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Abstract

The relationship between several random variables is
gathered by their joint distribution. While this distribu-
tion can be easily determined by the marginals when
an assumption of independence is satisfied, there are
situations where the random variables are connected
by some dependence structure. One such structure that
arises often in practice is comonotonicity. This type of
dependence refers to random variables that increase or
decrease simultaneously. This paper studies the prop-
erty of comonotonicity when the uncertainty about the
random variables is modelled using p-boxes and the
induced coherent lower probabilities. In particular, we
analyse the problem of finding a comonotone lower
probability with given marginal p-boxes, focusing on
the existence, construction and uniqueness of such a
model. Also, we prove that, under some conditions,
there is a most conservative comonotone lower prob-
ability with the given marginal p-boxes, that will be
called the comonotone natural extension.

Keywords: Comonotonicity, lower probabilities, p-
boxes, belief functions, natural extension

1. Introduction

The joint analysis of several random variables is a task of
interest in many complex scenarios, because it allows us
to take into account the interactions between the different
factors. Of course, under the assumption of independence,
multivariate distributions are easier to handle, because it
allows to decompose the joint distribution function as the
product of the marginals. Without the assumption of inde-
pendence, Sklar’s Theorem [23] allows a similar decom-
position of the joint distribution function by applying a
copula [18] to the marginal distributions.

Another important dependence structure is that of
comonotonicity, that corresponds to the extreme case of
positive dependence: there is an increasing relationship
between the marginals, so they increase or decrease simul-
taneously. In terms of copulas, it corresponds to applying
the minimum operator to the joint distribution functions.
Besides its good mathematical properties, comonotonicity
has shown to be an interesting tool when dealing with risk
measures [8], stochastic orderings [5, 15, 17] or finance
models [6, 7], for instance.

In this paper, we assume that the probability distribu-
tions, both the marginals and the joint, cannot be elicited
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with total precision. In this framework, we can use the mod-
els within the Theory of Imprecise Probabilities [1, 25]
to model our available information. In particular, here we
consider two models: coherent lower probabilities [25]
and p-boxes [9]. From the epistemic point of view, they
can be used to model the available information about a
real but unknown probability measure or cumulative dis-
tribution function. Even if probabilities and distribution
functions are equivalent, this is not the case of coherent
lower probabilities and p-boxes, the latter being less expres-
sive. Nevertheless, p-boxes possess very good properties
from the practical point of view, because they are related
to belief functions [22] and their credal set can be easily
computed [14].

The notion of independence has been widely investigated
in the field of imprecise probabilities [2, 4, 11]. Moreover,
several attempts were made in the last years to model de-
pendence with imprecise probability models. In particular,
Sklar’s Theorem has been adapted when dealing with mini-
tive belief functions [21] or random sets [20], or even when
the probabilistic information is given in terms of uni- and
bivariate p-boxes [16]. Also, the notion of comonotonicity
for lower probabilities was given in [13], where the main
properties of comonotone lower probabilities were studied.

One of the main properties of comonotone probability
measures is that given two marginal probability measures,
there is always a joint comonotone probability measure
with the given marginals, and this joint model is unique and
it can be easily computed. The problem of building a joint
comonotone lower probability with given marginals was
only studied in [13] for very particular cases such as possi-
bility measures, giving some sufficient and some necessary
conditions for its existence. The main aim of this paper is to
investigate in depth how to build a comonotone lower prob-
ability with given marginals. More in detail, we model the
uncertainty about the marginal models using p-boxes and
we investigate whether we can find a comonotone lower
probability with the given marginals. This comonotone
model will be called a comonotone extension. In particular,
we wonder whether such comonotone extension (i) always
exists; (ii) can be built; (iii) is unique. In particular, we will
see that, even if the comonotone extension does not always
exist, it is possible to characterise its existence in terms
of its marginal p-boxes. Also, when it exists we show a
constructive method for building it, but we also show that,
when it exists, it may not be unique. This leads us to our
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second aim in this paper: is it possible to characterise the
least informative comonotone extension, (what we shall
call comonotone natural extension)? We shall prove that,
although such an extension may not exist in general, we can
give necessary and sufficient conditions for its existence as
well as a constructive procedure

