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Abstract

We study the complexity of approximate representation and learning of submodular functions over
the uniform distribution on the Boolean hypercube {0, 1}™. Our main result is the following struc-
tural theorem: any submodular function is e-close in /5 to a real-valued decision tree (DT) of depth
O(1/€?). This immediately implies that any submodular function is e-close to a function of at most
20(1/€*) yvariables and has a spectral ¢; norm of 2001/ <), Tt also implies the closest previous re-
sult that states that submodular functions can be approximated by polynomials of degree O(1/€?)
(Cheraghchi et al., 2012). Our result is proved by constructing an approximation of a submodular
function by a DT of rank 4/¢? and a proof that any rank-r DT can be e-approximated by a DT of
depth 2 (r + log(1/€)).

We show that these structural results can be exploited to give an attribute-efficient PAC learning
algorithm for submodular functions running in time O(nQ) -20(1/€") The best previous algorithm
for the problem requires n®(1/ <) time and examples (Cheraghchi et al., 2012) but works also in
the agnostic setting. In addition, we give improved learning algorithms for a number of related
settings.

We also prove that our PAC and agnostic learning algorithms are essentially optimal via two
lower bounds: (1) an information-theoretic lower bound of 2(1/ <*/*) on the complexity of learning
monotone submodular functions in any reasonable model (including learning with value queries);
(2) computational lower bound of n*(*/ <*/*) based on a reduction to learning of sparse parities with
noise, widely-believed to be intractable. These are the first lower bounds for learning of submodular
functions over the uniform distribution.
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1. Introduction

We study the problem of learning submodular functions and their (approximate) representation.
Submodularity, a discrete analog of convexity, has played an essential role in combinatorial opti-
mization (Lovasz, 1983). It appears in many important settings including cuts in graphs (Goemans
and Williamson, 1995; Queyranne, 1995; Fleischer et al., 2001), rank function of matroids (Ed-
monds, 1970; Frank, 1997), set covering problems (Feige, 1998), and plant location problems (Cor-
nuejols et al., 1977). Recently, interest in submodular functions has been revived by new applica-
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tions in algorithmic game theory as well as machine learning. In machine learning, several appli-
cations (Guestrin et al., 2005; Krause et al., 2006, 2008; Krause and Guestrin, 2011) have relied
on the fact that the information provided by a collection of sensors is a submodular function. In
algorithmic game theory, submodular functions have found application as valuation functions with
the property of diminishing returns (B. Lehmann and Nisan, 2006; Dobzinski et al., 2005; Vondrak,
2008; Papadimitriou et al., 2008; Dughmi et al., 2011).

Wide-spread applications of submodular functions have recently inspired the question of whether
and how such functions can be learned from random examples (of an unknown submodular func-
tion). The question was first formally considered by Balcan and Harvey (2012) who motivate it by
learning of valuations functions. Previously, reconstruction of such functions up to some multiplica-
tive factor from value queries (which allow the learner to ask for the value of the function at any
point) was also considered by Goemans et al. (2009). These works have lead to significant attention
to several variants of the problem of learning submodular functions (Gupta et al., 2011; Cheraghchi
etal., 2012; Badanidiyuru et al., 2012; Balcan et al., 2012; Raskhodnikova and Yaroslavtsev, 2013).
We survey the prior work in more detail in Sections 1.1 and 1.2.

In this work we consider the setting in which the learner gets random and uniform examples
of an unknown submodular function f and its goal is to find a hypothesis function h which e-
approximates f for a given € > 0. The main measures of the approximation error we use are the
standard absolute error or ¢;-distance, which equals E,.p[|f(z) — h(z)|] and ¢2-distance which
equals /E,p[(f(z) — h(z))?] (and upper-bounds the ¢ norm). This is essentially the PAC model
(Valiant, 1984) of learning applied to real-valued functions (as done for example by Haussler (1992)
and Kearns et al. (1994)). It is also closely related to learning of probabilistic concepts (which are
concepts expressing the probability of the function being 1) in which the goal is to approximate the
unknown probabilistic concept in ¢; (Kearns and Schapire, 1994). As follows from the previous
work (Balcan and Harvey, 2012), without assumptions on the distribution, learning a submodular
function to a constant ¢; error requires an exponential number of random examples. We therefore
consider the problem with the distribution restricted to be uniform, a setting widely-studied in the
context of learning Boolean functions in the PAC model (e.g. Linial et al. (1993); O’Donnell and
Servedio (2007)). This special case is also the focus of several other recent works on learning
submodular functions (Gupta et al., 2011; Cheraghchi et al., 2012; Raskhodnikova and Yaroslavtsev,
2013).

1.1. Our Results

We give three types of results on the problem of learning and approximating submodular function
over the uniform distribution. First we show that submodular functions can be approximated by
decision trees of low-rank. Then we show how such approximation can be exploited for learning.
Finally, we show that our learning results are close to the best possible.

Structural results: Our two key structural results can be summarized as follows. The first one
shows that every submodular function can be approximated by a decision tree of low rank. The rank
of a decision tree is a classic measure of complexity of decisions trees introduced by Ehrenfeucht
and Haussler (1989). One way to define the rank of a decision tree 7' (denoted by rank(7)) is as
the depth of the largest complete binary tree that can be embedded in T (see Section 2 for formal
definitions).
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Theorem 1 Ler f : {0,1}" — [0, 1] be a submodular function and € > 0. There exists a real-
valued binary decision tree T of rank at most 4/€* that approximates f within {3-error e.

This result is based on a decomposition technique of Gupta et al. (2011) that shows that a
submodular function f can be decomposed into disjoint regions where f is also a-Lipschitz (for
some o > (). We prove that this decomposition can be computed by a binary decision tree of
rank 2/c. Our second result is that over the uniform distribution a decision tree of rank r can be
e-approximated by a decision tree of depth O(r + log(1/¢)).

Theorem 2 Let T" be a binary decision tree of rank r. Then for any integer d > 0, T truncated at
depth d = %(7’ +log(1/e€)) gives a decision tree T<q such that, Pry[T(x) # T<q(z)] < e.

It is well-known (e.g. (Kushilevitz and Mansour, 1993)), that a decision tree of size s (i.e. with
s leaves) is e-close to the same decision tree pruned at depth log(s/€). It is also well-known that
for any decision tree of size s has rank of at most log s. Therefore Theorem 2 (strictly) generalizes
the size-based pruning. Another implication of this result is that several known algorithms for
learning polynomial-size DTs over the uniform distribution (e.g. (Kushilevitz and Mansour, 1993;
Gopalan et al., 2008)) can be easily shown to also learn DT of logarithmic rank (which might have
superpolynomial size).

Combining Theorems 1 and 2 we obtain that submodular functions can be approximated by
shallow decision trees and consequently as functions depending on at most 27°¥(1/€) variables.

Corollary 3 Let f : {0,1}" — [0, 1] be a submodular function and ¢ > 0. There exists a binary
decision tree T of depth d = O(1/€%) with constants in the leaves such that |T — f|ls < e. In
particular, T' depends on at most 20(1/€*) yariables.

We remark that it is well-known that a DT of depth d can be written as a polynomial of degree
d. This gives a simple combinatorial proof of the low-degree approximation of (Cheraghchi et al.,
2012) which is based on an analysis of the noise stability of submodular functions. In addition, in
our case the polynomial depends only on 20(1/ <*) variables, which is not true for the approximating
polynomial constructed in (Cheraghchi et al., 2012).

Algorithmic applications: We show that these structural results can be used to obtain a number
of new learning algorithms for submodular functions. One of the key issues in applying our ap-
proximation by a function of few variables is detecting the 20(1/ <*) variables that would suffice for
approximating a submodular function given random examples alone. While for general functions
this probably would not be an efficiently solvable problem, we show that a combination of (1) ap-
proximation of submodular functions by low-degree polynomials of low spectral (Fourier) 1 norm
(implied by the DT approximation) and (2) the discrete concavity of submodular functions allow
finding the necessary variables by looking at Fourier coefficients of degree at most 2.

Lemma 4 There exists an algorithm that given uniform random examples of values of a submodular
Sfunction f : {0,1}" — [0, 1], finds a set of 200/) yariables J such that there is a function f;
depending only on the variables in J and satisfying ||f — fill2 < €. The algorithm runs in time
n2log(n) - 2°(<) and uses log(n) - 2°/<*) random examples.

Combining this lemma with Corollary 3 and using standard Fourier-based learning techniques,
we obtain the following learning result in the PAC model.
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Theorem 5 There is an algorithm that given uniform random examples of any submodular function
f 40,1} — [0, 1], outputs a function h, such that ||f — hll2 < €. The algorithm runs in time
O(n?) - 200/<Y) and uses 200/<) log n examples.

In the language of approximation algorithms, we give the first efficient polynomial-time approx-
imation scheme (EPTAS) algorithms for the problem. We note that the best previously known
algorithm for learning of submodular functions within ¢;-error € runs in time n(/ <) (Cheraghchi
et al., 2012), in other words is a PTAS (this algorithm works also in the agnostic setting).

We also give a faster algorithm for agnostic learning of submodular functions, provided that we
have access to value queries (returning f(z) for a given point x € {0, 1}").

Theorem 6 Let C, denote the class of all submodular functions from {0, 1}" to [0, 1]. There is an
agnostic learning algorithm that given access to value queries for a function f : {0,1}" — [0, 1],
outputs a function h such that || f — h|l2 < A+ €, where A = mingec {||f — gll2}. The algorithm
runs in time poly(n, 21/52) and uses poly(logn, 21/62) value queries.

