Theorem 6 Consider a minimal approachable closed and convex set C.
i. If C is a Finitely Approachable B-Set (FAB), then it is fast approachable.
ii. Reciprocally, if C a Mixed Approachable B-Set (MAB), then it is slow approachable.

This induces the following classification of minimal approachable convex sets:

Elde(7a)] =0 | © (3) < Elde(7a)) < O (2) | Elde(r)] = @ ()

Type of sets One-shot purely (FAB) sets (MAB)-sets

where one-shot purely means that there exists ¢ € Z such that g(i,j) € C, for all j € J. Notice
that if a set is not one-shot purely approachable then, immediately, 2 (n‘l) < E[d¢(7y,)]. Unfor-
tunately, the (MAB) condition (which corresponds to a maxmin of some problem), although quite
close, is not necessarily the contraposition of the (FAB) condition (which, on the other hand, is the
associated minmax). The full proof of Theorem 6, due to the length restrictions, is omitted; we only
point out key steps in Section 3.

2. Shrinkage and purely approachable polytopes: Proof of Proposition 5

We decompose the proof in three major steps: first we treat the first claim, then the second claim
in two dimension (in details, as it gives most of the intuitions of results) and we point out how to
generalize it to higher dimension.

2.1. Proof of the first claim

We shall prove that if C contains an approachable J-shrinkage, then it is fast approachable and
convergence rates can be explicitly stated as there exists a strategy o such that, against any strategy

7 of Nature,
2

Eqr |de ()] < f—n, ¥n € V.

Let C’ be any approachable d-shrinkage of C and, for any 2z ¢ C, let m¢/(z) denotes the projection
of z onto C'. By definition of §-shrinkage, ¢/ (2) + §(z — wer (2)) /|2 — 7rc/( )|| belongs to C, thus

B z—mer(z dC’
: (”C” EErE H)H

As a consequence, Blackwell’s approachability strategy of C’ ensures that

3 (m)} R?
46 = on’

hence C is fast approachable. |

dc(z) <

Eor |de(7n)] < Eor |
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2.2. Proof of the second claim in two dimensions

The proof relies on two main arguments (a part of the proof is dedicated to each of them). The first
one relies on geometrical properties of C: we prove that the whole space R? can be decomposed into
some polyhedra in which the same pure action can be played as an approaching strategy. And we
show how the distance to C is controlled in each of these polyhedra. In the second part, we define
some sequence 6,, € R that decreases in 1/n and such that d¢(7,,) < 6,,, which will give the result.

FIRST PART. Recall that the union over faces of C of sets of types '+ NC¢(F') and v+ NC¢(v)
covers R¢ (where F ranges over the set of 1-faces of C and v over its sets of vertices V). We are
going to prove that each of these sets can be further subdivided into polyhedra on which the B-set
condition is satisfied by the same pure action.

First we consider sets of types F' + NC¢(F'). Since, on such a F' + NC¢(F'), the normal cone
is constant and generated by a unique ¢ € $2, there exists i € Z such that:

max ,r(ip,j) — f) = maxr ir,j) <0, VfekF,
max {qr, (i, j) — f) = maxrt4 (ip, j) < f
hence the B-condition is satisfied by ¢y for every point in the relative interior of F'.
Moreover, for any point z € F' + NC¢(F), the distance to C is controlled as d¢(2) = (2, ¢f).

We now consider sets of type v* + NC¢(v*) for some vertex V* € V. Given an action i € Z,
we define the convex subset NCc(v*)? C NC¢(v*) by

NCe(v")' = {q € NCe(e), max r°7(i, j) = maxx (g, (i, j) — ) < 0}.
JjeT JjeJ

The convex set C is purely approachable (PAB), so the family {NC%(v*),i € Z} covers NCc(v*).
All sets NCé(v*) are cones so, up to considering intersection, that they can be assumed to form a
polyhedral complex of NC§(F'), i.e., any intersection between two different NC% (v*) has an empty
interior.

The cone NC%(v*) is an affine cone with vertex v*, generated by two directions ¢,q € $2.
We denote by ¢*(v*) the angle between ¢ and ¢’ which is, without loss of generality (up to divid-
ing NC%(v*) in two), smaller than 7/2. As a consequence, for any z € v* + NC¢(v*), simple
trigonometric considerations show that

ax (20 (2.q) max { (z z,q
o) < e gy ) < VA (s )

So we just proved the existence of a finite polyhedral decomposition {P;;¢ € £} of R? and
~v > 0 such that, on every polyhedron Py, the same iy € Z can be used to satisfy Blackwell’s
condition (this is illustrated in Figure 4), i.e.