After introducing the main notions about lower probabil-
ities, belief functions and p-boxes in Section 2, we recall
the definition of comonotonicity for probability measures
and coherent lower probabilities in Section 3. Then, we
analyse the existence, construction and uniqueness of a
comonotone extension and the comonotone natural exten-
sion in Sections 4 and 5, respectively. We conclude the
paper in Section 6 with some final comments. Note that,
due to space limitations, proofs have been omitted.

2. Preliminaries

In this section we review the main tools we will use in the
paper, namely lower probabilities, belief functions and (uni-
and bi-variate) p-boxes.

2.1. Lower Probabilities

Consider a finite possibility space Q and denote by P(Q)
the set of all the (finitely additive) probability measures
in Z(Q). A lower probability is a function P : Z(Q) —
[0,1] satisfying the normalisation properties P(0) = 0 and
P(Q) =1 as well as monotonicity: A C B implies P(A) <
P(B). From the lower probability we can define an upper
probability using the conjugacy relation given by:
P(A)=1-P(A°) VACQ.

The probabilistic information given by the lower probabil-
ity can be summarised using a closed and convex set of
probabilities, usually called credal set, given by:

M (P)={P€P(Q)|P(A) > P(A) VAC Q}.

We assume that P satisfies the rationality property of coher-
ence, which means that

P(A)=min{P(A) |P€ . #(P)} VACQ.

A coherent lower probability is completely monotone
when the function m : (Q) — R given by:

mA)= Y (~-1)"Ep(B) vACQ
BCA

is non-negative. In that case, m is called basic probabil-
ity assignment, and it allows to retrieve the initial lower
probability using the following formula:

P(A)=Y m(B) VBCQ. (1)
BCA
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Completely monotone lower probabilities are also called
belief functions and play a key role in Evidence Theory [22].
Also, a belief function is characterised using the focal
events, which are those events A with strictly positive ba-
sic assignment: m(A) > 0. The reason is that once that we
know the focal events and their basic probability assign-
ment, Equation (1) can be simplified, because we just need
to consider the focal events included in A instead of all the
subevents of A.

In this paper, we follow an epistemic interpretation of
lower probabilities. This means that there is a real but un-
known probability measure Py modelling our uncertainty.
In that case, the lower probability P and its conjugate
upper probability P are lower and upper bounds for Py:
P(A) < Py(A) < P(A) for every A C Q. Following this in-
terpretation, .# (P) contains the candidates for being the
real but unknown probability measure Fy, meaning that we
know that Py € . (P).

2.2. Random Variables and Random Vectors

Consider now a random variable X taking values in the pos-
sibility space 2" = {xy,...,x,} thatis endowed with the or-
der x; < ... < x,. Our uncertainty about X can be modelled
with a lower probability Py and its conjugate upper proba-
bility Py, but instead we can also use a probability box (or
p-box, for short). A (univariate) p-box (F X,FX) [9] is a pair
of cumulative distribution functions Fy,Fx : 2" — [0,1]
satisfying Fy < Fx. Following the epistemic interpretation,
a p-box can be used to model the available information
about the cumulative distribution function associated with
Py, Fp,. From the p-box we can also define a credal set:

M(Fy,Fx)={PcP(2)|Fyx <Fp<Fx}.

Also, taking lower and upper envelopes, we obtain a coher-
ent lower probability and its conjugate upper probability:

B(Ex,fx)(A) = min{P(A) | Fxy <Fp < Fx},
P(ry ) (A) = max {P(A) | Fx <Fp <Fx} VAC 2.

One important property is that the probabilistic information
encoded by the p-box and its associated lower probability
is the same, meaning that .2 (F,F) = .4 (B(Exfx))' Also,
the lower probability P, Fy) is not only coherent but it
is also a belief function whose focal events are ordered
intervals [24, Thm.17].