This algorithm is based on an attribute-efficient version of the Kushilevitz-Mansour algorithm
(Kushilevitz and Mansour, 1993) for finding significant Fourier coefficients by Feldman (2007).
We also show a different algorithm with the same agnostic guarantee but relative to the ¢;-distance
(and hence incomparable). In this case the algorithm is based on an attribute-efficient agnostic
learning of decision trees which results from agnostic boosting (Kalai and Kanade, 2009; Feldman,
2010) applied to the attribute-efficient algorithm for learning parities (Feldman, 2007).

Finally, we discuss the special case of submodular function with a discrete range {0,1,...,k}
studied in a recent work of Raskhodnikova and Yaroslavtsev (2013). We show that an adaptation
of our techniques implies that such submodular functions can be exactly represented by rank-2k
decision trees. This directly leads to new structural results and faster learning algorithms in this
setting. A more detailed discussion appears in Section B.

Lower bounds: We prove that an exponential dependence on ¢ is necessary for learning of sub-
modular functions (even monotone ones), in other words, there exists no fully polynomial-time
approximation scheme (FPTAS) for the problem.

Theorem 7 PAC-learning monotone submodular functions with range [0, 1| within {1-error of € >

. ~2/3 .
0 requires 2°4(¢ ) value queries to f.

Our proof shows that any function g of ¢ variables can be embedded into a submodular function
fq over 2t variables in a way that any approximation of f, to accuracy H(t*?’/ 2) would yield a 1/4
approximation of g. The latter is well known to require £2(2!) random examples (or even value
queries). This result implies optimality (up to the constant in the power of €) of our PAC learning
algorithms for submodular functions.

Further, we prove that agnostic learning of monotone submodular functions is computationally
hard via a reduction from learning sparse parities with noise.

Theorem 8 Agnostic learning of monotone submodular functions with range [0, 1| within {1-error
of € > 0 in time T'(n, 1/€) would imply learning of parities of size €~%/® with noise of rate 1 in time
poly(n, ﬁ) + 2T (n, e(lfCQW))for some fixed constant c.
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Learning of sparse parities with noise is a well-studied open problem in learning theory closely
related to problems in coding theory and cryptography. It is known to be at least as hard as learning
of DNF expression and juntas over the uniform distribution (Feldman et al., 2009). The trivial
algorithm for learning parities on k variables from random examples corrupted by random noise of
rate 1) takes time n* - poly( . The only known improvement to this is an elegant algorithm of

O-8F - poly(1=5;).
These results suggest that agnostic learning of monotone submodular functions in time nole /%)
would require a breakthrough in our understanding of these long-standing open problems. In par-

1
=)
Valiant (2012) which runs in time n

ticular, a running time such as 2P°LY(1/9)poly(n), which we achieve in the PAC model, cannot be
achieved for agnostic learning of submodular functions. In other words, we show that the agnostic
learning algorithm of Cheraghchi et al. (2012) is likely close to optimal. We note that this lower
bound does not hold for boolean submodular functions. Monotone boolean submodular functions
are disjunctions and hence are agnostically learnable in n°(°(1/€)) time. For further details on
lower bounds we refer the reader to Section C.

1.2. Related Work

Below we briefly mention some of the other related work. We direct the reader to (Balcan and
Harvey, 2012) for a detailed survey. Balcan and Harvey study learning of submodular functions
without assumptions on the distribution and also require that the algorithm output a value which
is within a multiplicative approximation factor of the true value with probability > 1 — € (the
model is referred to as PMAC learning). This is a very demanding setting and indeed one of the
main results in (Balcan and Harvey, 2012) is a factor-+/n inapproximability bound for submodular
functions. This notion of approximation is also considered in subsequent works (Badanidiyuru et al.,
2012; Balcan et al., 2012) where upper and lower approximation bounds are given for other related
classes of functions such as XOS and subadditive. The lower bound of Balcan and Harvey (2012)
also implies hardness of learning of submodular function with £; (or ¢2) error: it is impossible to
learn a submodular function f : {0,1}" — [0, 1] in poly(n) time within any nontrivial ¢; error
over general distributions. We emphasize that these strong lower bounds rely on a very specific
distribution concentrated on a sparse set of points, and show that this setting is very different from
the setting of uniform/product distributions which is the focus of this paper.

For product distributions, Balcan and Harvey show that 1-Lipschitz submodular functions of
minimum nonzero value at least 1 have concentration properties implying a PMAC algorithm pro-
viding an O(log %)—factor approximation except for an e-fraction of points, using O(%n logn) sam-
ples (Balcan and Harvey, 2012). In our setting, we have no assumption on the minimum nonzero
value, and we are interested in the additive ¢;-error rather than multiplicative approximation.

Gupta et al. (2011) show that submodular functions can be e-approximated by a collection
of n®(/€*) €2 Lipschitz submodular functions. Each e2-Lipschitz submodular function can be -
approximated by a constant. This leads to a learning algorithm running in time nO1/e) which
however requires value oracle access to the target function, in order to build the collection. Their
decomposition is also the basis of our approach. We remark that our algorithm can be directly
translated into a faster algorithm for the private data release which motivated the problem in (Gupta
etal., 2011). However, for one of their main examples which is privately releasing disjunctions one
does not need the full generality of submodular functions. Coverage functions suffice and for those
even faster algorithms are now known (Cheraghchi et al., 2012; Feldman and Kothari, 2013).
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In a concurrent work, Feldman and Kothari (2013) consider learning of coverage functions.
Coverage functions are a simple subclass of submodular functions which can be characterized as
non-negative combinations of monotone disjunctions. They show that over the uniform distribution
any coverage function can be approximated by a polynomial of degree log(1/¢) over O(1/€?) vari-
ables and also prove that coverage functions can be PAC learned in fully-polynomial time (that is,
with polynomial dependence on both n and 1/¢). Note that our lower bounds rule out the possibil-
ity of such algorithms for all submodular functions. Their techniques are different from ours (aside
from applications of standard Fourier representation-based algorithms).

2. Preliminaries

We work with Boolean functions on {0, 1}". Let U denote the uniform distribution over {0, 1}".

Submodularity and concentration: A set function f : 2V — R is submodular if f(A U B) +
f(ANB) < f(A) + f(B) forall A, B C N. In this paper, we work with an equivalent description
of set functions as functions on the hypercube {0, 1}".

For x € {0,1}", b € {0,1} and i € n, let x;.; denote the vector in {0,1}" that equals
x with i-th coordinate set to b. For a function f : {0,1}" — R and index i € [n] we define
Oif(x) = f(wie1)— f(xico). Afunction f : {0,1}" — R is submodular iff 0; f is a non-increasing
function for each i € [n]. A function f : {0,1}" — R is a-Lipschitz if 0, f(z) € [—a, a] for all
i€ n],xz e {0,1}"

It is known that 1-Lipschitz submodular functions satisfy strong concentration properties over
the uniform distribution ¢/ over {0, 1}" (Boucheron et al., 2000; Vondrak, 2010; Balcan and Harvey,
2012), with standard deviation O(y/E[f]) and exponentially decaying tails. For our purposes we
do not need the exponential tail bounds and instead we state the following simple bound on variance
(we include the proof for completeness in App. A.1).

Lemma 9 For any a-Lipschitz submodular function f : {0,1}" — R,

Varu[f] S 20 - Eu[f]

Absolute error vs. Error relative to norm: In our results, we typically assume that the values of
f(z) are in a bounded interval [0, 1], and our goal is to learn f with an additive error of €. Some prior
work considered an error relative to the norm of f, for example at most €| f||; (Cheraghchi et al.,
2012). In fact, it is known that for nonnegative submodular functions, || f|l; = E[f] > 1| f|ls and
hence this does not make much difference. If we scale f(x) by 1/(4]| f||1), we obtain a function
with values in [0, 1]. Learning this function within an additive error of € is equivalent to learning the
original function within an error of 4¢|| f||;.

Decision Trees: We use x1, Xa, . . ., X, to refer to n functions on {0, 1}" such that x;(z) = x;. Let
X = {x1,X2,...,X,}. We represent real-valued functions over {0, 1}" using binary decision trees
in which each leaf can itself be any real-valued function. Specifically, a function is represented as
binary tree 7" in which each internal node labeled by some variable x € X and each leaf ¢ labeled
by some real-valued function f; over variables not restricted on the path to the leaf. We refer to a
decision tree in which each leaf is labeled by a function from some set of functions F as F-valued.
If F contains only constants from the domain of the function then we obtain the usual decision trees.

For a decision tree T' with variable x,, € X at the root we denote by 1 (17) the left subtree of T’
(the right subtree, respectively). The value of the tree on a point x is computed in the standard way:
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if the tree is a leaf £ then T'(x) = fy(x7,)), where X|[v] is the set of indices of variables which are
not restricted on the path to £ and x|, is the substring of = containing all the coordinates in X [v].
If T'is not a leaf then T'(x) = T, (5)(x) where x,. is the variable at the root of 7'.

