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Abstract

We provide new results concerning label efficient, polynomial time, passive and active learning of

linear separators. We prove that active learning provides an exponential improvement over PAC

(passive) learning of homogeneous linear separators under nearly log-concave distributions. Build-

ing on this, we provide a computationally efficient PAC algorithm with optimal (up to a constant

factor) sample complexity for such problems. This resolves an open question of (Long, 1995,

2003; Bshouty et al., 2009) concerning the sample complexity of efficient PAC algorithms under

the uniform distribution in the unit ball. Moreover, it provides the first bound for a polynomial-time

PAC algorithm that is tight for an interesting infinite class of hypothesis functions under a general

and natural class of data-distributions, providing significant progress towards a longstanding open

question of (Ehrenfeucht et al., 1989; Blumer et al., 1989).

We also provide new bounds for active and passive learning in the case that the data might not

be linearly separable, both in the agnostic case and and under the Tsybakov low-noise condition. To

derive our results, we provide new structural results for (nearly) log-concave distributions, which

might be of independent interest as well.

Keywords: Active learning, PAC learning, ERM, nearly log-concave distributions, Tsybakov low-

noise condition, agnostic learning.

1. Introduction

Learning linear separators is one of the central challenges in machine learning. They are widely

used and have been long studied both in the statistical and computational learning theory. A seminal

result of (Blumer et al., 1989), using tools due to (Vapnik and Chervonenkis, 1971), showed that d-

dimensional linear separators can be learned to accuracy 1− ǫ with probability 1− δ in the classic

PAC model in polynomial time with O((d/ǫ) log(1/ǫ)+(1/ǫ) log(1/δ)) examples. The best known

lower bound for linear separators is Ω(d/ǫ+(1/ǫ) log(1/δ)), and this holds even in the case in which

the distribution is uniform (Long, 1995). Whether the upper bound can be improved to match

the lower bound via a polynomial-time algorithm is been long-standing open question, both for

general distributions (Ehrenfeucht et al., 1989; Blumer et al., 1989) and for the case of the uniform

distribution in the unit ball (Long, 1995, 2003; Bshouty et al., 2009). In this work we resolve this

question in the case where the underlying distribution belongs to the class of log-concave and nearly

log-concave distributions, a wide class of distributions that includes the gaussian distribution and

uniform distribution over any convex set, and which has played an important role in several areas

including sampling, optimization, integration, and learning (Lovasz and Vempala, 2007).

We also consider active learning, a major area of research of modern machine learning, where

the algorithm only receives the classifications of examples when it requests them (Dasgupta, 2011).
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Our main result here is a polynomial-time active learning algorithm with label complexity that is

exponentially better than the label complexity of any passive learning algorithm in these settings.

This answers an open question in (Balcan et al., 2007) and it also significantly expands the set

of cases for which we can show that active learning provides a clear exponential improvement in

1/ǫ (without increasing the dependence on d) over passive learning. Remarkably, our analysis for

passive learning is done via a connection to our analysis for active learning – to our knowledge, this

is the first paper using this technique.

We also study active and passive learning in the case that the data might not be linearly sep-

arable. We specifically provide new improved bounds for the widely studied Tsybakov low-noise

condition (Mammen and Tsybakov, 1999; Bartlett et al., 2005; Massart and Nedelec, 2006), as well

as new bounds on the disagreement coefficient, with implications for the agnostic case (i.e., arbitrary

forms of noise).

Passive Learning In the classic passive supervised machine learning setting, the learning algorithm

is given a set of labeled examples drawn i.i.d. from some fixed but unknown distribution over the

instance space and labeled according to some fixed but unknown target function, and the goal is to

output a classifier that does well on new examples coming from the same distribution. This setting

has been long studied in both computational learning theory (within the PAC model (Valiant, 1984;

Kearns and Vazirani, 1994)) and statistical learning theory (Vapnik, 1982, 1998; Boucheron et al.,

2005), and has played a crucial role in the developments and successes of machine learning.

However, despite remarkable progress, the basic question of providing polynomial-time algo-

rithms with tight bounds on the sample complexity has remained open. Several milestone results

along these lines that are especially related to our work include the following. The analysis of

(Blumer et al., 1989), proved using tools from (Vapnik and Chervonenkis, 1971), implies that lin-

ear separators can be learned in polynomial time with O((d/ǫ) log(1/ǫ) + (1/ǫ) log(1/δ)) labeled

examples. (Ehrenfeucht et al., 1989) proved a bound that implies an Ω(d/ǫ+(1/ǫ) log(1/δ)) lower

bound for linear separators and explicitly posed the question of providing tight bounds for this class.

(Haussler et al., 1994) established an upper bound of O((d/ǫ) log(1/δ)), which can be achieved in

polynomial-time for linear separators.

(Blumer et al., 1989) achieved polynomial-time learning by finding a consistent hypothesis (i.e.,

a hypothesis which correctly classifies all training examples); this is a special case of ERM (Vapnik,

1982). An intensive line of research in the empirical process and statistical learning theory literature

has taken account of “local complexity” to prove stronger bounds for ERM (van der Vaart and Wellner,

1996; van de Geer, 2000; Bartlett et al., 2005; Long, 2003; Mendelson, 2003; Giné and Koltchinskii,

2006; Hanneke, 2007; Hanneke and Yang, 2012). In the context of learning, local complexity

takes account of the fact that really bad classifiers can be easily discarded, and the set of “lo-

cal” classifiers that are harder to disqualify is sometimes not as rich. A recent landmark result of

(Giné and Koltchinskii, 2006) (see also (Raginsky and Rakhlin, 2011; Hanneke and Yang, 2012)) is

the bound for consistent algorithms of

O((d/ǫ) log(cap(ǫ)) + (1/ǫ) log(1/δ)) (1)

where cap(ǫ) is the Alexander capacity, which depends on the distribution (Alexander., 1987) (see

Section 8 and Appendix A for further discussion). However, this bound can be suboptimal for linear

separators.

In particular, for linear separators in the case in which the underlying distribution is uniform

in the unit ball, the sample complexity is known (Long, 1995, 2003) to be Θ
(

d+log(1/δ)
ǫ

)

, when
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computational considerations are ignored. (Bshouty et al., 2009), using the doubling dimension

(Assouad, 1983), another measure of local complexity, proved a bound of

O((d/ǫ)
√

log(1/ǫ) + (1/ǫ) log(1/δ)) (2)

for a polynomial-time algorithm. As a lower bound of Ω(
√
d) on cap(ǫ) for ǫ = o(1/

√
d) for the

case of linear separators and the uniform distribution is implicit in (Hanneke, 2007), the bound of

(Giné and Koltchinskii, 2006) given by (1) cannot yield a bound better than

O((d/ǫ)min{log d, log(1/ǫ)} + (1/ǫ) log(1/δ)) (3)

in this case.

In this paper we provide a tight bound (up to constant factors) on the sample complexity of

polynomial-time learning of linear separators with respect to log-concave distributions. Specifi-

cally, we prove an upper bound of O
(

d+log(1/δ)
ǫ

)

using a polynomial-time algorithm that holds for

any zero-mean log-concave distribution. We also prove an information theoretic lower bound that

matches our (computationally efficient) upper bound for each log-concave distribution. This pro-

vides the first bound for a polynomial-time algorithm that is tight for an interesting non-finite class of

hypothesis functions under a general class of data-distributions, and also characterizes (up to a con-

stant factor) the distribution-specific sample complexity for each distribution in the class. In the spe-

cial case of the uniform distribution, our upper bound closes the existing Ω(min{
√

log(1/ǫ), log(d)})
gap between the upper bounds (2) and (3) and the lower bound of (Long, 1995).

Active Learning We also study learning of linear separators in the active learning model; here the

learning algorithm can access unlabeled (i.e., unclassified) examples and ask for labels of unlabeled

examples of its own choice, and the hope is that a good classifier can be learned with significantly

fewer labels by actively directing the queries to informative examples. This has been a major area

of machine learning research in the past fifteen years mainly due the availability of large amounts

of unannotated or raw data in many modern applications (Dasgupta, 2011), with many exciting

developments on understanding its underlying principles as well (Freund et al., 1997; Dasgupta,

2005; Balcan et al., 2006, 2007; Hanneke, 2007; Dasgupta et al., 2007; Castro and Nowak, 2007;

Balcan et al., 2008; Koltchinskii, 2010; Beygelzimer et al., 2010). However, with a few excep-

tions (Balcan et al., 2007; Castro and Nowak, 2007; Dasgupta et al., 2005), most of the theoretical

developments have focused on the so called disagreement-based active learning paradigm (Hanneke,

2011; Koltchinskii, 2010); methods and analyses developed in this context are often suboptimal, as

they take a conservative approach and consider strategies that query even points on which there

is a small amount of uncertainty (or disagreement) among the classifiers still under consideration

given the labels queried so far. The results derived in this manner often show an improvement in

the 1/ǫ factor in the label complexity of active versus passive learning; however, unfortunately, the

dependence on the d term typically gets worse.

By analyzing a more aggressive, margin-based active learning algorithm, we prove that we can

efficiently (in polynomial time) learn homogeneous linear separators when the underlying distribu-

tion is log-concave by using only O((d+log(1/δ)+log log(1/ǫ)) log(1/ǫ)) label requests, answer-

ing an open question in (Balcan et al., 2007). This represents an exponential improvement of active

learning over passive learning and it significantly broadens the cases for which we can show that the

dependence on 1/ǫ in passive learning can be improved to only Õ(log(1/ǫ)) in active learning, but

without increasing the dependence on the dimension d. We note that an improvement of this type

was known to be possible only for the case when the underlying distributions is (nearly) uniform
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in the unit ball (Balcan et al., 2007; Dasgupta et al., 2005; Freund et al., 1997); even for this spe-

cial case, our analysis improves by a multiplicative log log(1/ǫ) factor the results of (Balcan et al.,

2007); it also provides better dependence on d than any other previous analyses implementable in

a computationally efficient manner (both disagreement-based (Hanneke, 2011, 2007) and more ag-

gressive ones (Dasgupta et al., 2005; Freund et al., 1997)), and over the inefficient splitting index

analysis of (Dasgupta, 2005).

Techniques At the core of our results is a novel characterization of the region of disagreement

of two linear separators under a log-concave measure. We show that for any two linear separators

specified by normal vectors u and v, for any constant c ∈ (0, 1) we can pick a margin as small as

γ = θ(α), where α is the angle between u and v, and still ensure that the probability mass of the

region of disagreement outside of band of margin γ of one of them is cα (Theorem 4). Using this

fact, we then show how we can use a margin-based active learning technique, where in each round

we only query points near the hypothesized decision boundary, to get an exponential improvement

over passive learning.