Consider now two random variables X and Y taking
values in the possibility spaces 2~ = {xi,...,x,} and
Y ={y1,...,ym} satisfyingx; <...<xpandy; <...<yp.
The probabilistic information about the joint distribution
can be modelled using a coherent lower probability Py y.
Instead, as in the univariate framework, we can also con-
sider a bivariate p-box. A bivariate p-box (Fyy,Fx.y)
is a pair of functions Fy y,Fxy : 2" x % — [0,1] such
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that F xy < fxy, they are component-wise increasing and
normalised: Fy y (Xn,Ym) = Fxy (Xn,ym) = 1. Note that
F XJ/,FX’Y need not be bivariate cumulative distribution
functions since they may not satisfy the rectangle inequal-
ity (see [19, Ex.1]). Again, we can consider its credal set,
given by:

///(Ex,wFX,Y) = {PEP(% X @) |EX,Y <Fp SFX,Y}-

In contrast to the univariate framework, the lower and upper

envelopes of this credal set, given by:
Pyy(A)=min{P(A) |F <Fp <F},
Pxy(A)=max{P(A) |[F <Fp<F} YACZ x¥,

may not be coherent.
Also, given a coherent lower probability Py y : Z( 2" x

%) — [0,1] and its conjugate upper probability Px y we
can define a bivariate p-box as:

(2)
(3)

Ex,y(xia)’j) :Ex,y({xla---»xi} X {1,971,
fxyy(xivyj) = FX,Y({XIV . ,.X'i} X {yl PR 7yj})7
foreveryi=1,...,nand j=1,...,m.

Also, from the coherent lower probability Py y and its
conjugate Py y, we can define the marginal coherent lower
probabilities Py and Py, given by:

Py(A)=Pxy(Ax¥) VACZ,
Py(B)=Pyy(Z xB) VBC ¥,

as well as the marginal p-boxes (Fy,Fx) and (Fy,Fy):

EX(xi) :EX,Y(xivym) :BX,Y({xlv""xi} X @)7 )

Fx(xi) = Fxy (xi,ym) = Pxy ({x1,...,xi} x %),
foreveryi=1,...,n, and

Fy(yj) = Fxy (i) =Pxy(Z x{y1,....9;}), ()

fy()’j) :FX,Y(xnayi) FX,Y(% Xyt 1),

forevery j=1,...,m.

From now on, we consider two univariate p-boxes
(Fx,Fx) and (Fy,Fy) representing our uncertainty about
the marginals X and Y. For the sake of simplicity, we
assume that Py 7. ({x;}) > 0 and Pp, 7, ({y;}) >0
for every i = 1,...,n and j = 1,...,n. According to
[24, Prop.4], this is equivalent to Fy (x;) < Fx(x;+1) and
Fy(y;) < Fy(yj+1) for every i =1,...,n—1 and j =
I,....m—1.

3. Comonotonicity

In this paper we deal with one type of dependence structure
called comonotonicity. In this section, we first review the

212

definition of comonotone random variables and the equiv-

alent representations. Later, we analyse the definition of

comonotonicity given in [13] for lower probabilities.
Before starting, recall the following notation:

» Two elements (x;,y;), (xx,y1) € Z x ¥ are comono-
tone if x; < x; implies y; < y; and y; < y; implies
xi < Xp.

* AneventA C 2" x ¥ is increasing if all the elements
in A are comonotone.

3.1. Comonotone Probability Measures

Given a random vector (X,Y) with joint probability Py y,
its support is defined as:

Supp(Pxy) = {(x,y) € Z x ¥ | Pxy ({(x,y)}) > 0}.

Using the support, we can define the notion of comono-
tonicity.

Definition 1 Given a random vector (X,Y), Pxy is
comonotone if its support Supp(Px y) is an increasing set
inZ x%.

According to this definition, comonotone random variables
are those whose support is increasing, or in other words,
when there exists an increasing relationship between them.
The next theorem, that can be found for example in [6,
Thm.2], [10, Sec.2] or [3, Prop.2.1], shows some equivalent
representations of comonotonicity.