The rank of a decision tree 1" is defined as follows (Ehrenfeucht and Haussler, 1989). If T is a
leaf, then rank(7") = 0. Otherwise:

max{rank(Tp), rank(71)} if rank(Tp) # rank(T});
rank(Tp) + 1, otherwise.

rank(T) = {

The depth of a node v in a tree T’ is the length of the path the root of 7" to v. The depth of a tree
is the depth of its deepest leaf. For any node v € T we denote by T'[v] the sub-tree rooted at that
node. We also use 7' to refer to the function computed by 7.

Fourier Analysis on the Boolean Cube We define the notions of inner product and norms, which
we consider with respect to &. For two functions f,g : {0,1}" — R, the inner product of f and
g is defined as (f,g) = E,y[f(z) - g(z)]. The ¢; and ¢ norms of f are defined by ||f||; =
B[ f ()] and [[f]]2 = (Bpnarf()?])V/2 respectively.

For S C [n], the parity function yg : {0,1}" — {—1,1} is defined by yg(z) = (—1)2ies ¥,
The parities form an orthonormal basis for functions on {0, 1}" under the inner product product
with respect to the uniform distribution. Thus, every function f : {0,1}" — R can be written as
a real linear combination of parities. The coefficients of the linear combination are referred to as
Fourier coefficients of f. For f : {0,1}" — Rand S C [n], the Fourier coefficient f(S) is given
by f(S) = (f, xs). For any Fourier coefficient f(S5), |5| is called the degree of the coefficient.

The Fourier expansion of f is given by f(z) = > SCln] F(S)xs(x). The degree of highest
degree non-zero Fourier coefficient of f is referred to as the Fourier degree of f. Note that Fourier
degree of f is exactly the polynomial degree of f when viewed over {—1,1}" instead of {0,1}"
and therefore it is also equal to the polynomial degree of f over {0,1}". Let f : {0,1}" — R and
f . 217l 5 R be its Fourier Transform. The spectral ¢ norm of f is defined as

1Al =Y 1F(S)I:

SC[n]

We now describe the properties of the Fourier transform of partial derivatives. 0;f(x) =
23 55 F(S)xs\(iy (@), and 0y 5 f(x) = 43 g5, 5 f(S)Xs\ (i3 (z). A function is monotone (non-
decreasing) if and only if for all i € [n] and x € {0,1}", 9;f(x) > 0. For a submodular function,
0,5 f(z) < 0, by considering the submodularity condition for ;¢ j«0, Ti«0,j«1, Tic1,j«0, and
Ti1,5¢1-
Learning Models Our learning algorithms are in one of two standard models of learning. The first
one assumes that the learner has access to random examples of an unknown function from a known
set of functions. This model is a generalization of Valiant’s PAC learning model to real-valued
functions (Valiant, 1984; Haussler, 1992).

Definition 10 (PAC /;-learning) Let F be a class of real-valued functions on {0,1}" and let D be
a distribution on {0, 1}". An algorithm A PAC learns F on D, if for every ¢ > 0 and any target
function f € F, given access to random independent samples from D labeled by f, with probability
at least 2, A returns a hypothesis h such that E,p[|f(z) — h(z)|] < e. Ais said to be proper if
he F.
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While in general Valiant’s model does not make assumptions on the distribution D, here we only
consider the distribution-specific version of the model in which the distribution is fixed and is uni-
form over {0, 1}". The error parameter ¢ in the Boolean case measures probability of misclassifi-
cation. Agnostic learning generalizes the definition of PAC learning to scenarios where one cannot
assume that the input labels are consistent with a function from a given class (Haussler, 1992; Kearns
et al., 1994) (for example as a result of noise in the labels).

Definition 11 (Agnostic ¢;-learning) Let F be a class of real-valued functions from {0,1}" to
[0, 1] and let D be any fixed distribution on {0, 1}". For any function f, let opt(f, F) be defined as:

opt(f, F) = inf Expllg(z) — f(2)]]

An algorithm A, is said to agnostically learn F on D if for every ¢ > 0 and any function f :
{0,1}™ — [0, 1], given access to random independent examples of f drawn from D, with probability
at least % A outputs a hypothesis h such that

E,ollh(x) - f(2)]] < opt(f, F) + <.

The /5 versions of these models are defined analogously.

3. Approximation of Submodular Functions by Low-Rank Decision Trees

We now prove that any bounded submodular function can be represented as a low-rank decision tree
with a-Lipschitz submodular functions in the leaves. Our construction follows closely the construc-
tion of Gupta et al. (2011). They show that for every submodular f there exists a decomposition
of {0,1}" into n©1/?) disjoint regions restricted to each of which f is a-Lipschitz submodular.
In essence, we give a binary decision tree representation of the decomposition from (Gupta et al.,
2011) and then prove that the decision tree has rank O(1/c).

Theorem 12 Let f : {0,1}"™ — [0, 1] be a submodular function and o« > 0. Let F,, denote the set
of all a-Lipschitz submodular functions with range |0, 1] over at most n Boolean variables. Then f
can be computed by an F,-valued binary decision tree T of rank r < 2/cv.

We first prove the claim that decomposes a submodular function f into regions where f where
discrete derivatives of f are upper-bounded by « everywhere: we call this property c.-monotone
decreasing.

Definition 13 For o € R, f is a-monotone decreasing if for all i € [n] and x € {0,1}", 0;f(z) <
a.

We remark that a-Lipschitzness is equivalent to discrete derivatives being in the range [—«, «],
i.e. f as well as — f being a-monotone decreasing.

Lemma 14 For o > 0 let f : {0,1}" — [0,1] be a submodular function. Let M, denote the
set of all a-monotone decreasing submodular functions with range [0, 1] over at most n Boolean
variables. f can be computed by a M y-valued binary decision tree T of rank r < 1/cv.
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Proof The tree T is constructed recursively as follows: if n = 0 then the function is a constant
which can be computed by a single leaf. If f is a-monotone decreasing then T is equal to the leaf
computing f. Otherwise, if f is not a-monotone decreasing then there exists ¢ € [n] and z € {0, 1}"
such that 0; f(z) > «. In fact, submodularity of f implies that J;f is monotone decreasing and,
in particular, 9;f(0) > 9;f(z) > a. We label the root with x; and build the trees T and T}
for f restricted to points x such that x; = 0 and x; = 1, respectively (viewed as a function over
{0,1}"~1). Note that both restrictions preserve submodularity and a-monotonicity of f.

By definition, this binary tree computes f(x) and its leaves are a-monotone decreasing sub-
modular functions. It remains to compute the rank of 7". For any node v € T, we let X [v] C [n]
be the set of indices of variables that are not set on the path to v, let X[v] = [n] \ X[v] and let
y[v] € {0,1}X denote the values of the variables that were set. Let {0,1}*[*! be the subcube
of points in {0, 1}" that reach v, namely points z such that x x[,] = y[v]. Let flv](z) = T[v](x)
be the restriction of f to the subcube. Note that the vector of all 0’s, 0 in the {0, 1} subcube
corresponds to the point which equals y[v] on coordinates in X [v] and 0 on all other coordinates.
We refer to this point as z[v].

Let M = max,{f(z)}. We prove by induction on the depth of T'[v] that for any node v € T,

rank(T[v]) < w (1)

a
This is obviously true if v is a leaf. Now, let v be an internal node v with label x;. Let vy and vy
denote the roots of T'[v]g and T'[v]y, respectively. For vy, x[vg] = x[v] and therefore f[v](0) =
f[v0](0). By inductive hypothesis, this implies that
M — 0) M- 0
Tl < M =Sl _ M= 01O o

o [0

We know that 9; f[v](0) > «. By definition, 9; f[v](0) = f[v](0; . At the same

1) = )
time, f[v](0i1) = f(2[v]ic1) = f(z[v1]) = f[v1](0). Therefore, f[v1](0) > f[v](0) + c. By the
inductive hypothesis, this implies that

M = f[n](0) _ M~ f[e)(0) —a _ M~ f[2](0)

« - « «

rank[T[v1]] < —-1. 3)

Combining equations (2) and (3) and using the definition of the rank we obtain that equation (1)
holds for v.
The claim now follows since f has range [0, 1] and thus M < 1 and f(0) > 0. |

We note that for monotone functions Lemma 14 implies Theorem 12 since discrete derivatives of a
monotone function are non-negative. As in the construction in (Gupta et al., 2011), the extension
to the non-monotone case is based on observing that for any submodular function f, the function
f(x) = f(—x) is also submodular, where —z is obtained from z by flipping every bit. Further
details of the proof appear in App. A.2.

Approximation of Leaves An important property of the decision tree representation is that it de-
composes a function into disjoint regions. This implies that approximating the function over the
whole domain can be reduced to approximating the function over individual regions with the same
error parameter. As in (Gupta et al., 2011), we can use concentration properties of a-Lipschitz
submodular functions on the uniform distribution ¢/ over {0, 1}" (Lemma 9) to approximate each
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a-Lipschitz submodular functions by a constant. This gives the proof of Theorem 1 (the formal
details are in App. A.2).

4. Approximation of Low-Rank Decision Trees by Shallow Decision Trees

We show that over any constant-bounded product distribution D, a decision tree of rank r can be
e-approximated by a decision tree of depth O(r + log(1/¢€)). The approximating decision tree is
simply the original tree pruned at depth d = O(r 4 log(1/¢)).

For a vector 1 € [0,1]" we denote by D,, the product distribution over {0,1}", such that
Prp,[z; = 1] = p;. For a € [0,1/2] a product distribution D), is a-bounded if p € [a, 1 — a]™.
For a decision tree 7" and integer d > 0 we denote by 7<% a decision tree in which all internal nodes
at depth d are replaced by a leaf computing constant 0.