Vz € PEv max <q,7"(ig,j) - ﬂc(2)> < O,Vj eJ.
g€

and such that

de(z) < ymax(q,z — mc(z)) := v 0¢(2). 3)
qe€Qy
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where Q, C $? is the set of directions that generate P, (the cardinality of Q is either one or two).
We introduced this mapping 6, for the following reason. Assume for the moment that -, always
stays in the same P, then playing at each stage the same i, ensures that 0;(7p41) < 5700(7n).
Hence both 6,(7,) and d¢(7,,) will decrease at a rate of 1/n.
We now generalize this idea when 7, can change from one F; to another. The proof relies on
the fact that the polyhedral decomposition also satisfies the following crucial property.

Figure 4: In this game, the player has two pure actions X and O and Nature 3 pure actions. Pos-
sible payoffs are represented, by crosses or circles. When 7, is in P, or P», Blackwell’s
strategy dictates to play X, while if if is in P3 and P to play O.

Define ¢ = min;es 4ey tan(¢?(v)/2). Consider some z € RY such that de(z) = 1 and denote
by ¢£* the index of a polyhedron P« that contains z. Once again, simple trigonometric computations
show that for every € R such that ||| < e, then z 4 7 belongs to a polyhedron P, which is a
neighbor of Py+. More importantly 6,(z + 1) = 0y« (z 4+ 1) or, stated otherwise, the maximum in
the definition of 6y (2 4 2’) is attained at the point in ¢ that belongs to both Q, and Qy«

SECOND PART. At stage n, we denote by £,, any polytope to which 7, belongs and we define
0,, := 0y, (7). We now claim that if n6,, > 2||r||le~!, then (n + 1)0,11 < nf,. This would
immediately entail the result as it implies that

_ e 141
de(F) < 0 < 2r ST 1),

It only remains to prove the claim. If nf, > 2|r|e~!, then d¢(7,) > 2||r|[e~!/n and since
|Fn+1 — Tnll < 2||r||/n, one has, after renormalization, that ||7,+1 — 70| /de(Tn) < e. As a
consequence,

00,1 (Trnt1) = 04, (Tny1) = max (q, Fpi1 — e (Fp1)) = max (q, Fpy1 — (7)),
q€Qy, q€Qy,

where the last equality comes from the fact that 7,1 and 7, must be in two neighbor polyhedra,
thus (g, 7, — Tn4+1) = 0. Therefore,

n 1 n
0 < 0 — n)) < 0
n+l > nt 1 n + n+1 qrél35i<%rn+1 7"'C(Tn» =+l n
as soon as 4,41 = %y, , as prescribed by Blackwell’s strategy. |

10
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2.3. Generalization to higher dimensions

The following issue emerges in dimension bigger than two. It is no longer true, with the previous
definition of € and 6y, that ,(z + 1) = 0y« (z + 1) (see the counter example in Figure 5); we have
to adapt those definitions as follows.

Let 0 be the smallest distance between a point v 4+ ¢ (for some vertex v € V; and ¢ € Q)y) and
any face of any Pp that does not contain it. Since there exists a finite number of such faces, § is
strictly positive. We define now the following subset of P:

We = { ST forw € 0R |\ B where 5, = U Ba.0)\ U (o

||UJ - 7TC(W)H q€Qy qE€EQy

where 0F; is the boundary of P, and B(q,0) is the open ball centered in ¢ of radius 6. This
construction is illustrated in Figure 5.

q B(Qv 5)

e ——

X %

Figure 5: A cut of the normal cone at some vertex v is represented here with two polyhedra P (the
triangle below) and P, (the one at the top). W; is the boundary of P;, minus balls centered
at vertices, plus these vertices (it is represented by the thick black lines and points). The
shaded area represents points that are closer to W7 N W5 (the horizontal line) than to
W5 \Wi; it is bounded away from P; by some positive distance. If we just consider for
W; the union of vertices, then the point ¢* will be closer to W5 than to W7, even though
it is in the interior of P} — notice that this property only happens when d > 2.

We now redefine the key mappings 6, : R? — R as follows:

Bu(2) = o = me2) = 5 (1 = e = i oo = (2 = mel)P)

We claim that there still exists a small € > 0 satisfying the crucial property that, for any pair
2,2 € Réwithz € §;:= {w € Pys.t.d(w,C) = 1} and z+2' € Py, if ||| < ethenOp(2+2') =
0s(z+2'). Stated otherwise, the claim is that the maximum in the definition of 6,/ (z +2’) is attained
at a point in Wy ¢ := W, N Wj.

Indeed, for € small enough, P, and P, must be neighbors, i.e., they share a common face Fy
(this is due to the fact that the distance from any S, to P that are not neighbors is lower bounded
by some positive quantity). By continuity of 6, the result follows from

" " o ” I
max {(w,z" —mwe(z")) > max (W, z —me(z Vz2' e SynN3y.
WEWEIOWZ< Y C( >> MIEWZI\WZ< Y C( )>, g E/
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This inequality is immediately true if 2" — mw¢(2") € Wy . It also holds in the remaining cases,
when 2" — 7¢(2") € B(q*,6/2) for some ¢* € Q; N Q. The most difficult configuration is when
2" belongs to the common face Fy 41, so we can restrict ourself to this case.