Theorem 2  Given a random vector (X,Y), Pxy is
comonotone if and only if any, hence all, of the following
conditions holds:

1. Supp(Px y) is an increasing setin & X ¥
2. Forevery (x,y), P(D(]X’y)) =0or P(D(Zx’y)) =0, where

DY) = {(xi,y)) € X x ¥ |xi>x, y; <y},

i)

{(xi,yj) € Z'x ¥ | xi <x,y; >y}

3. Fxy(x,y) = min{Fx(x),Fy(y)} for every (x,y) €
X <Y,

This result shows some alternative equivalent representa-
tions of comonotonicity. In particular, the third property
gives a constructive method for building a comonotone
probability measure Py y given marginals Py and Py. For
this aim, we just need to consider the marginal cdfs Fy and
Fy, then we define Fx y (x,y) = min{Fx (x),Fy(y)} for ev-
ery (x,y) € & x %, and its associated probabiltiy measure
Py y is comonotone. This ensures the existence of a joint
comonotone probability measure with given marginals; in
addition, such joint comonotone model is unique.
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3.2. Comonotone Lower Probabilities

In a previous paper [13], the notion of comonotonicity was
given for lower probabilities.

Definition 3 ([13]) A coherent lower probability Pyy:
P (X x¥)—[0,1] is comonotone if every P € .4 (Py y)
is comomonotone.

The idea behind this definition is that, from an epistemic
point of view, .# (P y) contains all the probability mea-
sures candidates for being a real but unknown probability
Py. If we know that Py is comonotone, it seems reason-
able to require that all the probabilities in .# (Fy y) are
comonotone too. '

In [13], it was also studied to which extent the properties
in Theorem 2 are equivalent to the comonotonicity of lower
probabilities.

Theorem 4 ([13]) Let Py y : (2 x %) — [0,1] be a
coherent lower probability with conjugate Px y. The fol-
lowing statements are equivalent:

1. Py y is a comonotone lower probability.

2. Supp(Pxy) ={(x,y) € Z'x¥ | Pxy({(x,y)}) > 0}
is an increasing setin Z X ¥'.

3. Forevery (x,y) € 2 x ¥, either Px y (D(lx’y)) =0or

Py (D) =0,

Also, when the previous equivalent conditions hold, the
bivariate p-box (Fy y,Fx y) associated with Py y using
Equations (2) and (3) can be expressed as:

Fyxy(x,y) =min{Fy(x),Fy(y)}, (6)
Fx y(x,y) = min {Fx(x),Fy (y)} V(x,y) € X x¥.

However, the converse does not hold.

Comparing Theorems 2 and 4, we can see only one but
very important difference: when the coherent lower prob-
ability is comonotone, its associated bivariate p-box can
be expressed in terms of the marginals using the minimum
operator, but the converse does not hold in general (see [13,
Ex.19] for a counterexample).

This is the starting point of the research presented in this
paper. The third item in Theorem 2 guarantees the existence
and uniqueness of a comonotone probability measure with
given marginals, and it also gives a constructive procedure.
In this paper, we consider two marginal models given in
terms of p-boxes (Fy,Fx) and (Fy,Fy), and we analyse
whether:

(1) There is always a joint comonotone lower probability
whose marginals are (Fy,Fx) and (Fy,Fy). In case
there is not, is it possible to determine which addi-
tional conditions must be imposed to guarantee its
existence?
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(i) Can we give a constructive approach for building such
a comonotone model (if it exists)?

(iii) In case it exists, is this joint comonotone model
unique?

In the next section, we dig into these questions related
to the existence, construction and uniqueness of a joint
comonotone model with given marginal p-boxes.

4. Comonotone Extension

Consider two marginal p-boxes (Fy,Fx) and (Fy,Fy)
modelling our uncertainty about the marginals X and Y.
We introduce the following terminology.