Theorem 15 (Theorem 2 restated) For a set of functions F let T' be a F-valued decision tree of
rank v, and let D, be an a-bounded product distribution for some o € (0,1/2]. Then for any
integer d > 0,

< T— a\d
EE[TJ(Q;) £ T(x) <271 (1 - 5) .

In particular, for d = | (r +log(1/€))/log(2/(2 — a))| we get that Prp, [T<%(z) # T(z)] < e.

Proof Our proof is by induction on the pruning depth d. If 7" is a leaf, the statement trivial since
T<%xz) = T(x) forany d > 0. Ford =0andr > 1,277 - (1 - %)0 > 1. We now assume that
the claim is true for all pruning depths 0, ...,d — 1.

At least one of the subtrees 7 and 7 has rank » — 1. Assume, without loss of generality that
this is Tp. Let x; be the label of the root node of 7.

Pr{T!(x) # T(x)] = (1 ) PrIT5 ! (@) # To(@)] + - PITE ! (@) # Ty (@)

By our inductive hypothesis,

and

EWQWH”WNSOMW“?@ZY1+MQFLQZY1
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For the uniform distribution we get error of at most € for d = (r + log(1/e))/log(4/3) < 3(r +
log(1/c))-
An immediate corollary of Theorems 15 and 1 is that every submodular function can be e-
approximated over the uniform distribution by a binary decision tree of depth O(1/¢2) (Corollary 3).
Kushilevitz and Mansour (1993) showed that the spectral /1 norm of a decision tree of size s is
at most s. Therefore we can immediately conclude that:

Corollary 16 Let f : {0,1}" — [0, 1] be a submodular function and € > 0. There exists a function
p:{0,1}" = [0,1] such that ||p — fl|a < e and ||p||; = 200/

5. Applications

In this section, we give several applications of our structural results to the problem of learning
submodular functions.

5.1. PAC Learning

In this section we present our results on learning in the PAC model. We first show how to find
20(1/€") variables that suffice for approximating any submodular function using random examples
alone. Using a fairly standard argument we first show that for any function f that is close to a
function of low polynomial degree and low spectral ¢; norm (which is satisfied by submodular
functions) variables sufficient for approximating f can be found by looking at significant Fourier
coefficients of f (the proof is in App. A.3)

Lemma 17 Let f : {0,1}" — [0, 1] be any function such that there exists a function p of Fourier
degree d and spectral {1 norm ||p||1 = L for which || f — pl|l2 < €. Define

J={i|3S;ie8,|S| <dand|f(S)| > €*/L}.

Then |J| < d- L?/€* and there exists a function p' of Fourier degree d over variables in J such that
If = pll2 < 2e

The second and crucial observation that we make is a connection between Fourier coefficient of
{i,j} of a submodular function and sum of squares of all Fourier coefficients that contain {7, j}.

Lemma 18 Let f : {0,1}" — [0, 1] be a submodular function and i,j € [n], i # j.

PN > 5 3 (FE)2

53,5

Proof

A5 DI = 1 Bul0:0;71] = B[00,/ 2 By [@:0,07] =9 2 3 (F($))*

Here, (a) follows from the basic properties of the Fourier spectrum of partial derivatives (see Sec. 2);
(b) is implied by second partial derivatives of a submodular function being always non-positive; and
(c) follows from |0;0; f| having range [0, 2] whenever f has range [0, 1]. [

11
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Lemma 17 implies that the set of indices I, = {7 | 35 > i, | f(S)] >~} satisfies the conditions
of Lemma 4 for some v = 2791/ <), Lemma 18 implies that one can find the variables in I, by
estimating degree 1 and 2 Fourier coefficients of f (to accuracy +2/2). This gives the proof of
Lemma 4 (details can be found in App. A.3).

Now given a set J that was output by the algorithm in Lemma 4 one can simply run the standard
low-degree algorithm of Linial et al. (1993) over variables with indices in J to find a linear combi-
nation of parities of degree O(1/¢2), e-close to f. Note that we need to find coefficients of at most
|J|00/€) < min{200/¢) nO(/e)} parities. This immediately implies Theorem 5.

5.2. Agnostic learning with value queries

Our next application is agnostic learning of submodular functions over the uniform distribution with
value queries. We give two versions of the agnostic learning algorithm one based on ¢; and the other
based on /5 error. We note that, unlike in the PAC setting where small ¢5 error also implied small ¢;
error, these two versions are incomparable and are also based on different algorithmic techniques.
The agnostic learning techniques we use are not new but we give attribute-efficient versions of those
techniques using an attribute-efficient agnostic learning of parities from (Feldman, 2007).

For the ¢5 agnostic learning algorithm we need a known observation (e.g. (Gopalan et al., 2008))
that the algorithm of Kushilevitz and Mansour (1993) can be used to obtain agnostic learning relative
to 2-norm of all functions with spectral #; norm of L in time poly(n, L, 1/€) (we include a proof in
App. A.4). We also observe that in order to learn agnostically decision trees of depth d it is sufficient
to restrict the attention to significant Fourier coefficients of degree at most d. We can exploit this
observation to improve the number of value queries used for learning by using the attribute-efficient
agnostic parity learning from (Feldman, 2007) in place of the KM algorithm. Specifically, we first
prove the following attribute-efficient version of agnostic learning of functions with low spectral
£1-norm (the proof appears in App. A.4).

Theorem 19 For L > 0, we define C¢ as {p(z) | |p|l1 < L and degree(p) < d}. There exists
an algorithm A that given ¢ > 0 and access to value queries for any real-valued f : {0,1}" —
[—1, 1], with probability at least 2/3, outputs a function h, such that ||f — h|la < A + ¢, where
A = mingyee, {|| f — pll2}. Further, A runs in time poly(n, L, 1/€) and uses poly(d,log(n), L,1/€)
value queries.

Together with Cor. 16 this implies Theorem 6.

Gopalan et al. (2008) give the ¢ version of agnostic learning for functions of low spectral ¢;
norm. Together with Cor. 16 this implies an ¢; agnostic learning algorithm for submodular functions
using poly(n, 21/ 62) time and queries. There is no known attribute-efficient version of the algorithm
of Gopalan et al. (2008) and their analysis is relatively involved. Instead we use our approximate
representation by decision trees to invoke a substantially simpler algorithm for agnostic learning
of decision trees based on agnostic boosting (Kalai and Kanade, 2009; Feldman, 2010). In this
algorithm it is easy to use attribute-efficient agnostic learning of parities (Feldman, 2007) (restated
in Th. 25) to reduce the query complexity of the algorithm. Formally we give the following attribute-
efficient algorithm for learning [0, 1]-valued decision trees.

Theorem 20 Let DT 1)(r) denote the class of all [0, 1]-valued decision trees of rank-r on {0, 1}".
There exists an algorithm A that given ¢ > 0 and access to value queries of any f : {0,1}" —

12
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{0, 1}, with probability at least 2/3, outputs a function h : {0,1}" — [0, 1], such that || f — h|1 <
A + € where A = mingEDT[071](T){|’f —glli}. Further, A runs in time poly(n,2",1/¢€) and uses
poly(logn, 2" 1/€) value queries.

Combining Theorems 20 and 1 gives the following agnostic learning algorithm for submodular
functions (the proof is in App. A.4).

Theorem 21 Let Cs denote the class of all submodular functions from {0,1}" to [0, 1]. There exists
an algorithm A that given € > 0 and access to value queries of any real-valued f, with probability
at least 2/3, outputs a function h, such that || f — h|[1 < A + ¢, where A = mingec {||f — gll1}-
Further, A runs in time poly(n, 21/62) and using poly(logn, 21/62) value queries.
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Appendix A. Omitted Proofs
A.1. Preliminaries

Proof [of Lemma 9] By the Efron-Stein inequality (see (Boucheron et al., 2000)),

Vary|[f ZEM [(0:)%] < = maXEu [10: f1] - ZE“ 10: f]] < - ZEU |0; f1] -

7,6 [n] 1€[n] ZE [n]

We can now use the fact that non-negative submodular functions are 2-self-bounding (Vondrak,
2010), and hence Zié[n] Ey[|0if]] = 2E$Nu[zi:f(m@ei)<f(x)(f(a:) —flxde)) <4Ey[f]. 1

A.2. Approximation of Submodular Functions by Low-Rank Decision Trees

Proof [of Theorem 12] We first apply Lemma 14 to obtain an M, -valued decision tree T” for f
of rank < 1/a. Now let £ be any leaf of 7" and let f[¢] denote f restricted to £. As before, let
X[{] C [n] be the set of indices of variables that are not restricted on the path to £ and let {0, 1}
be the subcube of points in {0, 1}" that reach /. We now use Lemma 14 to obtain an M, -valued
decision tree T} for f[¢] of rank < 1/a. We denote by —7} the tree computing the function Tj(—z).
It is obtained from T by swapping the subtrees of each node and replacing each function g(z) in a
leaf with g(—z). We replace each leaf ¢ of 7" by -7} and let T be the resulting tree. To prove the
theorem we establish the following properties of 7T'.

1. Correctness: we claim that T'(x) computes f(z). To see this note that for each leaf ¢ of T,
—Ty(z) computes Ty(—z) = f[¢](-z) = f[¢](z). Hence T'(z) = T'(x) = f(x).