We then show that any passive learning algorithm that outputs a hypothesis consistent with

O(d/ǫ+(1/ǫ) log(1/δ)) random examples will, with probability at least 1− δ, output a hypothesis

of error at most ǫ (Theorem 6). Interestingly, our analysis is quite dissimilar to the classic analyses

of ERM. It proceeds by conceptually running the algorithm online on progressively larger chunks of

examples, and using the intermediate hypotheses to track the progress of the algorithm. We show,

using the same tools as in the active learning analysis, that it is always likely that the algorithm

will receive informative examples. Our analysis shows that the algorithm would also achieve 1 − ǫ
accuracy with high probability even if it periodically built preliminary hypotheses using some of the

examples, and then only used borderline cases for those preliminary classifiers for further training.1

To achieve the optimal sample complexity, we have to carefully distribute the confidence parameter,

by allowing higher probability of failure in the later stages, to compensate for the fact that, once the

hypothesis is already pretty good, it takes longer to get examples that help to further improve it.

Non-separable case We also study label-efficient learning in the presence of noise. We show

how our results for the realizable case can be extended to handle (a variant of) the Tsybakov

noise, which has received substantial attention in statistical learning theory, both for passive and

active learning (Mammen and Tsybakov, 1999; Bartlett et al., 2005; Massart and Nedelec, 2006;

Giné and Koltchinskii, 2006; Balcan et al., 2007; Koltchinskii, 2010; Hanneke, 2011); this includes

the random classification noise commonly studied in computational learning theory (Kearns and Vazirani,

1994), and the more general bounded (or Massart) noise (Bartlett et al., 2005; Massart and Nedelec,

2006; Giné and Koltchinskii, 2006; Koltchinskii, 2010). Our analysis for Massart noise leads to

optimal bounds (up to constant factors) for active and passive learning of linear separators when

the marginal distribution on the feature vectors is log-concave, improving the dependence on d over

previous best known results. Our analysis for Tsybakov noise leads to bounds on active learning

with improved dependence on d over previous known results in this case as well.

We also provide a bound on the Alexander’s capacity (Alexander., 1987; Giné and Koltchinskii,

2006) and the closely related disagreement coefficient notion (Hanneke, 2007), which have been

widely used to characterize the sample complexity of various (active and passive) algorithms (Hanneke,

2007; Koltchinskii, 2010; Giné and Koltchinskii, 2006; Beygelzimer et al., 2010). This immediately

implies concrete bounds on the labeled data complexity of several algorithms in the literature, in-

1. Note that such examples would not be i.i.d from the underlying distribution!
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cluding active learning algorithms designed for the purely agnostic case (i.e., arbitrary forms of

noise), e.g., the A2 algorithm (Balcan et al., 2006) and the DHM algorithm (Dasgupta et al., 2007).

Nearly log-concave distributions We also extend our results both for passive and active learn-

ing to deal with nearly log-concave distributions; this is a broader class of distributions introduced

by (Applegate and Kannan, 1991), which contains mixtures of (not too separated) log-concave dis-

tributions. In deriving our results, we provide new tail bounds and structural results for these dis-

tributions, which might be of independent interest and utility, both in learning theory and in other

areas including sampling and optimization.

We note that our bounds on the disagreement coefficient improve by a factor of Ω(d) over the

bounds of (Friedman, 2009) (matching what was known for the much less general case of nearly

uniform distribution over the unit sphere); furthermore, they apply to the nearly log-concave case

where we allow an arbitrary number of discontinuities, a case not captured by the (Friedman, 2009)

conditions at all. We discuss other related papers in Appendix A.

2. Preliminaries and Notation

We focus on binary classification problems; that is, we consider the problem of predicting a binary

label y based on its corresponding input vector x. As in the standard machine learning formulation,

we assume that the data points (x, y) are drawn from an unknown underlying distribution DXY

over X × Y ; X is called the instance space and Y is the label space. In this paper we assume that

Y = {±1} and X = R
d; we also denote the marginal distribution over X by D. Let C be the class

of linear separators through the origin, that is C = {sign(w · x) : w ∈ R
d, ‖w‖ = 1}. To keep

the notation simple, we sometimes refer to a weight vector and the linear classifier with that weight

vector interchangeably. Our goal is to output a hypothesis function w ∈ C of small error, where

err(w) = errDXY
(w) = P(x,y)∼DXY

[sign(w · x) 6= y].
We consider two learning protocols: passive learning and active learning. In the passive learning

setting, the learning algorithm is given a set of labeled examples (x1, y1), . . . , (xm, ym) drawn

i.i.d. from DXY and the goal is output a hypothesis of small error by using only a polynomial

number of labeled examples. In the (pool-based) active learning setting, a set of labeled examples

(x1, y1) . . . (xm, ym) is also drawn i.i.d. from DXY ; the learning algorithm is permitted direct access

to the sequence of xi values (unlabeled data points), but has to make a label request to obtain the

label yi of example xi. The hope is that in the active learning setting we can output a classifier

of small error by using many fewer label requests than in the passive learning setting by actively

directing the queries to informative examples (while keeping the number of unlabeled examples

polynomial). For added generality, we also consider the selective sampling active learning model,

where the algorithm visits the unlabeled data points xi in sequence, and, for each i, makes a decision

on whether or not to request the label yi based only on the previously-observed xj values (j ≤ i)
and corresponding requested labels, and never changes this decision once made. Both our upper

and lower bounds will apply to both selective sampling and pool-based active learning.

In the “realizable case”, we assume that the labels are deterministic and generated by a target

function that belongs to C. In the non-realizable case (studied in Sections 8 and 9) we do not make

this assumption and instead aim to compete with the best function in C.

Given two vectors u and v and any distribution D̃ we denote by dD̃(u, v) = Px∼D̃(sign(u ·x) 6=
sign(v · x)); we also denote by θ(u, v) the angle between the vectors u and v.
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3. Log-Concave Densities

Throughout this paper we focus on the case where the underlying distribution D is log-concave or

nearly log-concave. Such distributions have played a key role in the past two decades in several

areas including sampling, optimization, and integration algorithms (Lovasz and Vempala, 2007),

and more recently for learning theory as well (Kalai et al., 2005; Klivans et al., 2009b; Vempala,

2010). In this section we first summarize known results about such distributions that are useful for

our analysis and then prove a novel structural statement that will be key to our analysis (Theorem 4).

In Section 6 we describe extensions to nearly log-concave distributions as well.

Definition 1 A distribution over Rd is log-concave if log f(·) is concave, where f is its associated

density function. It is isotropic if its mean is the origin and its covariance matrix is the identity.

Log-concave distributions form a broad class of distributions: for example, the Gaussian, Lo-

gistic, and uniform distribution over any convex set are log-concave distributions. The follow-

ing lemma summarizes known useful facts about isotropic log-concave distributions (most are

from (Lovasz and Vempala, 2007); the upper bound on the density is from (Klivans et al., 2009b)).

Lemma 2 Assume that D is log-concave in Rd and let f be its density function.

(a) If D is isotropic then Px∼D[||X|| ≥ α
√
d] ≤ e−α+1. If d = 1 then: Px∼D[X ∈ [a, b]] ≤ |b−a|.

(b) If D is isotropic, then f(x) ≥ 2−7d29d||x|| whenever 0 ≤ ||x|| ≤ 1/9. Furthermore, 2−7d ≤
f(0) ≤ d(20d)d/2, and f(x) ≤ A(d) exp(−B(d)||x||), where A(d) is 28ddd/2e and B(d) is

2−7d

2(d−1)(20(d−1))(d−1)/2 , for all x of any norm.

(c) All marginals of D are log-concave. If D is isotropic, its marginals are isotropic as well.

(d) If E[‖X‖2] = C2, then P[||X|| ≥ RC] ≤ e−R+1.

(e) If D is isotropic and d = 1 we have f(0) ≥ 1/8 and f(x) ≤ 1 for all x.

Throughout our paper we will use the fact that there exists a universal constant c such that the

probability of disagreement of any two homogeneous linear separators is lower bounded by the c

times the angle between their normal vectors. This follows by projecting the region of disagreement

in the space given by the two normal vectors, and then using properties of log-concave distributions

in 2-dimensions. The proof is implicit in earlier works (e.g., (Vempala, 2010)); for completeness,

we include a proof in Appendix B.

Lemma 3 Assume D is an isotropic log-concave in Rd. Then there exists c such that for any two

unit vectors u and v in R
d we have cθ(v, u) ≤ dD(u, v).

To analyze our active and passive learning algorithms we provide a novel characterization of the

region of disagreement of two linear separators under a log-concave measure:

Theorem 4 For any c1 > 0, there is a c2 > 0 such that the following holds. Let u and v be two unit

vectors in Rd, and assume that θ(u, v) = α < π/2. If D is isotropic log-concave in Rd, then:

Px∼D[sign(u · x) 6= sign(v · x) and |v · x| ≥ c2α] ≤ c1α. (4)
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Proof Choose c1, c2 > 0. We will show that, if c2 is large enough relative to 1/c1, then (4)

holds. Let b = c2α. Let E be the set whose probability we want to bound. Since the event under

consideration only concerns the projection of x onto the span of u and v, Lemma 2(c) implies we

can assume without loss of generality that d = 2.

Next, we claim that each member x of E has ||x|| ≥ b/α = c2. Assume without loss of

generality that v · x is positive. (The other case is symmetric.) Then u · x < 0, so the angle of

x with u is obtuse, i.e. θ(x, u) ≥ π/2. Since θ(u, v) = α, this implies that θ(x, v) ≥ π/2 − α.

But x · v ≥ b, and v is unit length, so ||x|| cos θ(x, v) ≥ b, which, since θ(x, v) ≥ π/2 − α,

implies ||x|| cos(π/2 − α) ≥ b; This, since cos(π/2 − α) ≤ α for all α ∈ [0, π/2], in turn implies

||x|| ≥ b/α = c2. This implies that, if B(r) is a ball of radius r in R
2, that

P[E] =
∞
∑

i=1

P[E ∩ (B((i+ 1)c2)−B(ic2))]. (5)

To obtain the desired bound, we carefully bound each term in the RHS. Choose i ≥ 1.