Recall that if ¢ and ¢’ are such that ||¢ — ¢*|| = ||¢’ — ¢*|| = 0 then every points in the segment
(¢*, q] is strictly closer to ¢ than to ¢’. Therefore, if the maximum in the left side term is not attained
at ¢*, it is attained at ¢* 4+ 8(¢* — (2" — 7w (2"))/||(¢* — (2" — mc(2"))|| € W; N W,. And the left
side term is, in that latter case, strictly greater than the right side term.

3. Insights and examples of the main result

It is clear that the condition (PAB) is not necessary, as it essentially relies on the finite polyhedral
decomposition of the space. So, if such a decomposition exists, but with respect to a finite set of
mixed strategies, then the result still holds, at least in expectation. In the following example, we
provide a minimal non-trivial approachable set that does not satisfy (PAB) but is fast approachable.

Example 3 Consider the game described in Figure 3. The player has 4 pure actions, cross, circle,
square and triangle. Nature has 5 actions, enumerated from 1 to 5. Payoffs associated to a pair
of action are represented by the associated symbol and a number (or two numbers if they generate
the same payoff) next to it. For instance, if the player chooses action “cross” and Nature chooses
action ”3”, the payoff is the top left corner of C. If they choose, on the contrary, action “circle” and
757, the payoff is located on the right of C. We also depict by a black filled triangle the expected
payoff induced by playing triangle and square with probability one half each.

The set C is minimum approachable, it requires at least one mixed action (for instance 1/2
triangle+1/2 square) to approach it, but whenever it has to be used, Equation (2) is not tight. In
particular, this example show that it is not correct to assume that, for a minimal convex approach-

able set, Equation (2) must hold with equality in every directions. |
ol;3
N A mli5
m3 A A3
3 1
x5
C
05
= 2
A2 A =2
m4 A A4
x2;4

Figure 6: A minimal approachable convex set, only in mixed actions.

Due to the length restriction, the quite technical and geometric proof of Theorem 6 is omitted.
Yet, we can describe the steps it follows:

1) A minimal convex set satisfying the (FAB) condition must be a polytope. This is solely due
to the fact that there exists a finite number of mixed actions needed to approach it.
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2) The proof of the second part of Proposition 5 can be extended with mixed actions, using
the core idea behind the proof of its first part: although averages of random i.i.d. variables
converge typically to their expectation at a rate of n /2, the distance to any J-neighborhood
of the latter is at a rate of n~'. Consider for instance Z ~ N (0, o2 /n), then indeed

E|d;-55(2)| = B[ (12] - 0)1{|2] = 8}] < \/fe;{p <_gif;>

and fast convergence occurs (it is actually exponentially fast in this example).

3) To prove the last part of Theorem 6, we consider a specific projected game G(c, ¢) such that
Val(c, q) = 0 but ValP™***(¢, ¢). In this game Nature has an optimal mixed action and the
variance when this action is played ensures that convergence cannot be faster than n~1/2.

We conclude this section by An intriguing and counter intuitive example.

Example 4 Consider any of the two games where payoff matrices are given by

L R L R
T|-2|1 and c\|1]-2
B2 -1 M| -1|2

and define the same convex target set C = {0} in both games. It is easy to show that C is slow
approachable in any of these games. Indeed, in the left one, Nature just has to play i.i.d. action L
with probability 1/3 and R with probability 2/3 and similarly in the right one. On the other hand,
to approach C, the player has to play at each stage T' and B (or C and M) with probability 1/2.

On the contrary, in a game where the player’s action set is {T, B,C, M} and Nature’s one is
{L, R} (basically, we concatenate the two payoff matrices by putting them one on top of the other)
then C becomes fast approachable. However, the strategy of the player is different. Indeed, playing
i.i.d. T and B (or similarly C and M) with the probability 1/2 only ensure slow approachability.

The strategy that consists in choosing T and M with probability 1/2 if 7, > 0 (so that the
expected payoff is 1/2) or B and C with probability 1/2 if 7, < 0 is fast approaching. Indeed,
when 7, > 0, it decreases at the rate of 1/n, and similarly if 7, < 0. |

4. Conclusion

We provided a partial answer to the question when is approachability fast and when is it slow? We
did that for the most natural model where one looks for approaching a target set in a vector-valued
game and the reward is deterministic. There are three variations of this model that are of interest.
The first is the case where the reward itself is stochastic. In this case, it is not hard to prove that a
(FAB) set is still fast approachable under mild conditions on the reward distribution. On the other
hand, a (PAB) set may be slow approachable. The second is the case where instead of looking at
the expected distance to the set, we consider the distance of the expectation to the set. In this case,
it is not hard to prove that a sufficient condition for fast approachability is if there exists a strategy
that uses finitely many mixed actions. The last variation is concerned with approachability with
partial monitoring (Perchet, 2011a; Mannor et al., 2011). In this last framework, determining even
slow (or worst case) convergence rates is still an open problem. Complete solutions to the rate of
approachability in all three variations are left for future research.
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