2. a-Lipschitzness of leaves: by our assumption, f[¢] is an a-monotone decreasing function
over {0, 1}X and therefore 0; f[¢](z) > —a foralli € X[¢] and z € {0,1}*¥. This means
that for all i € X[¢] and z € {0,1}X14,

aifll)(z) = =i fll)(—2) < a. )

Further, let » be a leaf of 7, computing a function f[{][x]. By Lemma 14, f[{][x] is a-
monotone decreasing. Together with equation 4 this implies that m[/ﬁ}] is a-Lipschitz. In
—Ty, fl€][r](2) is replaced by f[/][x](—z). This operation preserves a-Lipschitzness and
therefore all leaves of T" are a-Lipschitz functions.

3. Submodularity of the leaf functions: for each leaf ¢, f[¢] is submodular simply because it is a
restriction of f to a subcube.
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4. Rank: by Lemma 14, rank(7”) < 2/« and for every leaf £ of T, rank(—T}) = rank(7}) <
1/c. As can be easily seen from the definition of rank, replacing each leaf of T’ by a tree of
rank at most 1/« can increase the rank of the resulting tree by at most 1/a. Hence the rank
of T'is at most 2/ .

We state the following lemma which allows the use of any loss function L.

Lemma 22 For a set of functions F, let T be an F-valued binary decision tree, D be any distri-
bution over {0,1}" and L : R x R — R be any real-valued (loss) function. For each leaf ¢ € T,
let D[{] be the distribution over {0,1}* that equals D conditioned on x reaching (; let gy be a
function that satisfies

E. pp [L (T[)(2), 9e(2))] < e.

Let T' be the tree obtained from T by replacing each function in a leaf { with the corresponding gy.
Then E,.p[L(T(x),T'(x))] < e.

Proof For aleaf ¢ € T, let y[¢] € {0,114 denote the values of the variables that were set on
the path to £. Note that the subcube {0,1}* corresponds to the points 2 € {0,1}" such that

zxi = yll].

E,p[L(T(z),T'(z))] = ZanD [L(T(2),T'(x)) | xx1q = yll]] - Pr_[zx}q = yld]]

z~D
(eT
= E.pp [L(T10(2), 90(2))] Pr [zxpg = yl]
(e
< Ze - Pr [zxig =yll]] = €.
=

Theorem 23 (Theorem 1 restated) Let f : {0,1}" — [0, 1] be a submodular function and ¢ >
0. There exists a real-valued binary decision tree of rank r < 4/€* such that |T — f||2

VEUl(T(z) — f(@))] < e

Proof Let T’ be the F,-valued decision tree for f given by Theorem 12 with o = ¢2/2. For
every leaf ¢ we replace the function 7"[/] at that leaf by the constant Ey/[T”[¢]] (here the uniform
distribution is over {0, 1}X¥) and let T be the resulting tree.

Cor. 9 implies that for any €2 /2-Lipschitz submodular function g : {0,1}™ — [0, 1], Vary[g] =
Eu((g — Eulg))?] < 25Eylg] < €% For every leaf £ € T’, T'[{] is ¢?/2-Lipschitz and hence,

Ey((T'[f](2) — T[0)(2))*] = B [(T'[0)(2) — By [T'[0)])%] < €.

By Lemma 22 (with L(a,b) = (a — b)?), we obtain that Ey/[(T'(z) — f(z))?] < €2. |
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A.3. Applications: PAC Learning
Proof [of Lemma 17] Let

S={S||S| < dand|f(5) = €/L}.

By Parseval’s identity, there are at most L?/e* sets in S. Clearly, .J is the union of all the sets in S.
Therefore, the bound on the size of J follows immediately from the fact that each set S € S has
size at most d.

Let p’ be the projection of p to the subspace of {x5 : S € S}, thatis p’ = Y ¢ s H(S)xs. Now
using Parseval’s identity we get that

If =pll3 =D (f(S) = 5(5))*.

SC[n]

Now we observe that for any S, 1£(S) = p(S)| < |f(S) — p/(S)| can happen only when S ¢ S in
which case p/(S) = 0 and [f(S)| < €*/L.
1(S9)| < 2|£(S)|; hence only when |p(S)| < 2€2/L. In this case,

(f(S) =2/ (9)? = (J(S) = B(5))* = 2f(S)B(S) — (B(S))* < 2f(S)(S) < 2p(5)| - €*/L .

Therefore,

N N R 62 62
7P~ -pl3 = S(F(S)~(9) ~(F(8)-p(S) < 2= S~ Ip(S)] < - [1pls = 26
S S

This implies that || f — p/||3 < 3€2. |

Lemma 24 (Lemma 4 restated) There exists an algorithm A that given € > 0 and access to random
examples of a submodular f : {0,1}" — [0, 1], with probability at least 5/6, finds a set of indices
J, of size at most 200/) such that there exists a function g : {0,1}" — R that depends only on
variables in J and satisfies || f — g2 < €. The algorithm runs in time n?log(n) - 200/<*) and uses
log(n) - 2°0/<*) random examples.

Proof The proof of Lemma 24 relies on two simple observations. The first one is that Lemma 17
implies that the set of indices I, = {i | 35 3 i,|f(S)| > ~} satisfies the conditions of Lemma 24
for some v = 2-0(1/e%),

Now if i € I, then either | f({i})| > ~ or, exists j # , such that for some S’ 3 4, , | f(S)| > 7.
In the latter case ZSEM(]?(S))2 > ~2. By Lemma 18 we can conclude that then | f ({7, j})| > 2+2.

This suggests the following simple algorithm for finding J. Estimate degree 1 and 2 Fourier
coefficients of f to accuracy v2/2 with confidence at least 5/6 using random examples (note that
v < 1/2 and hence degree-1 coefficients are estimated with accuracy at least /4. Let f(S) for
S C [n] of size 1 or 2 denote the obtained estimates. We define

7={i13j e W 1F({i. 51 = 3%/2}
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If the estimates are correct, then clearly, I, C J. At the same time, J contains inly indices which
belong to a Fourier coefficient of magnitude at least v and degree at most 2. By Parseval’s identity,
7] < 2] fI3/7* = 200/,

Finally, to bound the running time we observe that, by Chernoff bounds, O(log(n)/v*) =
log(n) - 201/ ) random examples are sufficient to obtain the desired estimates with confidence of
5/6. The estimation of the coefficients can be done in n? log(n) - 20(/<*) time. [

A.4. Applications: Attribute-efficient Agnostic Learning

In this section we prove Theorems 6 and 21. We first describe the attribute-efficient weak agnostic
parity learning from (Feldman, 2007).

Theorem 25 There exists an algorithm WP, that given an integer d, > 0 and § € (0, 1], access
to value queries of any f : {0,1}" — [—1,1] such that | f(S)| > 0 for some S, |S| < d, with
probability at least 1 — 6, returns S', such that |f(S")| > 0/2 and |S'| < d. Wp(d,6,d) runs in
O (nd?0=21log (1/6)) time and asks O (d*log?n - 0=2log (1/0)) value queries.

Using WP we can find a set S of subsets of [n] such that (1) if S € S then |[f(S)| > 6/2 and
|S| < d; (2)if |[f(S)| > @and|S| < dthen S € S. The first property, implies that | S| < 4/62. With
probability 1—6, S can be found in time polynomial in 1/6? and the running time of WP (d, 6, 46 /62).
With probability at least 1 — 4, each coefficient in S can be estimated to within 6 /4 using a random
sample of size O(log (1/8)/6%). This gives the following low-degree version of the Kushilevitz-
Mansour algorithm (Kushilevitz and Mansour, 1993).

Theorem 26 There exists an algorithm AEF'T, that given an integer d, @ > 0 and 6 € (0, 1], access
to value queries of any f : {0,1}" — [—1, 1], with probability at least 1 — 6, returns a function h
represented by the set of its non-zero Fourier coefficients such that

1. degree(h) < d;
2. forall 8 C [n] such that | f(S)| > 6 and |S| < d, h(S) # 0;
3. forall S C [n), if | f(S)| < 6/2 then h(S) = 0;
4. if h(S) # 0 then | f(S) — h(S)| < 6/4.
AEFT(d,0,0) runs in O (nd?0~21log (1/6)) time and asks O (d? log?n - 0~ 2log (1/6)) value queries.
We now show that for § = €2/(2L), AEFT agnostically learns the class

¢ = {p(x) | [|p]l, < L and degree(p) < d} .

Lemma 27 For L > 0,¢ € (0, 1) and integer d, let f : {0,1}" — [—1,1] and h :— R be functions
such that for 6 = €2/(2L),

1. degree(h) < d;
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2. forall S C [n] such that | f(S)| > 6 and |S| < d, h(S) # 0;
3. forall S C [n), if | f(S)| < 0/2 then h(S) = 0;

4. if h(S) # 0 then | f(S) — h(S)| < 6/4.
f=hllz2<|[f—gllz+e

Proof We show that for every S C [n],

Then for any g € C¢,

. R . ) 2.1
(F(8) ~ h(S))? < (F(5) ~ a(8)* + 20 - [a($)] = (£(5) ()2 + s
First note that this would immediately imply that
2 14 2.5
1= hI3= 30 (FS) ~ b)) < 3 (F(8) a2 + I gz <ol

SCln) SCln)
<\f—gls+€ < (If —gllz+e)>

To prove equation (5) we consider two cases. If 2(S) = 0, then either |S| > d or |f(S)| < 0. In the
former case §(S) = 0 and therefore equation (5) holds. In the latter case:

(f(S) = h(5))* = (f(5))? < (F(5) = §(5)* +21f ()] - 1§(S)| < (F(S) = §(5))* +26-|3(5)| -

In the second case (when i(S) # 0), we get that |£(S)| > 6/2 and |f(S) — h(S)| < 0/4.
Therefore, either [§(S)| < |£(S)]/2 and then (f(S) — §(5))% > (F(S))2/4 > 62/16 or |§(S)| >
|£(S)]/2 > 6/4 and then 26 - |§(S)| > 62/2. In both cases,

@\3%

(f(S) = h(8))* < == < (F(S) = 3(5))* +26 - 1§(5)] -

Theorem 19 is a direct corollary of Theorem 26 and Lemma 27.
The proof of Theorem 21 relies on agnostic learning of decision trees. We first give an attribute-
efficient algorithm for this problem.