Let f(x1, x2) be the density of D. We have

P[E ∩ (B((i+ 1)c2)−B(ic2))] =

∫

(x1,x2)∈B((i+1)c2)−B(ic2)
1E(x1, x2)f(x1, x2) dx1dx2.

Applying the density upper bound from Lemma 2 with d = 2, there are constants C1 and C2 such

that

P[E ∩ (B((i+ 1)c2)−B(ic2))] ≤
∫

(x1,x2)∈B((i+1)c2)−B(ic2)
1E(x1, x2)C1 exp(−c2C2i) dx1dx2

= C1 exp(−c2C2i)

∫

(x1,x2)∈B((i+1)c2)−B(ic2)
1E(x1, x2) dx1dx2.

If we include B(ic2) in the integral again, we get

P[E ∩ (B((i+ 1)c2)−B(ic2))] ≤ C1 exp(−c2C2i)

∫

(x1,x2)∈B((i+1)c2)
1E(x1, x2) dx1dx2.

Now, we exploit the fact that the integral above is a rescaling of a probability with respect to the

uniform distribution. Let C3 be the volume of the unit ball in R
2. Then, we have

P[E∩(B((i+1)c2)−B(ic2))] ≤ C1 exp(−c2C2i)C3(i+1)2c22α/π = C4c
2
2α(i+1)2 exp(−c2C2i),

for C4 = C1C3/π. Returning to (5), we get

P[E] =

∞
∑

i=1

C4c
2
2α(i+ 1)2 exp(−c2C2i) = C4c

2
2 ×

4e2c2C2 − 3ec2C2 + 1

(ec2C2 − 1)3
× α.

Since limc2→∞ c22 × 4e2c2C2−3ec2C2+1

(ec2C2−1)
3 = 0, this completes the proof.

We note that a weaker result of this type was proven (via different techniques) for the uniform

distribution in the unit ball in (Balcan et al., 2007). In addition to being more general, Theorem 4

is tighter and more refined even for this specific case – this improvement is essential for obtaining

tight bounds for polynomial time algorithms for passive learning (Section 5) and better bounds for

active learning as well.
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4. Active Learning

In this section we analyze a margin-based algorithm for actively learning linear separators under log-

concave distributions (Balcan et al., 2007) (Algorithm 1). Lower bounds proved in Section 7 show

that this algorithm needs exponentially fewer labeled examples than any passive learning algorithm.

This algorithm has been previously proposed and analyzed in (Balcan et al., 2007) for the spe-

cial case of the uniform distribution in the unit ball. In this paper we analyze it for the much more

general class of log-concave distributions.

Algorithm 1 Margin-based Active Learning

Input: a sampling oracle for D, a labeling oracle, sequences mk > 0, k ∈ Z+ (sample sizes) and

bk > 0, k ∈ Z+ (cut-off values).

Output: weight vector ŵs.

• Draw m1 examples from D, label them and put them in W (1).
• iterate k = 1, . . . , s

– find a hypothesis ŵk with ‖ŵk‖2 = 1 consistent with all labeled examples in W (k).
– let W (k + 1) = W (k).
– until mk+1 additional data points are labeled, draw sample x from D

∗ if |ŵk · x| ≥ bk, then reject x,

∗ else, ask for label of x, and put into W (k + 1).

Theorem 5 Assume D is isotropic log-concave in Rd. There exist constants C1, C2 s.t. for d ≥ 4,

and for any ǫ, δ > 0, ǫ < 1/4, using Algorithm 1 with bk = C1

2k
and mk = C2

(

d+ ln 1+s−k
δ

)

, after

s = ⌈log2 1
cǫ⌉ iterations, we find a separator of error at most ǫ with probability 1 − δ. The total

number of labeled examples needed is O((d+ log(1/δ) + log log(1/ǫ)) log(1/ǫ)).

Proof Let c be the constant from Lemma 3. We will show, using induction, that, for all k ≤ s, with

probability at least 1 − δ
2

∑

i<k
1

(1+s−i)2
, any ŵ consistent with the data in the working set W (k)

has err(ŵ) ≤ c2−k, so that, in particular, err(ŵk) ≤ c2−k.

The case where k = 1 follows from the standard VC bounds (see e.g.,(Vapnik and Chervonenkis,

1971)). Assume now the claim is true for k − 1 (k > 1), and consider the kth iteration. Let

S1 = {x : |ŵk−1 · x| ≤ bk−1}, and S2 = {x : |ŵk−1 · x| > bk−1}. By the induction hypothesis,

we know that, with probability at least 1 − δ
2

∑

i<k−1
1

(1+s−i)2 , all ŵ consistent with W (k − 1),

including ŵk−1, have errors at most c2−(k−1). Consider an arbitrary such ŵ. By Lemma 3 we

have θ(ŵ, w∗) ≤ 2−(k−1) and θ(ŵk−1, w
∗) ≤ 2−(k−1), so θ(ŵk−1, ŵ) ≤ 4 × 2−k. Apply-

ing Theorem 4, there is a choice of C1 (the constant such that bk−1 = C1/2
k−1) that satisfies

P((ŵk−1 · x)(ŵ · x) < 0, x ∈ S2) ≤ c2−k

4 and P((ŵk−1 · x)(w∗ · x) < 0, x ∈ S2) ≤ c2−k

4 . So

P((ŵ · x)(w∗ · x) < 0, x ∈ S2) ≤
c2−k

2
. (6)

Now let us treat the case that x ∈ S1. Since we are labeling mk data points in S1 at iteration

k − 1, classic Vapnik-Chervonenkis bounds (1971) imply that, if C2 is a large enough absolute

constant, then with probability 1− δ/(4(1 + s− k)2), for all ŵ consistent with the data in W (k),

err(ŵ|S1) = P((ŵ · x)(w∗ · x) < 0 | x ∈ S1) ≤
c2−k

4bk
=

c

4C1
. (7)
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Finally, since S1 consists of those points that, after projecting onto the direction ŵk−1, fall into

an interval of length 2bk, Lemma 2 implies that P(S1) ≤ 2bk. Putting this together with (6) and (7),

with probability 1− δ
2

∑

i<k
1

(1+s−i)2 , we have err(ŵ) ≤ c2−k , completing the proof.

5. Passive Learning

In this section we show how an analysis that was inspired by active learning leads to optimal (up to

constant factors) bounds for polynomial-time algorithms for passive learning.

Theorem 6 Assume that D is zero mean and log-concave in Rd. There exists an absolute constant

C3 s.t. for d ≥ 4, and for any ǫ, δ > 0, ǫ < 1/4, any algorithm that outputs a hypothesis that

correctly classifies m = C3(d+log(1/δ))
ǫ examples finds a separator of error at most ǫ with probability

≥ 1− δ.

PROOF SKETCH: We focus here on the case that D is isotropic. We can treat the non-isotropic

case by observing that the two cases are equivalent; one may pass between them by applying the

whitening transform. (See Appendix C for details.)

While our analysis will ultimately provide a guarantee for any learning algorithm that always

outputs a consistent hypothesis, we will use intermediate hypothesis of Algorithm 1 in the analysis.

Let c be the constant from Lemma 3. While proving Theorem 5, we proved that, if Algorithm 1

is run with bk = C1

2k
and mk = C2

(

d+ ln 1+s−k
δ

)

, that for all k ≤ s, with probability ≥ 1 −
δ
2

∑

i<k
1

(1+s−i)2
any ŵ consistent with the data in W (k) has err(ŵ) ≤ c2−k . Thus, after s =

O(log(1/ǫ)) iterations, with probability at least ≥ 1− δ, any linear classifier consistent with all the

training data has error ≤ ǫ, since any such classifier is consistent with the examples in W (s).
Now, let us analyze the number of examples used, including those examples whose labels were

not requested by Algorithm 1. Lemma 2 implies that there is a positive constant c1 such that

P(S1) ≥ c1bk: again, S1 consists of those points that fall into an interval of length 2bk after pro-

jecting onto ŵk−1. The density is lower bounded by a constant when bk ≤ 1/9, and we can use

the bound for 1/9 when bk > 1/9. The expected number of examples that we need before we find

mk elements of S1 is therefore at most mk
c1bk

. Using a Chernoff bound, if we draw 2mk
c1bk

examples,

the probability that we fail to get mk members of S1 is at most exp (−mk/6), which is at most

δ/(4(1 + s − k)2) if C2 is large enough. So, the total number of examples needed,
∑

k
2mk
c1bk

, is at

most a constant factor more than

s
∑

k=1

2k
(

d+ log

(

1 + s− k

δ

))

= O(2s(d+ log(1/δ))) +
s

∑

k=1

2k log(1 + s− k)

= O

(

d+ log(1/δ)

ǫ

)

+

s
∑

k=1

2k log(1 + s− k).

We can show
∑s

k=1 2
k log(1 + s− k) = O(1/ǫ), completing the proof.

We conclude this section by pointing out several important facts and implications of Theorem 6

and its proof.

(1) The separator in Theorem 6 (and the one in Theorem 5 ) can be found in polynomial time, for

example by using linear programming.

9
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(2) The analysis of Theorem 6 also bounds the number of unlabeled examples needed by the

active learning algorithm of Theorem 5. This shows that an algorithm can request a nearly

optimally small number of labels without increasing the total number of examples required

by more than a constant factor. Specifically, in round k, we only need 2k(d + ln[(1 + s −
k)/δ]) unlabeled examples (whp), where s = O(log(1/ǫ)), so the total number of unlabeled

examples needed over all rounds is O(d/ǫ+ log(1/δ)/ǫ).

6. More Distributions

In this section we consider learning with respect to a more general class of distributions. We start

by providing a general set of conditions on a set D of distributions that is sufficient for efficient

passive and active learning w.r.t. distributions in D. We now consider nearly log-concave distribu-

tions, an interesting, more general class containing log-concave distributions, considered previously

in (Applegate and Kannan, 1991) and (Caramanis and Mannor, 2007). We then prove that isotropic

nearly log-concave distributions satisfy our sufficient conditions; in Appendix D, we also show how

to remove the assumption that the distribution is isotropic.

Definition 7 A set D of distributions is admissible if it satisfies the following:

• There exists c such that for any D ∈ D and any two unit vectors u and v in R
d we have

cθ(v, u) ≤ dD(u, v).
• For any c1 > 0, there is a c2 > 0 such that the following holds for all D ∈ D. Let u and v be

two unit vectors in Rd s.t. θ(u, v) = α < π/2. Then Px∼D[sign(u ·x) 6= sign(v ·x), |v ·x| ≥
c2α] ≤ c1α.