Definition 5 Consider two marginal p-boxes (Fy,Fx)
and (Fy,Fy). A coherent lower probability Py y : 2 (%" x
%) — [0,1] is a comonotone extension of (Fy,Fx) and
(Ey,Fy) if it is comonotone and its marginal p-boxes
obtained using Equations (4) and (5) are (Fy,Fx) and
(EY7FY)'

In the rest of this section we answer the questions related to
the existence, construction and uniqueness of a comonotone
extension Py y of given marginal p-boxes (Fy,Fx) and
(EY7F Y)'

For the sake of simplicity, in what remains we consider
the following notation and terminology:

o (x;,¥j) < (%, 1) if x; < x, y; < y; and at least one of

the inequalities is strict.
* The interval [a,a] will be denoted, for short, as a.

« g interval dominates b, denoted as b < @, if b < a and
b < a. When at least one of the inequalities is strict,
we speak about strict interval dominance, and denote
itb <a.

4.1. Existence of a Comonotone Extension

We start answering the first question related to the existence
of a comonotone extension with given marginal p-boxes.
Unfortunately, the answer is negative.

Example 1 Consider the possibility spaces Z = {x1,x}
and % = {y1,y>} and the marginal p-boxes (Fy,Fyx) and
(Fy F) given by:

2 | x1 x Y|y »
Fx() [0 1 E0) 05 1
Fx(xi) 1 1 Fy(y,') 0.5

Note that (Ey,Fy) satisfies Fy = Fy, hence its credal
set only contains one single probability Py given by
Py({y1}) = Pr({y2}) = 0.5. On the other hand, the credal
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set of associated with (Fx,Fx) is formed by all the proba-
bility measures in P(Z").

If there exists a comonotone extension Py y of (Fx,Fx)
and (Fy,Fy), from Theorem 4 its associated bivari-
ate p-box (Fy y,Fxy) must satisfy Equation (6). Hence,
(Fxy,Fxy) would be given by:

Fy(x) | [0,1] [1,1] I
[0,1] I, 1,1
| 0,05 05 05 05 05
Fyy(y) | = n || B0

However, since FX’Y is sub-additive [25, Sec.2.7.4.d],
Fxﬁy(AUB) < Fxﬁy(A) +Fx’y(B)f0r everyA,B CIEXx¥.
Taking A = {(x1,y2)} and B = {(x1,y1)}:

ﬁx,Y({(xl,yz)})
> Pxy ({(x1,31), (x1,52)}) = Pxy ({(x1,31)})
:FX,Y(XI V) —Fxy(x1,y1)=1-05=0.5>0.

Also, from [25, Sec.2.7.4.d], Pxy(AUB) < Py y(A) +
Pxy(B) for every A, B C 2 x % . Taking A = {(x1,y1)}
and B = {(x2,y1)}, we obtain:

Pyy({(x2,31)})
> Pyy ({Ga,31), (2,31)})
= EX,Y(XZayl) —Fyy(xi,y1) =

*Bx,y<{(xlaJ’1)})
05-0=0.5>0.

Hence, both (x2,y1) and (x1,y2) belong to Supp(Py y).
Since these two elements are not comonotone, neither is
Supp(BXAY). According to Theorem 4, we conclude that
Py y is not comonotone. ¢

We conclude that not all the marginal p-boxes have a
comonotone extension. In spite of this negative answer, our
next theorem characterises the conditions that the marginal
p-boxes (Fy,Fx) and (Fy,Fy) must satisfy in order to
guarantee the existence of a comonotone extension.

Theorem 6 Consider two marginal p-boxes (Fy,Fx) and
(Fy,Fy). They have a comonotone extension Py y if and
only if for every (x,y) € Z X ¥ there is an interval domi-
nance relation between Fy (x) and Fy ().

This theorem characterises the conditions that the marginal
p-boxes must satisfy in order for the comonotone extension
to exist. In fact, the sufficient and necessary condition given
in this theorem is quite simple: it only requires that Fy (x) <
Fy(y) or Fy(y) < Fx(x) for every (x,y) € 2 x % . As a
matter of fact, we can see that the p-boxes in Example 1
do not satisfy this necessary and sufficient condition, be-
cause Fy(y1) < Fx(x1) = Fx(x1) < Fy(y1), and that is
why those p-boxes do not have a comonotone extension.