Theorem 28 Let DT (r) denote the class of all Boolean decision trees of rank-r on {0,1}". There
exists an algorithm A that given ¢ > 0 and access to value queries of any f : {0,1}" — {0, 1},
with probability at least 2/3, outputs a function h : {0,1}" — {0, 1}, such that Pry/[f # h] <
A + ¢ where A = mingepr ) {Prylf # gl}. Further, A runs in time poly(n,2",1/¢) and uses
poly(logn, 2" 1/€) value queries.

Proof We first use Theorem 15 to reduce the problem of agnostic learning of decision trees of rank
at most 7 to the problem of agnostic learning of decision trees of depth 3 (r + log (2/€)) with error
parameter ¢/2. In (Feldman, 2010) and (Kalai and Kanade, 2009) it is shown that a distribution-
specific agnostic boosting algorithm reduces the problem of agnostic learning decision trees of size
s with error € = ¢/2 to that of weak agnostic learning of decision trees invoked O(s?/€"?) times.
It was also shown in those works that agnostic learning of parities with error of €'/(2s) gives the
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necessary weak agnostic learning of decision trees. Further, as can be easily seen from the proof, for
decision trees of depth < d it is sufficient to agnostically learn parities of degree < d. In our case
the size of the decision tree is < 2% = (27! /€)%/2. We can use WP algorithm with error parame-
ter € /(2s) > €'/2/ 2%+5 and degree d, to obtain weak agnostic learning of decision trees in time
poly(n,2",1/¢) and using poly(logn, 2", 1/¢€) value queries. This implies that agnostic learning of
decision trees can be achieved in time poly(n, 2", 1/¢) and using poly(logn, 2", 1/¢€) value queries.
|

From here we can easily obtain an algorithm for agnostic learning of rank-r decision trees with
real-valued constants from [0, 1]. We obtain it by using a simple argument from (Feldman and
Kothari, 2013)" that reduces agnostic learning of a real-valued function g to agnostic learning of
boolean functions of the form gg(x) = “g(x) > 0” (note that every g : {0,1}" — [0, 1], is e-
close (in ¢; distance) to ¢'(z) = >ic|1/e] Yie(x)). We now observe that if g can be represented
as a decision tree of rank r, then for every 6, gy can be represented as a decision tree of rank
r. Therefore this reduction implies that agnostic learning of Boolean rank-r decision trees gives
agnostic learning of [0, 1]-valued rank-r decision trees. The reduction runs the Boolean version 2/¢
times with accuracy ¢/2 and yields the proof of Theorem 20.

Appendix B. Learning Pseudo-Boolean Submodular Functions

In a recent work, Raskhodnikova and Yaroslavtsev (2013) consider learning and testing of submod-
ular functions taking values in the range {0, 1, ..., k}. The error of a hypothesis in their framework
is the probability that the hypothesis disagrees with the unknown function (hence it is referred to as
pseudo-Boolean). For this restriction they give a poly(n) - |Oklogk/€)_time PAC learning algorithm
using value queries.

As they observed, error € in their model can also be obtained by learning the function scaled to
the range {0, 1/k, ..., 1} with ¢ error of €/k (since for two functions with that range E[| f — h|] <
¢/k implies that Pr[f # h] < ¢€). Therefore our structural results can also be interpreted in their
framework directly. We now show that even stronger results are implied by our technique.

The first observation is that a ﬁl/:}-LipSChitZ function with the range {0,1/k, ..., 1} is a con-
stant. Therefore Theorem 12 implies an exact representation of submodular functions with range
{0,1,...,k} by decision trees of rank < |2k 4 2/3| = 2k with constants from {0,1/k,...,1} in
the leafs. We note that this representation is incomparable to 2k-DNF representation which is the
basis of results in (Raskhodnikova and Yaroslavtsev, 2013).

We can also directly combine Theorems 12 and 15 to obtain the following analogue of Corollary
3.

Theorem 29 Ler f : {0,1}" — {0,1,...,k} be a submodular function and € > 0. There exists a
{0,1, ..., k}-valued decision tree T of depth d = 5(k + log (1/€)) such that Pry[T # f] < e In
particular, T depends on at most 2°F /€ variables and ||T||y < 2k - 2°F /€.

These results improve on the spectral norm bound of € (*1og k/€) from (Raskhodnikova and Yaroslavt-
sev, 2013). In a follow-up (independent of this paper) work Blais et al. (2013) also obtained an

1. Simpler reduction for PAC learning is well-known, e.g. (Hardt et al., 2012).
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approximation of discrete submodular functions by juntas. They prove that every submodular func-
tion f of range of size k is e-close to a function of (klog(k/€))?*) variables and give an algorithm
for testing submodularity using (klog(1/€))?®*) value queries. Note that our bound has a better
dependence on k but worse on € (the bounds have the same order when € = k).

As in the general case, these structural results can be used to obtain learning algorithms in
this setting. It is natural to require that learning algorithms in this setting output a {0,1,...,k}-
valued hypothesis. We observe that the algorithm in Theorem 20 can be easily modified to return
a{0,1/k,...,1}-valued function when it is applied for learning {0, 1/k, ..., 1}-valued functions.
This is true since the proof of Theorem 20 (see Section A.4 discretizes the target function and
reduces the problem to learning of Boolean functions. {0, 1/k, ..., 1}-valued functions are already
discretized. With this exact discretization the output of the agnostic algorithm is a sum of k£ Boolean
hypotheses, and in particular is a {0,1/k, ..., 1}-valued function. This immediately leads to the
following algorithm for agnostic learning of {0, 1, ..., k}-valued submodular functions.

Theorem 30 Let C* denote the class of all submodular functions from {0,1}" to {0,1,...,k}.
There exists an algorithm A that given ¢ > 0 and access to value queries of any f : {0,1}" —
{0,1,...,k}, with probability at least 2/3, outputs a function h with the range in {0,1,... k},
such that Ey[|f — h|] < A + ¢ where A = mingcor{Ey(|f — gl|}. Further, A runs in time
poly(n, 2% 1/¢) and uses poly(logn, 2% 1/¢) value queries.

This improves on poly(n) - k?(k10gk/€)_time and queries algorithm with the same guarantees which

is implied by the spectral bounds in (Raskhodnikova and Yaroslavtsev, 2013). We remark that the
guarantee of this algorithm implies PAC learning with disagreement error (since for integer valued
hypotheses ¢;-error upper-bounds the disagreement error). At the same time the guarantee is not
agnostic in terms of the disagreement error” (but only for ¢-error).

The structural results also imply that when adapted to this setting our PAC learning algorithm
in Theorem 5 leads to the following PAC learning algorithm in this setting.

Theorem 31 There exists an algorithm A that given € > 0 and access to random uniform examples
of any f € CF, with probability at least 2/3, outputs a function h, such that Pry[f # h] < e
Further;, A runs in time O(n?) - 20(k*+10g”(1/6)) gng yses 20(F*+log*(1/€)) log n examples.

For learning from random examples alone, previous structural results imply only substantially
weaker bounds: (poly(n¥,1/¢) in (Raskhodnikova and Yaroslavtsev, 2013)).

Finally, we show that the combination of approximation by a junta and exact representation by a
decision tree lead to a proper PAC learning algorithm for pseudo-Boolean submodular functions in
time poly(n) - 20(k*+klog(1/c)) using value queries. Note that, for the general submodular functions
our results imply only a doubly-exponential time algorithm (with singly exponential number of
random examples).

Theorem 32 Let CF denote the class of all submodular functions from {0,1}" to {0,1,..., k}.
There exists an algorithm A that given € > 0 and access to value queries of any f € Cf, with
probability at least 2 /3, outputs a submodular function h, such that Pr[f # h] < e. Further, A runs
in time poly(n, ok?+klog 1/€) and uses poly(logn, ok?+klog 1/€) value queries.

2. In (Raskhodnikova and Yaroslavtsev, 2013) it was mistakenly claimed that the application of the algorithm of Gopalan
et al. (2008) gives agnostic guarantee for the disagreement error.
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Proof [Outline] In the first step we identify a small set of variables J such that there exists a function
that depends only on variables indexed by J and is ¢/3 close to f. This can be achieved (with
probability at least 2/3) by using the algorithm in Lemma 24 (with bounds adapted to this setting)
to obtain a set of size poly (2" /¢). Now let U  represent a uniform distribution over {0, 1}” and U5
represent the uniform distribution over .J = [n] \ J. Let g be the function that depends only on
variables in J and is €/3 close to f. Then,

Prif(z) # 9(@)) = Banyyy | Pr [f(4:2) # 9(y,0))| < ¢/3.