• There are positive constants c3, c4, c5 such that, for any D′ ∈ D, for any projection D of D′ onto

a one-dimensional subspace, the density f of D satisfies f(x) < c3 for all x and f(x) > c4
for all x with |x| < c5.

The proofs of Theorem 5 and Theorem 6 can be used without modification to show:

Theorem 8 If D is admissible, then arbitrary f ∈ C can be learned with respect to arbitrary distri-

butions in D in polynomial time in the active learning model from O((d+log(1/δ)+log log(1/ǫ)) log(1/ǫ))

labeled examples, and in the passive learning model from O
(

d+log(1/δ)
ǫ

)

examples.

6.1. The nearly log-concave case

Definition 9 A density function f : Rn → R is β log-concave if for any λ ∈ [0, 1], x1 ∈ R
n,

x2 ∈ R
n, we have f(λx1 + (1− λ)x2) ≥ e−βf(x1)

λf(x2)
1−λ.

Clearly, a density function f is log-concave if it is 0-log-concave. An example of a O(1)-log-

concave distribution is a mixture of two log-concave distributions whose covariance matrices are I ,

and whose means µ1 and µ2 have ||µ1 − µ2|| = O(1).
In this section we prove that for any sufficiently small constant β ≥ 0, the class of isotropic

β log-concave distribution in Rd is admissible and has light tails (this second fact is useful for

analyzing the disagreement coefficient in Sections 8). In doing so we provide several new properties

for such distributions, which could be of independent interest. Detailed proofs of our claims appear

in Appendix D.

We start by showing that for any isotropic β log-concave density f there exists a log-concave

density f̃ whose center is within e(C − 1)
√
Cd of f ’s center and that satisfies f(x)/C ≤ f̃(x) ≤

10
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Cf(x), for C as small as eβ log d. The fact C depends only exponentially in log d (as opposed to

exponentially in d) is key for being able to argue that such distributions have light tails.

Lemma 10 For any isotropic β log-concave density function f there exists a log-concave density

function f̃ that satisfies f(x)/C ≤ f̃(x) ≤ Cf(x) and

∥

∥

∥

∫

x(f(x)− f̃(x))dx
∥

∥

∥
≤ e(C − 1)

√
Cd,

for C = eβ⌈log2(d+1)⌉. Moreover, we have 1/C ≤
∫

(u · x)2f̃(x)dx ≤ C for every unit vector u.

PROOF SKETCH: Note that if the density function f is β log-concave we have that h = ln f
satisfies that for any λ ∈ [0, 1], x1 ∈ R

n, x2 ∈ R
n, we have h(λx1 +(1−λ)x2) ≥ −β+λh(x1)+

(1−λ)h(x2). Let ĥ be the function whose subgraph is the convex hull of the subgraph of h. By using

Caratheodory’s theorem2 we can show that ĥ(x) = max∑d+1
i=1 αi=1,αi≥0,x=

∑d+1
i=1 αixi

∑d+1
i=1 αih(xi).

This implies h(x) ≤ ĥ(x) and we can prove by induction on log2(d + 1) that h(x) ≥ ĥ(x) −
β⌈log2(d + 1)⌉. If we further normalize eĥ to make it a density function, we obtain f̃ that is log-

concave and satisfies f(x)/C ≤ f̃(x) ≤ Cf(x), where C = eβ⌈log2(d+1)⌉. This implies that for

any x we have |f(x)− f̃(x)| ≤ (C − 1)f̃(x).
Using this fact and concentration properties of f̃ (in particular Lemma 2), we can show that the

center of f̃ is close to the center of f , as desired.

Theorem 11 Assume β is a sufficiently small non-negative constant and let D be the set of all

isotropic β log-concave distributions. (a) D is admissible. (b) Any D ∈ D has light tails. That is:

P(||X|| > R
√
Cd) < Ce−R+1, for C = eβ⌈log2(d+1)⌉.

PROOF SKETCH: (a) Choose D ∈ D. As in Lemma 3, consider the plane determined by u and

v and let proju,v(x) denote the projection operator that given x ∈ Rd, orthogonally projects x onto

this plane. If D2 = proju,v(D) then dD(u, v) = dD2(u
′, v′). By using the Prekopa-Leindler in-

equality (Gardner, 2002) one can show that D2 is β log-concave (see e.g., (Caramanis and Mannor,

2007)). Moreover, if D is isotropic, than D2 is isotropic as well. By Lemma 10 we know that

there exists a C-isotropic log-concave distribution D̃2 centered at z, ‖z‖ ≤ ǫ, satisfying f(x)/C ≤
f̃(x) ≤ Cf(x) and 1/C ≤

∫

(u · x)2f(x)dx ≤ C for every unit vector u, for constants C = eβ

and ǫ = e(C−1)
√
2C . For β sufficiently small we have (1/20+ǫ)/

√

1/C − ǫ2 ≤ 1/9. Using this,

by applying the whitening transform (see Theorem 16 in Appendix D), we can show f̃2(x) ≥ c, for

‖x‖ ≤ 1/20 , which implies f2(x) ≥ c/C , for ‖x‖ ≤ 1/20. Using a reasoning as in Lemma 3

we get cθ(v, u) ≤ dD(u, v). The generalization of Theorem 4 follows from a similar proof, except

using Theorem 16. The density bounds in the n = 1 case also follow from Theorem 16 as well.

(b) Since X is isotropic, we have Ef [X · X] = d (where f is its associated density). By

Lemma 10, there exists a log-concave density f̃ such that f(x)/C ≤ f̃(x) ≤ Cf(x), for C =
eβ⌈log2(d+1)⌉. This implies Ef̃ [X · X] ≤ Cd. By Lemma 2 we get that that under f̃ , P(||X|| >
R
√
Cd) < e−R+1, so under f we have P(||X|| > R

√
Cd) < Ce−R+1.

Using Theorem 8 and Theorem 11(a) we obtain:

Theorem 12 Let β ≥ 0 be a sufficiently small constant. Assume that D is an isotropic β log-

concave distribution in Rd. Then arbitrary f ∈ C can be learned with respect to D in polynomial

time in the active learning model from O((d+log(1/δ)+log log(1/ǫ)) log(1/ǫ)) labeled examples,

and in the passive learning model from O
(

d+log(1/δ)
ǫ

)

examples.

2. Caratheodory’s theorem states that if a point x of Rd lies in the convex hull of a set P , then there is a subset P̂ of P

consisting of d+ 1 or fewer points such that x lies in the convex hull of P̂ .
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7. Lower Bounds

In this section we give lower bounds on the label complexity of passive and active learning of

homogeneous linear separators when the underlying distribution is β log-concave, for a sufficiently

small constant β. These lower bounds are information theoretic, applying to any procedure, that

might not be necessarily computationally efficient. The proof is in Appendix E.

Theorem 13 For a small enough constant β we have: (1) for any β log-concave distribution D
whose covariance matrix has full rank, the sample complexity of learning origin-centered linear

separators under D in the passive learning model is Ω
(

d
ǫ +

1
ǫ log

(

1
δ

))

; (2) the sample complexity

of active learning of linear separators under β log-concave distributions is Ω
(

d log
(

1
ǫ

))

.

Note that, if the covariance matrix of D does not have full rank, the number of dimensions is

effectively less than d, so our lower bound essentially applies for all log-concave distributions.

8. The inseparable case: Disagreement-based active learning

We consider two closely related distribution dependent capacity notions: the Alexander capacity

and the disagreement coefficient; they have been widely used for analyzing the label complexity

of non-aggressive active learning algorithms (Hanneke, 2007; Dasgupta et al., 2007; Koltchinskii,

2010; Hanneke, 2011; Beygelzimer et al., 2010). We begin with the definitions. For r > 0, define

B(w, r) = {u ∈ C : PD(sign(u · x) 6= sign(w · x)) ≤ r}. For any H ⊆ C, define the region

of disagreement as DIS(H) = {x ∈ X : ∃w, u ∈ H s.t. sign(u · x) 6= sign(w · x))}. Define the

Alexander capacity function capw∗,D(·) for w∗ ∈ C w.r.t. D as: capw∗,D(r) =
PD(DIS(B(w∗,r)))

r .
Define the disagreement coefficients for w∗ ∈ C w.r.t. D as: disw∗,D(ǫ) = sup

r≥ǫ
[capw∗,D(r)].

The following is our bound in the disagreement coefficient. Its proof is in Appendix F.

Theorem 14 Let β ≥ 0 be a sufficiently small constant. Assume that D is an isotropic β log-

concave distribution in Rd. For any w∗, for any ǫ, capw∗,D(ǫ) is O(d1/2+
β

2 ln 2 log(1/ǫ)). Thus

disw∗,D(ǫ) = O(d1/2+
β

2 ln 2 log(1/ǫ)).

Theorem 14 immediately leads to concrete bounds on the label complexity of several algo-

rithms in the literature (Hanneke, 2007; Cohn et al., 1994; Balcan et al., 2006; Koltchinskii, 2010;

Dasgupta et al., 2007). For example, by composing it with a result of (Dasgupta et al., 2007), we

obtain a bound of Õ(d3/2(log2(1/ǫ) + (ν/ǫ)2)) for agnostic active learning when D is isotropic

log-concave in Rd; that is we only need Õ(d3/2(log2(1/ǫ) + (ν/ǫ)2))) label requests to output a

classifier of error at most ν + ǫ, where ν = minw∈C err(w).

9. The Tsybakov condition

In this section we consider a variant of the Tsybakov noise condition (Mammen and Tsybakov,

1999). We assume that the classifier h that minimizes P(x,y)∼DXY
(h(x) 6= y) is a linear classifier,

and that, for the weight vector w∗ of the optimal classifier, there exist known parameters α, a > 0
such that, for all w, we have

a(dD(w,w
∗))1/(1−α) ≤ err(w) − err(w∗).

By generalizing Theorem 4 so that it provides a stronger bound for larger margins, and combining

the result with the other lemmas of this paper and techniques from (Balcan et al., 2007), we get the

following.
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Theorem 15 Let s = O(log(1/ǫ)). Assume that the distribution DXY satisfies the Tsybakov noise

condition for constants α ∈ [0, 1) and a ≥ 0, and that the marginal D on R
d is isotropic log-

concave. (1) If α = 0, we can find a separator with excess error ≤ ǫ with probability 1 − δ using

O(log(1/ǫ))(d + log(s/δ)) labeled examples in the active learning model, and O
(

d+log(1/δ)
ǫ

)

labeled examples in the passive learning model. (2) If α > 0, we can find a separator with excess

error ≤ ǫ with probability 1− δ using O((1/ǫ)2α log2(1/ǫ))(d+ log(s/δ)) labeled examples in the

active learning model.