In the following subsection we give a constructive ap-
proach for building a comonotone extension.
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4.2. Construction of a Comonotone Extension

Consider now two marginal p-boxes (Fy,Fx) and (Fy,Fy)
satisfying the sufficient and necessary conditions in Theo-
rem 6, and let us determine a constructive method for build-
ing a comonotone extension. First of all, by Theorem 4, we
know that if there exists a comonotone extension, its associ-
ated bivariate p-box (Fy y,Fx.y) is given by Equation (6).
Considering that bivariate p-box (F, XJ/,FXJ’), we define
the following set':

§={iy) € 2 x ¥ | By (xio1,35) < Fr (30,3,)
and By (x,v5-1) < By (.37) .- (D)

This set satisfies some interesting properties, as we enumer-
ate in the following lemma.

Lemma 7 Consider two marginal p-boxes (Fy,Fx) and
(Fy,Fy), and the bivariate p-box (Fx y,Fxy) they de-
fine using Equation (6), as well as the set S defined in
Equation (7). If for every (x,y) € & X ¥ there is an inter-
val dominance relation between Fy (x) = [Fx (x), Fx(x)]
and Fy(y) = [Fy(y),Fy(y)], then S satisfies the following
properties:

1. Sis an increasing setin 2 X .

2. If (xi,5), (e, y1) €S, (xi,y) < (xk,y1) and they are
consecutive elements® in S, then any (x,y) € 2 x X'\
S such that (x;,y;) < (x,y) < (x, 1) satisfies:

EX,Y(x?y) :EX,Y(-xiayj)7 fX,Y(x7y) :fX,Y(-xhyj)'

From this result we deduce that the set S is increasing and
the bivariate p-box only increases in S. Consider now an

increasing superset S* O S (as for example S* = S). Since
it is increasing, it can be rewritten as:
S = {(u1,v1),.. -, (us,v5) }, 3

where (u1,v1) < ... < (us,vs). This means that (S, <) is
a totally ordered space. Then, we can define a univariate
possibility space 2 = {z1,...,zs} such that z; < ... < z,.
It is possible to establish a one-to-one correspondence be-
tween S* and Z that identifies the elements (u;,v;) and z;,
foreveryi=1,...,s. Formally:

Zi:g(ui;vi) and (ulv l):g_l(zi) Vi l,...,l’l.

Now, we define a (univariate) p-box (F,Fz) in 2 as:

F7(zi) = Fxy(ui,vi), Fz(z)=Fxyu,vi) (10)
1.When i = 1 in Eq.7), we assume that Fyy(xi-1,y;) =
Fxy(xi-1,y;) = 0. Similarly, for j = 1 we assume Fy y (x;,y;j—1) =
Fxy(xi,yj-1)=0.
2. This means that there is not other (x*,y*) € § such that (x;,y;) <
(") = (e, 1)
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for every i = 1,...,s. The lower probability obtained as
the lower envelope of the credal set .# (F,,Fz) is a belief
function whose focal events are ordered intervals. The fol-
lowing result shows an interesting property of . (F,,Fz).

Proposition 8 Consider the marginal p-boxes (Fx,Fx)
and (Fy,Fy) satisfying the condition in Lemma 7 and
the bivariate p-box (F XJ/,fX’Y) they define through Equa-
tion (6). Consider an increasing set S* that is a superset
of the set S defined in Equation (7), the correspondence
in Equation (9) and the p-box (F;,Fz) defined in Equa-
tion (10). Then, there is a one-to-one correspondence be-
tween the credal sets:

M(Fz,F7) ={P,€P(Z)|F; <Fp, <Fz} and
M={Pxy €EP(Z x¥)|Pxy(S)=1,
Fxy <Fp,y < Fxy}.
The correspondence between both credal sets follows from
the proof of this result, which has been omitted due to space

limitations. On the one hand, for any P; € .4 (F,,F7), we
define Py y € A as:

Pxy(A)=P;(g(ANS*)) VAC Z x¥.