By Markov’s inequality, this means that with probability at least 1/2 over the choice of z from
{0,137, Pryay, [f(y, 2) # g(y,0)] < 2¢/3 and hence Pryas, weai;[f (v, 2) # f(y,w)] < e In
other words, a random restriction of variables outside of J gives, with probability at least 1/2, a
function that is e-close to f. As before we observe that a restriction of a submodular function is a
submodular function itself. We therefore can choose z randomly and then run the decision tree rep-
resentation construction algorithm on f(y, z) as a function of y described in the proof of Theorem
12. It is easy to see that the running time of the algorithm is essentially determined by the size of
the tree. A tree of rank 2k over |.J| variables has size of at most |.J|?* (Ehrenfeucht and Haussler,
1989). Therefore with probability at least 2/3 - 1/2 = 1/3, in time poly(n, 2" +#1081/¢) and using
poly(logn, ok?+klog1/ ©) value queries we will obtain a submodular function which is e-close to f.
As usual the probability of success can be easily boosted to 2/3 by repeating the algorithm 3 times
and testing the hypothesis. |

Appendix C. Lower Bounds
C.1. Computational Lower Bounds for Agnostic Learning of Submodular Functions

In this section we show that the existence of an algorithm for agnostically learning even monotone
and symmetric® submodular functions (i.e. concave functions of 3" z;) to an accuracy of any € > 0
in time n°(/<*"*) would yield a faster algorithm for learning sparse parities with noise (SLPN from
now) which is a well known and notoriously hard problem in computational learning theory.

We begin by stating the problems of Learning Parities with Noise (LPN) and its variant, learning
sparse parities with noise (SLPN). We say that random examples of a function f have noise of rate
7 if the label of a random example equals f(z) with probability 1 — 1 and — f () with probability
n.

Problem C.1 (Learning Parities with Noise) For nn € (0,1/2), the problem of learning parities
with noise 1 is the problem of finding (with probability at least 2/3) the set S C [n], given access
to random examples with noise of rate n of parity function xs. For k < n the learning of k-sparse
parities with noise 1) is the same problem with an additional condition that |S| < k.

The best known algorithm for the LPN problem with constant noise rate is by Blum et al. (2003)
and runs in time 20("/1°87)  The fastest known algorithm for learning k-sparse parities with noise
7 is a recent breakthrough result of Valiant (2012) which runs in time O(n0'8kpoly(ﬁ)).

3. In this context, we call a function f : {0, 1}" — R symmetric if f(z) depends only on }_ ;. This is different from
the notion of a symmetric set function, which usually means the condition f(S) = f(S5).
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Kalai et al. (2008) and Feldman (2012) prove hardness of agnostic learning of majorities and
conjunctions, respectively, based on correlation of concepts in these classes with parities. In both
works it is implicit that if for every set S C [n], a concept class C contains a function fg that has
significant correlation with xg (or ?;(S )) then learning of parities with noise can be reduced to
agnostic learning of C. We now present this reduction in a general form.

Lemma 33 Let C be a class of functions mapping {0, 1}" into [—1, 1]. Suppose, there exist vy > 0
and k € N such that for every S C [n],
\}E(S )| > ~. If there exists an algorithm A that learns the class C agnostically to accuracy € in
time T'(n, %) then, there exists an algorithm A’ that learns k-sparse parities with noise n < 1/2 in

time poly(n, ﬁ) +2T'(n m)

Proof Let yg be the target parity with |S| < k. We run algorithm A" with e = (1 — 27)~/2
on the noisy examples and let h be the hypothesis it outputs. We also run algorithm A’ with ¢ =
(1 — 2n)~/2 on the negated noisy examples and let A’ be the hypothesis it outputs.

Now let fg € C be the function such that \E(S )| > 7. Assume without loss of generality that
?;(S) > ~ (otherwise we will use the same argument on the negation of fg). Let N7 denote the
distribution over noisy examples.

For any function f : {0,1}" — [-1,1],

E( )l f (@) = yll = (L= m)Eenud|f(2) = x5(2)[] + nEeu[|f () + x5 (2)]]

= (1 = nEzulxs(z)(xs(z) = f(@))] + nEeulxs(@)(xs(z) + f(2))
=1+ (1—-2n)f(S). (6)

This implies that

E(, o[l fs(@) — yl] = 1+ (1= 2)fs(S) > 1+ (1 - 2n)y.

By the agnostic property of A with e = (1 — 2n)/2, the returned hypothesis » must satisfy
E(yyonnllh(@) —yl] 2 1+ (1 = 2n)y — (1 = 2n)7/2 > 14 (1 — 2n)y/2.

By equation (6) this implies that 2.(S) > ~/2.

We can now use the algorithm of Goldreich and Levin (1989) (or a similar one) algorithm to
find all sets with a Fourier coefficient of at least /4 (with accuracy of +/8). This can be done in
time polynomial in n and 1/ and will give a set of coefficients of size at most O(1/+?%) which
contains S. By testing each coefficient in this set on O((1 —27)~2log (1/7)) random examples and
choosing the one with the best agreement we find S. |

We will now show that there exist monotone symmetric submodular functions that have high
correlation with the parity functions. Since the functions we are dealing with are going to be sym-
metric, we make the convenient definition of weight of any = € {0, 1}".

Definition 34 (Weight (wg)) For any x € {0,1}", the weight of x over a subset S C [n] of coor-
dinates is defined as ws(x) = Y ;g ;.
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Notice that this is the Hamming weight of the associated string in {0, 1}" and is always an integer
between 0 and |.S|.

Our correlation bounds for monotone symmetric submodular functions will depend on the fol-
lowing well-known observation which we state without proof.

Fact C.1 (Symmetric Submodular Functions from Concave Profiles) Ler p : {0,1,...,n} :—
[0, 1] be any function such that,

VO<i<n—2p(i+1)—p@)>pli+2)—p(+1).

Let fp : {0,1}" — [0,1] be a symmetric function such that fy(x) = p(wp(z)). Then f is
submodular.

Conversely, for any submodular f : {0,1}" — [0, 1], let py : {0,1,...,n} :— [0, 1] be the profile
of f defined by Vi p(i) = ﬁ Zx:w[n] (2)=i f(zx). Then, for every

0<i<n—2pp(i+1)—pp(i) 2 psrli+2) —psli +1).

We will need the following well known formula for the partial sum of binomial coefficients in
our correlation bounds.

Fact C.2 (Alternating Binomial Partial Sum) For everyn,r, k € N,

So(p) ()

Jj=0

Lemma 35 (Correlation of Monotone Submodular Functions with Parities) Let S C [n] such

that |S| = s for some s € [n]. Then, there exists a monotone symmetric submodular function
Hg : {0,1}" — [0,1] such that Hg depends only on coordinates in S and |(xs, Hs)| = Q(s3/?).

Remark 36 Observe that for any submodular function f : {0,1}° — [0, 1], the correlation with
the parity X s depends only on the profile of f, ps : {0,1,...,n} — [0, 1],

Vi,pf(i)z(nl) S ).

i) pwg(z)=i

That is, iffj {0,1}% — [0,1] is defined by f(z) = ps(ws(x)) for every x € {0,1}", then
(fyxs) = (f,xs). Thus for finding submodular functions with large correlation with a given
parity, it is enough to focus on symmetric submodular functions.

Proof Notice that the parity on any subset S C [n] of variables at any input z € {0,1}" is
computed by xs(z) = (—1)*s®), We will now define a symmetric submodular function Rg :
{0,1}° — [0,1] and then modify it to construct a monotone symmetric submodular function
Hg : {0,1}® — [0,1] that has the required correlation with the associated parity ygs. It is easy
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to verify that the natural extension of Rg and Hg to {0, 1}"(from {0, 1}*), that just ignores all the
coordinates outside .S, is submodular and thus it is enough to construct functions on {0, 1}7.

The definition of Rg will vary based on the cardinality of S. If S is such that s = 2k for some
k € N, let Rg for each S C [n] be defined as follows:

On the other hand, if S is such that s = 2k — 1 for some k& € N, define:

wsla), ws(z)
1— %’ wg ()

Rs(x) =

Notice that with this definition, Rg : {0,1}" — [0, 1] and has its maximum value exactly equal
to 1. Further, since Rg can be seen to be defined by a concave profile, Fact C.1 guarantees that Rg
is submodular. We will now compute the correlation of y g with Rg. We will first deal with the case
when | S| is even.

Let s = 2k for some k& € N.

(Rs.xs)= g > Rs(@)xs(a)

z€{0,1}2k
k . 2k .
:2%';:0:(1.)(—1)k+i:§k+l<i>(—1)(1— )

Substituting j = 2k — ¢

Using the partial sum formula from Fact C.2 gives:

2 1 2k —1
R = (-1 = —
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Now suppose s = 2k — 1 for some k € N.