In the case α = 0 (that is more general than the Massart noise condition) our analysis leads to

optimal bounds for active and passive learning of linear separators under log-concave distribu-

tions, improving the dependence on d over previous best known results (Hanneke and Yang, 2012;

Giné and Koltchinskii, 2006). Our analysis for Tsybakov noise (α ≥ 0) leads to bounds on active

learning with improved dependence on d over previous known results (Hanneke and Yang, 2012) in

this case as well. Proofs and further details appear in Appendix G.

10. Discussion and Open Questions

The label sample complexity of our active learning algorithm for learning homogeneous linear sep-

arators under isotropic logconcave distributions is O((d+log(1/δ)+log log(1/ǫ)) log(1/ǫ)), while

our lower bound for this setting is Ω
(

d log
(

1
ǫ

))

. Our upper bound is achieved by an algorithm that

uses a polynomial number of unlabeled training examples, and polynomial time. If an unbounded

amount of computation time and an unbounded number of unlabeled examples are available, it

seems to be easy to learn to accuracy ǫ using O(d log(1/ǫ)) label requests, no matter what the value

of δ. (Roughly, the algorithm can construct an ǫ-cover to initialize a set of candidate hypotheses,

then repeatedly wait for an unlabeled example that evenly splits the current list of candidates, and

ask its label, eliminated roughly half of the candidates.) It would be interesting to know what is the

best label complexity for a polynomial-time algorithm, or even an algorithm that is constrained to

use a polynomial number of unlabeled examples.

Conceptually, our analysis of ERM for passive learning under (nearly) log-concave distributions

is based on a more aggressive localization than those considered previously in the literature. It would

be very interesting to extend this analysis as well as our analysis for active learning to arbitrary

distributions and more general concept spaces.
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Appendix A. Additional Related Work

Learning with noise. Alexander Capacity and the Disagreement Coefficient Roughly speak-

ing the Alexander capacity (Alexander., 1987; Giné and Koltchinskii, 2006) quantifies how fast the

region of disagreement of the set of classifiers at distance r of the optimal classifier collapses as a

function r; 3 the disagreement coefficient (Hanneke, 2007) additionally involves the supremum of

r over a range of values. (Friedman, 2009) provides guarantees on these quantities (for sufficiently

small r) for general classes of functions in Rd if the underlying data distribution is sufficiently

smooth. Our analysis implies much tighter bounds for linear separators under log-concave distribu-

tions (matching what was known for the much less general case of nearly uniform distribution over

the unit sphere); furthermore, we also analyze the nearly log-concave case where we allow an arbi-

trary number of discontinuities, a case not captured by the (Friedman, 2009) conditions at all. This

immediately implies concrete bounds on the labeled data complexity of several algorithms in the

literature including the A2 algorithm (Balcan et al., 2006) and the DHM algorithm (Dasgupta et al.,

3. The region of disagreement DIS(C) of a set of classifiers C is the of set of instances x s.t. for each x ∈ DIS(C)
there exist two classifiers f, g ∈ C that disagree about the label of x.
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2007), with implications for the purely agnostic case (i.e., arbitrary forms of noise), as well as the

Koltchinskii’s algorithm (Koltchinskii, 2010) and the CAL algorithm (Balcan et al., 2006; Hanneke,

2007, 2011). Furthermore, in the realizable case and under Tsybakov noise, we show even better

bounds, by considering aggressive active learning algorithms.

Note that as opposed to the realizable case, all existing active learning algorithms analyzed

under Massart and Tsybakov noise conditions using the learning model analyzed in this paper (in-

cluding our algorithms in Theorem 15), as well as those for the agnostic setting, are not known to

run in time poly(d, 1/ǫ). In fact, even ignoring the optimality of sample complexity, there are no

known algorithms for passive learning that run in time poly(d, 1/ǫ) for general values of ǫ, even

for the Massart noise condition and under log-concave distributions. Existing works on agnostic

passive learning under log-concave distributions either provide running times dpoly(1/ǫ) (e.g., the

work of (Kalai et al., 2005)) or can only achieve values of ǫ that are significantly larger than the

noise rate (Klivans et al., 2009a).

Other Work on Active Learning Several papers (Cesa-Bianchi et al., 2010; Dekel et al., 2012)

present efficient online learning algorithms in the selective sampling framework, where labels must

be actively queried before they are revealed. Under the assumption that the label conditional distri-

bution is linear function determined by a fixed target vector, they provide bounds on the regret of the

algorithm and on the number of labels it queries when faced with an adaptive adversarial strategy

of generating the instances. As pointed by (Dekel et al., 2012), these results can be converted to

a statistical setting when the instances xt are drawn i.i.d and they further assume a margin condi-

tion. In this setting they obtain exponential improvement in label complexity over passive learning.

While very interesting, these results are incomparable to ours; their techniques significantly exploit

the linear noise condition to get these improvements – note that such an improvement would not be

possible in the realizable case (as pointed for example in (Gonen et al., 2013)).

(Nowak, 2011) considers an interesting abstract “generalized binary search” problem with ap-

plications to active learning; while these results apply for more general concept spaces, it is not

clear how to implement the resulting procedures in polynomial time and by using access to only a

polynomial number of unlabeled samples from the underlying distribution (as required by the active

learning model). Another interesting recent work is that of (Gonen et al., 2013), which study active

learning of linear separators via an aggressive algorithm using a margin condition, using a general

approximation guarantee on the number of labels requested; note that while these results work for

potentially more general distributions, as opposed to ours, they do not come with explicit (tight)

bounds on the label complexity.

ǫ-nets, Learning, and Geometry Small ǫ-nets are useful for many applications, especially in

Computational Geometry (see (Pach and Agarwal, 1995)). The same fundamental techniques of

(Vapnik and Chervonenkis, 1971; Vapnik, 1982) have been applied to establish the existence of

small ǫ-nets (Haussler and Welzl, 1987) and to bound the sample complexity of learning (Vapnik,

1982; Blumer et al., 1989), and a number of interesting upper and lower bounds on the smallest

possible size of ǫ-nets have been obtained (Komlós et al., 1992; Clarkson and Varadarajan, 2007;

Alon, 2010).

Our analysis implies a O(d/ǫ) upper bound on the size of an ǫ-net for a set of regions of dis-

agreement between all possible linear classifiers and the target, when the distribution is zero-mean

and log-concave. In particular, since in Theorem 6 we prove that any hypothesis consistent with

the training data has error rate ≤ ǫ with probability 1 − δ, setting δ to a constant gives a proof of a

O(d/ǫ) bound on the size of an ǫ-net for the following set: {{x : (w · x)(w∗ · x) < 0} : w ∈ R
n}.
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Appendix B. Proof of Lemma 3

Lemma 3. Assume D is an isotropic log-concave in Rd. Then there exists c such that for any two

unit vectors u and v in R
d we have cθ(v, u) ≤ dD(u, v).

Proof Consider two unit vectors u and v. Let proju,v(x) denote the projection operator that, given

x ∈ Rd, orthogonally projects x onto the plane determined by u and v. That is, if we define an

orthogonal coordinate system in which coordinates 1, 2 lie in this plane and coordinates 3, . . . , d
are orthogonal to this plane, then x′ = proju,v(x1, . . . , xd) = (x1, x2). Also, given distribution D
over Rd, define proju,v(D) to be the distribution given by first picking x ∼ D and then outputting

x′ = proju,v(x). That is, proju,v(D) is just the marginal distribution over coordinates 1, 2 in the

above coordinate system. Notice that if x′ = proju,v(x) then u · x = u′ · x′ where u′ = proju,v(u)
and v′ = proju,v(v). So, if D2 = proju,v(D) then dD(u, v) = dD2(u

′, v′).
By Lemma 2(c), we have that if D is isotropic and log-concave, then D2 is as well. Let A

to be the region of disagreement between u′ and v′ intersected with the ball of radius 1/9 in R2.

The probability mass of A under D2 is at least the volume of A times infx∈AD2(x). So, using

Lemma 2(b)

dD2(u
′, v′) ≥ vol(A) inf

x∈A
D2(x) ≥ cθ(u, v),

as desired.

Appendix C. Passive Learning

Theorem 6. Assume that D is zero mean and log-concave in Rd. There exists an absolute constant

C3 s.t. for d ≥ 4, and for any ǫ, δ > 0, ǫ < 1/4, any algorithm that outputs a hypothesis that

correctly classifies m = C3(d+log(1/δ))
ǫ examples finds a separator of error at most ǫ with probability

≥ 1− δ.

Proof First, let us prove the theorem in the case that D is isotropic. We will then treat the general

case at the end of the proof.

While our analysis will ultimately provide a guarantee for any learning algorithm that always

outputs a consistent hypothesis, we will use intermediate hypothesis of Algorithm 1 in the analysis.

Let c be the constant from Lemma 3. While proving Theorem 5, we proved that, if Algorithm 1

is run with bk = C1

2k
and mk = C2

(

d+ ln 1+s−k
δ

)

, that for all k ≤ s, with probability ≥ 1 −
δ
2

∑

i<k
1

(1+s−i)2
any ŵ consistent with the data in W (k) has err(ŵ) ≤ c2−k . Thus, after s =

O(log(1/ǫ)) iterations, with probability at least ≥ 1− δ, any linear classifier consistent with all the

training data has error ≤ ǫ, since any such classifier is consistent with the examples in W (s).
Now, let us analyze the number of examples used, including those examples whose labels were

not requested by Algorithm 1. Lemma 2 implies that there is a positive constant c1 such that

P(S1) ≥ c1bk: again, S1 consists of those points that fall into an interval of length 2bk after pro-

jecting onto ŵk−1. The density is lower bounded by a constant when bk ≤ 1/9, and we can use the

bound for 1/9 when bk > 1/9.

The expected number of examples that we need before we find mk elements of S1 is therefore

at most mk
c1bk

. Using a Chernoff bound, if we draw 2mk
c1bk

examples, the probability that we fail to
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get mk members of S1 is at most exp (−mk/6), which is at most δ/(4(1 + s − k)2) if C2 is large

enough. So, the total number of examples needed,
∑

k
2mk
c1bk

, is at most a constant factor more than

s
∑

k=1

2k
(

d+ log

(

1 + s− k

δ

))

= O(2s(d+ log(1/δ))) +
s

∑

k=1

2k log(1 + s− k)

= O

(

d+ log(1/δ)

ǫ

)

+
s

∑

k=1

2k log(1 + s− k).