On the Bther hand, given Pyy € .#, we define P; €
M (Fyz,Fz) as:

P2(C)=Pxy(g7'(C)) vCecCz.

Using this correspondence, if we denote by P, the belief
function associated with .# (F;,Fz), we define a coherent
lower probability on & (2" x %) by:

Pyy(A)=Pz(s(ANS")) VACZ'x%. (D)

Theorem 9 In the conditions of Proposition 8, the lower
probability Py y in Equation (11) is a comonotone exten-
sion of (Fx,Fx) and (Fy,Fy), and it is a belief function.
Moreover, the basic probability assignment of Py y is given

by:
{mz (g(A))
foreveryAC & x ¥.

ifALS",

m(A) ifAC S",

(12)

The steps described above lead us to a constructive proce-
dure for building a comonotone extension of the marginal
p-boxes.

Example 2  Consider the possibility spaces X =
{x1,%2,x3} and % = {y1,y2,y3}, and the p-boxes (Fx,Fx)
and (Fy,Fy) given by:

%‘xl X2 X3 @‘ V1 Y2 )3
Fy(x) | 0 04 1 Fy(y;)) |01 04 1
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my(Es) Es
mz(Eg) RARAA 2
mz(E3) ‘ E;
my(Ey) [ 7 E,
mz (Ey) ] £ N

Figure 1: P-box (F,,F7) in Example 2.

They satisfy the necessary and sufficient condition in Theo-

rem 6 because, for everyi=1,2,3 and j = 1,2,3, there is

an interval dominance relation between F y (x;) and Fy:
Fy(x1)=10,0.2] < Fy(y1) =1[0.1,0.4] <

Fx(x2) =Fy(y2)=[0.4,0.8] < Fyx(x3) =Fy(y3) =[1,1].

The bivariate p-box (Fy y,Fx y) they define through Equa-
tion (6) is given by:

Fy(x) | [0,0.2] [0.4,08  [1,1] ||
y3 [ [0,0.2] [0.4,08]  [1,1] [[[1,1]
y2 | [0,0.2] [0.4,0.8] [0.4,0.8] || [0.4,0.8]
yi | [0,0.2] [0.1,0.4] [0.1,0.4] || [0.1,0.4]
Fxy(xi,yj) | xi X x3 || Ey(y))

Let us compute the set S given in Equation (7). First of all,
since Fx y(x1,y1) = 0.2 >0, (x1,y1) € S. Next:

EX,Y(xlayl) =[0,0.2] < EX,Y(XZJI) =[0.1,0.4],

whence (x3,y1) € S. With a similar reasoning, we can see
that (x,y2) and (x3,y3) also belong to S. This means that
the set S, highlighted in blue in the previous table, is given
by:

S={(x1,31), (x2,51); (x2,¥2), (x3,¥3) }-

From Lemma 7, this set is increasing, so it can be rewritten
as:
S = {(u1,v1),(u2,v2), (u3,v3), (ug,v4) },

where (u;,v;) < (Uitr1,vis1) for i = 1,2,3. Considering
S§* =S, we define the possibility space % ={z1,22,23,24}
with 71 < 22 < 73 < 24, and the correspondence in Equa-
tion (9). Using also Equation (10), we define the p-box
(E27FZ)‘-

Z|la 2 oz u
F,z)| 0 01 04 1
fz(z,-) 02 04 08 1

This p-box, as well as the focal events of its induced belief
Sfunction, have been graphically depicted in Figure 1. These
focal events are given by:

E E, E3 E,  Es
Ei | {z1,22} {z1,22,z3} {z2,23} {z3,24} {za}
mz(E) | 0.1 0.1 0.2 04 02
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A X1 X2 X3
B—y3
Y2
/y
P Z T
L [\
L4

Figure 2: Graphical representation of the focal events of
the belief function Py y in Example 2.