<RS,XS>=2T1,1 > Rs(z)xs()

x€{0,1}2k—1
k—1 . 2%k—1 .
1 2k — 1 S 2k — 1 , 1—k+1
=" -1) -1 - —--
g 2 () ot X ()-S5
Substituting j =2k — 1 — ¢
k . k—1 .
1 2k 4 2k -1 =1
= . 1) 2 — 1y
221 Z(z‘)( Vs < j >( VT
1=0 7=0
k-1
1 1 2k —1 ,
22k—1F _ 1 Z( ] >( )

J=0

Again, using the partial sum formula from Fact C.2 gives:

1 1 [2k—2
_ (_1\k+1 [
(Rs:xs) = (1" 555 k;_1<k—1)

In either case, we now obtain that |(Rg, xs)| = Q(k:?) = Q(s%s)
For the remaining part of the proof, we need to define the function Hg. We obtain Hg by a
natural “monotonization” of Rg. Thus, if s = 2k, let Hg be defined as:

ws®) - g(z) < k
1 wg(x) >k

Hg(x) = {
On the other hand, if S is such that s = 2k — 1 for some k£ € N, define:

ws(z) _
Rs(:c):{ ero ws(@) < k-1

1 wsle) >k

Notice again that Hg : {0,1}° — [0,1] and Hg is submodular by Fact C.1. To obtain a lower
bound on |(xs, Hs)|, Hg can be seen as the average of a monotone linear function and Rg, that is,
if s = 2k, Vo, H(z) = L (Rs(z) + “8%)) and if s = 2k — 1, Va, Hg(z) = L (Rs(x) + 49, 1t
is now easy to obtain a lower bound on the correlation of y g with Hg.

For s = 2k, ) .
_ 2 ws
(xs,Hs) = 2<X57RS> + 2<st - )-
For s = 2k — 1, ) .
ws
Hg) = - ~(xs, 5.
(xs, Hs) = 5{xs, Bs) + 5(xs, —7)

Finally, observe that for any s = |S|, (xs, ws(z)) = 37 () (=1) i = s3>0 (2] (-1) i =
0. This immediately yields the required correlation.

Combining this result with Theorem 33, we now obtain the following reduction of SLPN to agnos-
tically learning monotone submodular functions:
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Theorem 37 (Theorem 8 restated) If there exists an algorithm that agnostically learns all mono-
tone submodular functions with range [0, 1] to {1 error of € > 0 in time T'(n, 1/€) then there exists
an algorithm that learns (e ~2/3)-sparse parities with noise of rate 1 < 1/2 in time poly(n, 1/ (e(1—
2n))) + 27 (n, ¢/e(1 — 2n)) for some fixed constant c.

Proof Consider all the monotone submodular functions Rg for every S C [n], |S] < k = ¢ 2/3,
Then, |(xs, Hs)| = Q(k=3/2) = Q(e) by Lemma 35. Thus, using v = () in Theorem 33 we
obtain the claim. |

C.2. Information-Theoretic Lower Bound for PAC-learning Submodular Functions

In this section we show that any algorithm that PAC-learns monotone submodular functions to
accuracy € must use 202(e™*%) examples. The idea is to show that the problem of learning the class
all boolean functions on k variables to any constant accuracy can be reduced to the problem of
learning submodular functions on 2¢ = k + [log k] + O(1) variables to accuracy O( —3). Any
algorithm that learns the class of all boolean functions on k variables to accuracy 1/4 requires at
least ©(2*) bits of information. In particular at least that many random examples or value queries
are necessary.

Before we go on the present the reduction, we need to make a quick note regarding a slight
abuse of notation: In the lemma below, we will encounter uniform distributions on hypercubes of
two different dimensions. We will, however, still represent uniform distributions on either of them
by U (with the meaning clear from the context).

Lemma 38 Let f : {0,1}* — {0, 1} be any boolean function. Lett > 0 be such that (Qtt) > 2k >
(zt 2) (thus 4-2F > (2;) > 2F). There exists a monotone submodular function h, : {0,1}?* = [0,1]
such that:

1. h can be computed at any point € {0,1}?" in at most a single query to f and in time O(t).

2. Let o = 222‘/ = 0(1). Given any function g : {0,1}?" — R that approximates h, that is,
Esul|h(z) — g(2)|] < o 557, there exists a boolean function f:{0,1}% — {0,1} such
that By[|f () — f(x )H < eand f can be computed at any point z: € {0, 1}¥, with a single
query to g and in time O(t).

Proof We first give a construction for the function h. It will be convenient first to define another
function & : {0,1}* — [0,1] and then modify it to obtain h. Recall that for any = and S C [2t],
ws(z) = Y ;cq 5(x; + 1). The function h would be the same as the function Hg defined in the
proof of Lemma 35.

() :{ wppy(@)/t wpy(e) <t

1 Wat) (l’) >

We will now define h using hand f. The key idea is that even if we lower the value of h at any
x with wygy(z) = k by 2%, the resulting function remains submodular. Thus, we embed the boolean

function h by modifying the values of h at only the points in the middle layer (wp,(7) = ?).

28



LEARNING SUBMODULAR FUNCTIONS USING LOW-RANK DTS

Lets = (%). Let My = {x € {0,1}* | wyy(z) = t} and My, = {y € {0,1}*} and s > 2~
Let 8 : My — Mo be an injective map of M}, into My, such that both 8 and B~ (whenever it
exists) can be computed in time O(t) at any given point. Such a map exists, as can be seen by
imposing lexicographic ordering on My, and M}, and defining 5(x) for x € My, to be the element
in M, with the same position in the ordering as that of x. For each z € {0, 1}%, let h be defined
by:

h(z)  wpy(z) #1
hz) = (1-— 2%) Wiy (v) =t, B~ () exists and f(B~1(z)) =0
N 1 wioy(x) =t, B (x) exists and f(B~(x)) =1
1 otherwise

Notice that given any z € {0,1}? the value of h(z) can be computed by a single query to
f. Further, observe that & is monotone and A is obtained by modifying ~ only on points in Mo,
and by at most 3, which ensures that for any z < y such that wigy (7) < wiag (y), h(w) < h(y).
Moreover, My forms an antichain in the partial order on {0, 1}" and thus no two points in My are
comparable. This proves that i is monotone.
Suppose, now that g : {0, 1} — R is such that E,y[|h(z) — g(z)]] < a - 7

Define g : {0,1}?* — {0, 1} so that

Vo € {0,1}%, gy(x) = sign (g(z) — (1 — (1/4t))).

Finally, let f : {0,~1}k — {0, 1} be such that for every z € {0, 1} f(x) = go(B(x)).
Now, E,y[|f(x) — f(2)|]] = 2 Pro~y[f(z) # f(x)]. Forany x € {0, 1},

F@) # f(2) = |g(B(x)) — h(B(x))| > 4%

Using that Pry([3 ! (y) exists | = 5. we have:

Eynaullay) — b(y)]) > 57 Prl5~ () existsand (571 (0) # (5 (9)
1 « ~
= gﬁEamqu@) — f(@)]]

Using Eyu[lg(y) = (y)[] < o - 5557, we have: Epvy[|f(z) = f(2)]] < e

Finally, we show that A is submodular for any boolean function f. It will be convenient to
switch notation and look at input = as the indicator function of the set S, = {x; | x; = 1}. We will
verify that for each S C [n]and ¢,j ¢ S,

h(SUA{i}) = h(S) = h(S U {i, j}) = h(SU{37}). )

Notice that / is submodular, and h = k on every z such that wyy () # t. Thus, we only need to
check Equation (7) for S, i, j such that | S| € {t —2,¢ — 1,t}. We analyze these 3 cases separately:

1. |S] =t — 1 : Notice that h(S) = h(S) = 1 — (1/t) and h(S U {4,5}) = h(S U {i,5}) =
1. Also observe that for any f, h(S U {i}) and h(S U {j}) are at least (1 — ). Thus,
h(SU{i}) +h(SU{j}) >2— 1 = h(S) +h(SU{i,j}).
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2. |S|=t—2:Inthiscase, h(S) = (1 —(2/t)) and h(SU{i}) = h(SU{j}) = (1 — (1/t)).
In this case, the maximum value for any f, of h(S U {i,5}) = 1. Thus,

h(S) + h(SU{i,j}) <2 = (2/t) = h(SU{i}) + h(S U {7}).

3. |S| =t :Here, h(SU{i}) = h(SU{j}) = h(SU{i,j}) = 1. The maximum value of h(S)
for any f is 1. Thus,

B(S) + h(S U{i.j}) < 2 = h(S U{i}) + h(S U {j}).

This completes the proof that 4 is submodular. |

We now have the following lower bound on the running time of any learning algorithm (even
with value queries) that learns monotone submodular functions.

Theorem 39 (Theorem 7 restated) Any algorithm that PAC learns all monotone submodular func-
tions with range [0, 1] to {1 error of € > 0 requires 22(™*) yalue queries to f.

Proof We borrow notation from the statement of Lemma 38 here. Given an algorithm that PAC
learns monotone submodular functions on 2¢ variables, we describe how one can obtain a learning
algorithm for all boolean function on & variables with accuracy 1/4. Given an access to a boolean
function f : {0,1}* — {0, 1}, we can translate it into an access to a submodular function h on 2t
variables with an overhead of at most O(t) = O(k) time using Lemma 38. Using the PAC learning
algorithm, we can obtain a function g : {0,1}?* — R that approximates / within an error of at most
a- 8?% and Lemma 38 shows how to obtain f from g with an overhead of at most O(t) = O(k)
time such that f approximates f within i. Choose k = [¢~2/3] and t as described in the statement
of Lemma 38. Now, using any algorithm that learns monotone submodular functions to an accuracy

of € > 0 we obtain an algorithm that learns all boolean functions on k = [¢~2/3] variables to accu-
racy 1/4. [
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