We claim that
∑s

k=1 2
k log(1 + s− k) = O(1/ǫ). We have

s
∑

k=1

2k log(1 + s− k) ≤
s

∑

k=1

2k(3 + s− k)

≤
∫ s+1

k=1
2k(3 + s− k)

(since 2k(3 + s− k) is increasing for k ≤ s+ 1)

=
2(2s − 1)(1 + ln(4)) − s ln 2

ln2 2
= O(1/ǫ),

completing the proof in the case that D is isotropic.

Now let us treat the case in which D is not isotropic. Suppose that Σ is the covariance matrix

of D, so that Σ−1/2 is the “whitening transform”. Suppose, for m = C3(d+log(1/δ))
ǫ , an algorithm is

given a sample S of examples (x1, y1), ..., (xm, ym) for x1, ..., xm drawn according to D, and ym
labeled by a target hypothesis with weight vector v. Note that w is consistent with S if and only

if wTΣ1/2 is consistent with (Σ−1/2x1, y1), ..., (Σ
−1/2xm, ym) (so those examples are consistent

with vTΣ1/2). So our analysis of the isotropic case implies that, with probability 1 − δ, for any w
consistent with (x1, y1), ..., (xm, ym), we have

P(sign((wTΣ1/2)(Σ−1/2x)) 6= sign((vTΣ1/2)(Σ−1/2x))) ≤ ǫ,

which of course means that P(sign(wTx) 6= sign(vTx)) ≤ ǫ.

Appendix D. More Distributions

D.1. Isotropic Nearly Log-concave distributions

Lemma 10. For any isotropic β log-concave density function f there exists a log-concave density

function f̃ that satisfies f(x)/C ≤ f̃(x) ≤ Cf(x) and

∥

∥

∥

∫

x(f(x)− f̃(x))dx
∥

∥

∥
≤ e(C − 1)

√
Cd,

for C = eβ⌈log2(d+1)⌉. Moreover, we have 1/C ≤
∫

(u · x)2f̃(x)dx ≤ C for every unit vector u.

Proof Note that if the density function f is β log-concave we have that h = ln f satisfies that for

any λ ∈ [0, 1], x1 ∈ R
n, x2 ∈ R

n, we have h(λx1 + (1− λ)x2) ≥ −β + λh(x1) + (1− λ)h(x2).
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Let ĥ be the function whose subgraph is the convex hull of the subgraph of h. That is, ĥ(x) is

the maximum of all values of
∑k

i=1 αih(ui) for any u1, ..., uk ∈ R
d and α1, ..., αk ∈ [0, 1] such

that
∑k

i=1 αi = 1 and x =
∑k

i=1 αiui. Note that, if the components of ui are ui,1, ..., u1,d, we can

get ĥ(x) by starting with

T = {(u1,1, ..., u1,d, h(u1)), ..., (uk,1, ..., uk,d, h(uk))}

taking the convex combination of the members of T with mixing coefficients α1, ..., αk , and then

reading off the last component. Caratheodory’s theorem4 implies that we can get the same result

using a mixture of at most d + 1 members of T . In other words, we can assume without loss of

generality that k = d+ 1, so that

ĥ(x) = max∑d+1
i=1 αi=1,αi≥0,x=

∑d+1
i=1 αixi

d+1
∑

i=1

αih(xi). (8)

Because of the case where (α1, ..., αd+1) concentrates all its weight on one component, we have

h(x) ≤ ĥ(x).
We also claim that

h(x) ≥ ĥ(x)− β⌈log2(d+ 1)⌉. (9)

We will prove this by induction on log2(d+1), treating the case in which d+1 is a power of 2. (By

padding with zeroes if necessary, we may assume without loss of generality that d + 1 is a power

of 2.) The base case, in which d = 1, follows immediately from the definitions. Let k = d + 1.

Assume that x = a1x1 + a2x2 + ...+ akxk,
∑k

i=1 ai = 1, ai ≥ 0. We can write this as:

x = (a1 + a2)x1,2 + (a3 + a4)x3,4 + ...(ak−1 + ak)xk−1,k

where xi,i+1 =
ai

ai+ai+1
xi +

ai+1

ai+ai+1
xi+1, for all i. Now, by induction we have:

h(x) ≥ −β log(k/2) + (a1 + a2)h(x1,2) +

...+ (ak−1 + ak)h(xk−1,k)

≥ −β log(k/2)

− (a1 + a2)β + a1h(x1) + a2h(x2)

− (a3 + a4)β + a3h(x3) + a4h(x4) +

...

− (ak−1 + ak)β + ak−1h(xk−1) + akh(xk)

= −β log(k) + a1h(x1) + a2h(x2) + a3h(x3) + ...akh(xk).

The last inequality follows from the fact that
∑n

i=1 ai = 1.

So, we have proved (9). If we further normalize eĥ to make it a density function, we obtain f̃
that is log-concave and satisfies f(x)/C ≤ f̃(x) ≤ Cf(x), where C = eβ⌈log2(d+1)⌉. This implies

that for any x we have |f(x)− f̃(x)| ≤ (C − 1)f̃(x).

4. Caratheodory’s theorem states that if a point x of Rd lies in the convex hull of a set P , then there is a subset P̂ of P

consisting of d+ 1 or fewer points such that x lies in the convex hull of P̂ .
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We now show that the center of f̃ is close to the center of f . We have:
∥

∥

∥

∥

∫

x(f(x)− f̃(x))dx

∥

∥

∥

∥

≤
∫

‖x‖ |f(x)− f̃(x)|dx

≤ (C − 1)

∫

‖x‖ f̃(x)dx = (C − 1)

∫ ∞

r=0
Pf̃ [‖X‖ ≥ r]dr.

Using concentration properties of f̃ (in particular Lemma 2) we get

∥

∥

∥

∥

∫

x(f(x)− f̃(x))dx

∥

∥

∥

∥

≤ (C − 1)

∫ ∞

r=0
e
− r√

Cd
+1

dr

= e(C − 1)
√
Cd,

as desired.

Theorem 16 (i) Let f : R2 → R be the density function of a log-concave distribution centered

at z and with covariance matrix A = Ef [(X − z)(X − z)T ]. Assume f satisfies ‖z‖ ≤ ξ and

1/C ≤
∫

(u · x)2f(x)dx ≤ C for every unit vector u, for C ≥ 1 constant close to 1. We have:

(a) Assume (1/20 + ξ)/
√

1/C − ξ2 ≤ 1/9. Then there exist an universal constant c s.t. we have

f(x) ≥ c, for all x with 0 ≤ ||x|| ≤ 1/20. (b) Assume C ≤ 1+1/5. There exist universal constants

c1 and c2 such that f(x) ≤ C1 exp(−C2||x||) for all x.

(ii) Let f : R → R be the density function of a log-concave distribution centered at ξ with

standard deviation σ =
√

Varf (X). Then f(x) ≤ 1/σ for all x. If furthermore f satisfies 1/C ≤
Ef [X

2] ≤ C for C ≥ 1 and ξ/
√

1/C − ξ2 ≤ 1/9, then we have f(0) ≥ c for some universal

constant c.

Proof (i) Let Y = A−1/2(X − z). Then Y is a log-concave distribution in the isotropic position.

Moreover, the density function of g is given by g(y) = det(A1/2)f(A1/2y+z). Let M = E[XXT ].
We have

A = E[(X − z)(X − z)T ] = E[XXT ]− zzT = M − zzT .

Also, the fact 1/C ≤
∫

(u · x)2f(x)dx ≤ C for every unit vector u is equivalent to

1/C ≤ uTE[XXT ]u ≤ C

for every unit vector u. Using v = (1, 0), v = (0, 1), and v = (1/
√
2, 1/

√
2) we get that M1,1 ∈

[1/C,C], M2,2 ∈ [1/C,C], and M1,2 = M2,1 ∈ [1/C − C,C − 1/C]. We also have ‖z‖ ≤ ξ and

det(A1/2) =
√

det(A). All these imply that

√

(1/C − ξ2)2 − (C − 1/C)2 ≤ det(A1/2) ≤ C.

(a) For x = A1/2y+z we have ‖x− z‖2 = (x−z)(x−z)T = ‖y‖2 vTAv, where v = (1/ ‖y‖)y
is a unit vector, so ‖y‖ ≤ ‖x− z‖ /

√

1/C − ξ2. If ‖x‖ ≤ 1/20 we have ‖y‖ ≤ 1/9, so by

Lemma 2 we have g(y) ≥ c1, so f(y) ≥ c, for some universal constants c1, c2, as desired.

(b) We have f(x) = 1
det (A1/2)

g(A−1/2(x− z)). By Lemma 2 (b) we have

f(x) ≤ 1

detA1/2
exp

[

−c
∥

∥

∥
A−1/2(x− z)

∥

∥

∥

]

.
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By the triangle inequality we further obtain:

f(x) ≤ 1

det (A1/2)
exp

[

c
∥

∥

∥
A−1/2z

∥

∥

∥

]

exp
[

−c
∥

∥

∥
A−1/2x

∥

∥

∥

]

.

ForC ≤ 1+1/5, we can show that
∥

∥A−1/2x
∥

∥ ≥ (1/
√
2) ‖x‖. It is enough to show

∥

∥A−1/2x
∥

∥

2 ≥
(1/2) ‖x‖2, or that 2 ‖v‖2 ≥

∥

∥A1/2v
∥

∥, where v = A−1/2x (so x = A1/2v). This is equivalent to

2vT v ≥ vTAv, which is true since the matrix 2I −A is positive semi-definite.

(ii) Define Y = (X − z)/σ. We have E[Y ] = 0 and E[Y 2] = 1. The density g of Y is given by

g(y) = σf(σy + z). Now, since g is isotropic and log-concave, we can apply Lemma 2(e ) to g. So

g(y) ≤ 1 for all y. So, σf(σy + z) ≤ 1 for all y, which implies f(x) ≤ 1/σ for all x. The second

part follows as in Theorem 16.

D.2. More covariance matrices

In this section, we extend Theorem 5 to the case of arbitrary covariance matrices.

Theorem 17 If all distributions in D are zero-mean and log-concave in Rd, then arbitrary f ∈ C

be learned in polynomial time from arbitrary distributions in D in the active learning model from

O((d + log(1/δ) + log log(1/ǫ)) log(1/ǫ)) labeled examples, and in the passive learning model

from O
(

d+log(1/δ)
ǫ

)

examples.

Our proof is through a series of lemma. First, (Lovasz and Vempala, 2007) have shown how to

reduce to the nearly isotropic case.

Lemma 18 ((Lovasz and Vempala, 2007)) For any constant κ > 0, there is a polynomial time

algorithm that, given polynomially many samples from a log-concave distribution D, outputs an

estimate Σ of the covariance matrix of D such that, with probability 1 − δ the distribution D′

obtained by sampling x from D and producing Σ−1/2x has 1
1+κ ≤ E((u · x)2) ≤ 1 + κ for all unit

vectors u.

As a result of Lemma 18, we can assume without loss of generality that the distribution D
satisfies 1

1+κ ≤ E((u ·x)2) ≤ 1+κ for an arbitrarily small constant κ. By Theorem 16, this implies

that, without loss of generality, there are constants c1, ..., c4 such that, for the density f of any one

or two-dimensional marginal D′ of D, we have

f(x) ≥ c1 for all x with ||x|| ≤ c2, (10)

and for all x,

f(x) ≤ c3 exp(−c4||x||). (11)

We will show that these imply that D is admissible.

Lemma 19 (a) There exists c such that for any two unit vectors u and v in R
d we have cθ(v, u) ≤

dD(u, v).
(b) For any c6 > 0, there is a c7 > 0 such that the following holds. Let u and v be two unit

vectors in Rd, and assume that θ(u, v) = α < π/2. Then

Px∼D[sign(u · x) 6= sign(v · x), |v · x| ≥ c7α] ≤ c6α.
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Proof (a) Projecting D onto a subspace can only reduce the norm of its mean, and its variance in any

direction. Therefore, as in the proof of Lemma 3, we may assume without loss of generality that d =
2. Here, let us define A to be the region of disagreement between u′ and v′ intersected with the ball

Bc2 of radius c2 in R2. Then we have dD2(u
′, v′) ≥ vol(A) infx∈AD2(x) ≥ vol(Bc2)c1θ(u, v).

(b) This proof basically amounts to observing that everything that was needed for the proof of

Theorem 4 is true for D, because of (10) and (11).

Armed with Lemma 19, to prove Theorem 17, we can just apply Theorem 8.

Appendix E. Lower Bounds

The proof of our lower bounds (Theorem 13) relies on a lower bound on the packing numbers

MD(C, ǫ). Recall that the ǫ-packing number, MD(C, ǫ), is the maximal cardinality of an ǫ-separated

set with classifiers from C, where we say that w1, ..., wN are ǫ-separated w.r.t D if dD(wi, wj) > ǫ
for any i 6= j.

Lemma 20 There is a positive constant c such that, for all β < c, the following holds. Assume that

D is β log-concave in Rd, and that its covariance matrix has full rank. For all sufficiently small ǫ,

d ∈ N , we have MD(C, ǫ) ≥
√
d
2

(

c
2ǫ

)d−1 − 1.

Proof We first prove the lemma in the case that D is isotropic. The proof in this case follows the

outline of a proof for the special case of the uniform distribution in (Long, 1995).

Let UBALLd be the uniform distribution on the surface of the unit ball in R
d. By Theorem 11,

there exists c such that for any two unit vectors u and v in R
d we have cθ(v, u) ≤ dD(u, v). This

implies that for a fixed u the probability that a randomly chosen v has dD(u, v) ≤ ǫ is upper bounded

by the volume of those vectors in the interior of the unit ball whose angle is at most ǫ/c divided

by the volume of the unit ball. Using known bounds on this ratio (see (Long, 1995)) we have

Pv∈UBALLd
[dD(u, v) ≤ ǫ] ≤ 1√

d

(

2ǫ
c

)d−1
, so Pu,v∈UBALLd

[dD(u, v) ≤ ǫ] ≤ 1√
d

(

2ǫ
c

)d−1
. That

means that for a fixed s if we pick s normal vectors at random from the unit ball, then the expected

number of pairs of half-spaces that are ǫ-close according to D is at most s2√
d

(

2ǫ
c

)d−1
. Removing one

element of each pair from S yields a set of s− s2√
d

(

2ǫ
c

)d−1
halfspaces that are ǫ-separated. Setting

s =
√
d

(2ǫ/c)d−1 , leads the desired result.

To handle the non-isotropic case, suppose that Σ is the covariance matrix of D, so that Σ−1/2

is the whitening transform. Let D′ be the whitened version of D, i.e. the distribution obtained by

first choosing x from D, and then producing Σ−1/2x. We have dD(v,w) = dD′(vΣ1/2, wΣ1/2)
(because sign(v · x) 6= sign(w · x) iff sign((vΣ1/2) · (Σ−1/2x)) 6= sign((wΣ1/2) · (Σ−1/2x))). So

we can use an ǫ-packing w.r.t. D′ to construct an ǫ-packing of the same size w.r.t. D.

Now we are ready to prove Theorem 13.

Theorem 13. For a small enough constant β we have: (1) for any β log-concave distribution D
whose covariance matrix has full rank, the sample complexity of learning origin-centered linear

separators under D in the passive learning model is Ω
(

d
ǫ +

1
ǫ log

(

1
δ

))

; (2) the sample complexity

of active learning of linear separators under β log-concave distributions is Ω
(

d log
(

1
ǫ

))

.

Proof First, let us consider passive PAC learning. It is known (Long, 1995) that, for any distribution

D, the sample complexity of passive PAC learning origin-centered linear separators w.r.t. D is at
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least

d− 1

e

(

MD(C, 2ǫ)

4

)1/(d−1)

.

Applying Lemma 20 gives an Ω(d/ǫ) lower bound. It is known (Long, 1995) that, if for each ǫ,
there is a pair of classifier v,w such that dD(v,w) = ǫ, then the sample complexity of PAC learning

is Ω((1/ǫ) log(1/δ)); this requirement is satisfied by D.

Now let us consider the sample complexity of active learning. As shown in (Kulkarni et al.,

1993), in order to output a hypothesis of error at most ǫ with probabality at least 1 − δ, where

δ ≤ 1/2 and active learning algorithm that is allowed to make arbitrary yes-no queries must make

Ω(logMD(C, ǫ)) queries. Using this together with Lemma 20 we get the desired result.

Appendix F. The inseparable case: Disagreement-based active learning

Theorem 14. Let β ≥ 0 be a sufficiently small constant. Assume that D is an isotropic β log-

concave distribution in Rd. For any w∗, for any ǫ, capw∗,D(ǫ) is O(d1/2+
β

2 ln 2 log(1/ǫ)). Thus

disw∗,D(ǫ) = O(d1/2+
β

2 ln 2 log(1/ǫ)).

Proof Roughly, we will show that almost all x classified by a large enough margin by w∗ are not in

DIS(B(w∗, r)), because all hypotheses agree with w∗ about how to classify such x, and therefore

all pairs of hypotheses agree with each other. Consider w such that d(w,w∗) ≤ r; by Theorem 11

we have θ(w,w∗) ≤ cr. Define C = eβ⌈log2(d+1)⌉ as in the proof of Theorem 11. For any x such

that ||x|| ≤
√
dC log(1/r) we have

(w · x− w∗ · x) < ||w − w∗|| × ||x||
≤ cr

√
dC log(1/r).

Thus, if x also satisfies |w∗ · x| ≥ cr
√
dC log(1/r) we have (w∗ · x)(w · x) > 0. Since this is true

for all w, any such x is not in DIS(B(h, r)). By Theorem 11 we have, for a constant c2, that

Px∼D(|w∗ · x| ≤ cr
√
Cd log(1/r)) ≤ c2r

√
Cd log(1/r).

Moreover, by Theorem 11 we also have

Px∼D[||x|| ≥ cr
√
Cd log(1/r)] ≤ r.

These both imply capw∗,D(ǫ) = O(C1/2
√
d log(1/ǫ)).

Appendix G. Massart and Tsybakov noise

In this section we analyze label complexity for active learning under the popular Massart and Tsy-

bakov noise conditions, proving Theorem 15.

We consider a variant of the Tsybakov noise condition (Mammen and Tsybakov, 1999). We

assume that the classifier h that minimizes P(x,y)∼DXY
(h(x) 6= y) is a linear classifier, and that, for
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the weight vector w∗ of that optimal classifier, there exist known parameters α, a > 0 such that, for

all w, we have

a(dD(w,w
∗))1/(1−α) ≤ err(w) − err(w∗). (12)

By generalizing Theorem 4 so that it provides a stronger bound for larger margins, and combin-

ing the result with the other lemmas of this paper and techniques from (Balcan et al., 2007), we get

the following.

Theorem 15. Let s = O(log(1/ǫ)). Assume that the distribution DXY satisfies the Tsybakov

noise condition for constants α ∈ [0, 1) and a ≥ 0, and that the marginal D on R
d is isotropic

log-concave. (1) If α = 0, we can find a separator with excess error ≤ ǫ with probability 1 − δ

using O(log(1/ǫ))(d+log(s/δ)) labeled examples in the active learning model, and O
(

d+log(1/δ)
ǫ

)

labeled examples in the passive learning model. (2) If α > 0, we can find a separator with excess

error ≤ ǫ with probability 1− δ using O((1/ǫ)2α log2(1/ǫ))(d+ log(s/δ)) labeled examples in the

active learning model.

Note that the case where α = 0 is more general than the well-known Massart noise condition

(Massart and Nedelec, 2006). In this case, for active learning, Theorem 15 improves over the pre-

viously best known results (Hanneke and Yang, 2012) by a (disagreement coefficient) disw∗,D(ǫ)
factor. For passive learning, the bound on the total number of examples needed improves by

log(capw∗,D(ǫ)) factor the previously known best bound of (Giné and Koltchinskii, 2006). It is con-

sistent with recent lower bounds of (Raginsky and Rakhlin, 2011) that include log(capw∗,D(ǫ)) be-

cause those bounds are for a worst-case domain distribution, subject to a constraint on capw∗,D(ǫ).
When α > 0, the previously best result for active learning (Hanneke and Yang, 2012) is

O((1/ǫ)2αdisw∗,D(ǫ)(d log(disw∗,D(ǫ)) + log(1/δ)).

Combining this with our new bound on disw∗,D(ǫ) (Theorem 14) we get a bound of

O((1/ǫ)2αd3/2 log(1/ǫ)(log(d) + log log(1/ǫ)) + log(1/δ))

for log-concave distributions. So our Theorem 15 saves roughly a factor of
√
d, at the expense of

an extra log(1/ǫ) factor.

We note that the results in this section can also be extended to nearly log-concave distributions by

making use of our results in Section 6.1.

G.1. Proof of Theorem 15

We are now ready to discuss the proof of Theorem 15. As in (Balcan et al., 2007), we will use a

different algorithm in the inseparable case (Algorithm 2).

G.1.1. MASSART NOISE (α = 0)

We start by analyzing Algorithm 2 in the case that α = 0; the resulting assumption is more general

than the well-known Massart noise condition.

From the log-concavity assumption, the proof of Theorem 5, with slight modifications, proves

that there exists c such that for all w we have

caθ(w,w∗) ≤ err(w)− err(w∗). (13)
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Algorithm 2 Margin-based Active Learning (non-separable case)

Input: a sampling oracle for D, and a labeling oracle a sequence of sample sizes mk > 0, k ∈ Z+;

a sequence of cut-off values bk > 0, k ∈ Z+ a sequence of hypothesis space radii rk > 0, k ∈ Z+;

a sequence of precision values ǫk > 0, k ∈ Z+

Output: weight vector ŵs.

• Pick random ŵ0: ‖ŵ0‖2 = 1.

• Draw m1 examples from DX , label them and put into W .

– iterate k = 1, . . . , s

∗ find ŵk ∈ B(ŵk−1, rk) (‖ŵk‖2 = 1) to approximately minimize training error:
∑

(x,y)∈W I(ŵk · xy) ≤ minw∈B(ŵk−1,rk)

∑

(x,y)∈W I(w · xy) +mkǫk.

∗ clear the working set W

∗ until mk+1 additional data points are labeled, draw sample x from DX

· if |ŵk · x| ≥ bk, reject x

· otherwise, ask for label of x, and put into W

end iterate

We prove by induction on k that after k ≤ s iterations, we have

err(ŵk)− err(w∗) ≤ ca2−k

with probability 1− δ
2

∑

i<k
1

(1+s−i)2
. The case k = 1 follows from classic bounds (Vapnik, 1998).

Assume now the claim is true for k− 1 (k ≥ 2). Then at the k-th iteration, we can let S1 = {x :
|ŵk−1 · x| ≤ bk−1} and S2 = {x : |ŵk−1 · x| > bk−1}. By induction hypothesis, we know that with

probability at least 1 − δ
2

∑

i<k−1
1

(1+s−i)2
ŵk−1 has excess errors at most ca2−(k−1), implying,

using (13), that θ(ŵk−1, w
∗) ≤ 2−(k−1). By assumption, θ(ŵk−1, ŵk) ≤ 2−(k−1).

From Theorem 4, recalling that a is a constant, we have both:

P((ŵk−1 · x)(ŵ · x) < 0, x ∈ S2) ≤ ca2−k/4

P((ŵk−1 · x)(w∗ · x) < 0, x ∈ S2) ≤ ca2−k/4.

Taking the sum, we obtain:

P((ŵ · x)(w∗ · x) < 0, x ∈ S2) ≤ ca2−k/2. (14)

Therefore:

err(ŵk)− err(w∗) ≤ (err(ŵk|S1)− err(w∗|S1))P(S1)

+ P((ŵ · x)(w∗ · x) < 0, x ∈ S2)

≤ (err(ŵk|S1)− err(w∗|S1))c3bk−1

+ ca2−k/2.

By standard Vapnik-Chervonenkis bounds, we can choose C s.t. with mk samples, we obtain

err(ŵk|S1)− err(w∗|S1) ≤ ca2−k/(c3bk−1)
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with probability 1 − (δ/2)/(1 + s − i)2. Therefore err(ŵk) − err(w∗) ≤ ca2−k with probability

1− δ
2

∑

i<k
1

(1+s−i)2
, as desired.

The bound on the total number of examples, labeled and unlabeled, follows the same line of

argument as Theorem 6, except with the constants of this analysis.

G.1.2. TSYBAKOV NOISE (α > 0)

We now treat the more general Tsybakov noise.

For this analysis, we need a generalization of Theorem 4 that provides a stronger bound on the

probably of large-margin errors, using a stronger assumption on the margin.

Theorem 21 There is a positive constant c such that the following holds. Let u and v be two unit

vectors in Rd, and assume that θ(u, v) = η < π/2. Assume that D is isotropic log-concave in Rd.

Then, for any b ≥ cη, we have

Px∼D[sign(u · x) 6= sign(v · x) and |v · x| ≥ b] ≤ C5η exp(−C6b/η), (15)

for absolute constants C5 and C6.

Proof Arguing as in the proof of Lemma 3, we may assume without loss of generality that d = 2.

Next, we claim that each member x of E has ||x|| ≥ b/η. Assume without loss of generality

that v · x is positive. (The other case is symmetric.) Then u · x < 0, so the angle of x with u is

obtuse, i.e. θ(x, u) ≥ π/2. Since θ(u, v) = η, this implies that

θ(x, v) ≥ π/2− η. (16)

But x ·v ≥ b, and v is unit length, so ||x|| cos θ(x, v) ≥ b, which, using (16), implies ||x|| cos(π/2−
η) ≥ b, which, since cos(π/2−η) ≤ η for all η ∈ [0, π/2], in turn implies ||x|| ≥ b/η. This implies

that, if B(r) is a ball of radius r in R
2, that

P[E] =

∞
∑

i=1

P[E ∩ (B((i+ 1)(b/η)) −B(i(b/η)))]. (17)

Let us bound one of the terms in RHS. Choose i ≥ 1.

Let f(x1, x2) be the density of D. We have

P[E ∩ (B((i+ 1)(b/η)) −B(i(b/η)))]

=

∫

(x1,x2)∈B((i+1)(b/η))−B(i(b/η))
1E(x1, x2)f(x1, x2) dx1dx2.

Let Ri = B((i+ 1)(b/η)) −B(i(b/η). Applying the density upper bound from Lemma 2 with

d = 2, there are constants C1 and C2 such that

P[E ∩ (B((i+ 1)(b/η)) −B(i(b/η)))]

≤
∫

(x1,x2)∈Ri

1E(x1, x2)C1 exp(−(b/η)C2i)dx1dx2

= C1 exp(−(b/η)C2i) ·
∫

(x1,x2)∈Ri

1E(x1, x2) dx1dx2.
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If we include B(i(b/η)) in the integral again, we get

P[E ∩ (B((i+ 1)(b/η)) −B(i(b/η)))]

≤ C1 exp(−(b/η)C2i)

∫

(x1,x2)∈B((i+1)(b/η))
1E(x1, x2) dx1dx2.

Now, we exploit the fact that the integral above is a rescaling of a probability with respect to the

uniform distribution. Let C3 be the volume of the unit ball in R
2. Then, we have

P[E ∩ (B((i + 1)(b/η)) −B(i(b/η)))]

≤ C1 exp(−(b/η)C2i)C3(i+ 1)2(b/η)2η/π

= C4(b/η)
2η(i+ 1)2 exp(−(b/η)C2i),

for C4 = C1C3/π. Returning to (17), we get

P[E] =

∞
∑

i=1

C4(b/η)
2η(i + 1)2 exp(−(b/η)C2i)

= C4(b/η)
2η

∞
∑

i=1

(i+ 1)2 exp(−(b/η)C2i)

= C4(b/η)
2 × 4e2(b/η)C2 − 3e(b/η)C2 + 1

(

e(b/η)C2 − 1
)3 × η.

Now, if b/η > 4/C2, we have

P[E] ≤ C4(b/η)
2 × 5e2(b/η)C2

(

e(b/η)C2/2
)3 × η

≤ C5η × (b/η)2 exp(−(b/η)C2)(where C5 = 40C4)

= C5η × exp(−(b/η)C2 + 2 ln(b/η))

≤ C5η × exp(−(b/η)C2/2),

completing the proof.

Now we are ready to prove Theorem 15 in the case that α > 0.

Under the noise condition 12 and from the log-concavity assumption, we obtain that there exists

c such that for all w we have:

ac1/(1−α)θ(w,w∗)1/(1−α) ≤ err(w)− err(w∗).

Let us denote by c̃ = ac1/(1−α). For all w, we have:

c̃θ(w,w∗)1/(1−α) ≤ err(w) − err(w∗). (18)

We prove by induction on k that after k ≤ s iterations, we have

err(ŵk)− err(w∗) ≤ c̃2−k
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with probability 1− δ
2

∑

i<k
1

(1+s−i)2 . The case k = 1 follows from classic bounds.

Assume now the claim is true for k − 1 (k ≥ 2). Then at the k-th iteration, we can let S1 =
{x : |ŵk−1 · x| ≤ bk−1} and S2 = {x : |ŵk−1 · x| > bk−1}. By the induction hypothesis, we know

that with probability at least 1− δ
∑

i<k−1
1

(1+s−i)2
, ŵk−1 has excess errors at most c̃2−(k−1)(1−α),

implying

θ(ŵk−1, w
∗) ≤ 2−(k−1)(1−α).

By assumption, θ(ŵk−1, ŵk) ≤ 2−(k−1)(1−α).

Applying Theorem 21, we have both:

P((ŵk−1 · x)(ŵ · x) < 0, x ∈ S2) ≤ c̃2−k/4

P((ŵk−1 · x)(w∗ · x) < 0, x ∈ S2) ≤ c̃2−k/4

Taking the sum, we obtain:

P((ŵ · x)(w∗ · x) < 0, x ∈ S2) ≤ c̃2−k/2. (19)

Therefore:

err(ŵk)− err(w∗) ≤ (err(ŵk|S1)− err(w∗|S1))P(S1)

+P((ŵ · x)(w∗ · x) < 0, x ∈ S2)

≤ (err(ŵk|S1)− err(w∗|S1))bk

+c̃2−k/2.

By standard bounds, we can choose C1, C2 and C3 s.t. with mk samples, we obtain err(ŵk|S1)−
err(w∗|S1) ≤ ǫk ≤ c̃2−k

2bk
with probability 1− (δ/2)/(1 + s− i)2. Therefore err(ŵk)− err(w∗) ≤

c̃2−k with probability 1− δ
2

∑

i<k
1

(1+s−i)2
, as desired, completing the proof of Theorem 15.
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