Using Equation (12), the focal events of Py y are given by:

R I F Fy Fs
F=g (E) || Groy) | (o) | Gaoyn) | G2oy2) | (x3,33)
(x2,1) | (e2,31) | (k2532) | (x3,¥3)
(x2,2)
mF) =mz(E) || 01 0.1 02 04 02

These focal events, together with the focal events of the
marginal p-boxes, are graphically depicted in Figure 2.
Of course, the support of the belief function Py y coin-
cides with the given set S* = S, which is increasing. Since
the marginal p-boxes of Py y are (Fx,Fx) and (Fy,Fy),
we conclude that Py y is a comonotone extension of the
marginal p-boxes. ¢

4.3. Uniqueness of the Comonotone Extension

We have already solved the problem of the existence
and construction of a comonotone extension with given
marginal p-boxes. However, we still need to study the
uniqueness of such comonotone extension. As we show
in our next example, that is a follow-up of our on-going
example, that the comonotone extension is not unique in
general.

Example 3 Let us continue with Example 2. There, we
have built a comonotone extension Py y of the marginal
p-boxes (Fy,Fx) and (Fy,Fy) using the increasing set
S*=S.

However, instead of considering the increasing set S,
as we did in Example 2, we can consider the increasing
supersets

ST ={(x1,31), (x2,31); (x2,32), (x2,¥3), (x3,¥3) }
S5 = {(x1,31), (%2,31), (2,32, (x3,2), (x3,¥3) }.
Following the procedure described in Section 4.2 with S}

and S}, we obtain two other belief functions, P\ and P,,
which are also comonotone extensions of (Fy,Fx) and
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Figure 3: Graphical representation of the focal events of
the comonotone extensions P; (left picture) and P, (right
picture) of (Fy,Fx) and (Fy,Fy) in Example 3.

(Fy,Fy). Their basic probability assignments, m; and m,
and focal events are given by:
Gy G G3 Gy Gs
Gi | (x1,01) | (1) | (e2,01) | (2,02) | (33,)3)
(x2,31) | (2,1) | (x2,32) | (x3,y3)
(x2,52) (x2,3)
mi(G) | 01 0.1 02 0.4 02
H, H H; H, Hs
H; | (x1,01) | (c,01) | (e,01) | (2,32) | (x3,33)
(x2,31) | (x2,1) | (x2,52) | (x3,3)
(x2,52) (x3,2)
my (H;) 0.1 0.1 0.2 0.4 0.2

These focal events are depicted in Figure 3. Both belief
functions are also comonotone extensions of (Fx,Fx) and
(Fy,Fy). Hence, we have three different comonotone ex-
tensions of the marginals p-boxes, Py y, P| and Py, so the
comonotone extension is not unique. ¢

This example shows that we cannot guarantee the unique-
ness of a comonotone extension of the given marginal p-
boxes. It is then of interest to study the existence of a
least-committal comonotone extension of the p-boxes. This
will be done in Section 5.

5. Comonotone Natural Extension

Examples 2 and 3 show that the comonotone extension
of two marginal p-boxes is not unique in general. When
the comonotone extension exists but it is not unique, we
can follow the usual procedure in the imprecise probability
literature: the natural extension [25]. The natural extension
is the least committal extension, using only the available in-
formation and adding no extra information. This is done for
example in the cases of independence, with the independent
natural extension [4], conglomerability, with the conglom-
erable natural extension [12], or the extension of marginal
models with no information about their dependence [16,
Sec.3.2].
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Definition 10 Consider two marginal p-boxes (Fx,Fx)
and (Fy,Fy). A coherent lower probability Ex y : (2 x
%) — [0,1] is the comonotone natural extension of
(Fx,Fx) and (Fy,Fy) if it is a comonotone extension of
(Fx,Fx) and (Fy,Fy) and it is the least-committal exten-
sion.

Of course, if the comonotone natural extension exists,
(Fx,Fx) and (Fy,Fy) satisfy the condition in Theorem 6.
However, the next example shows that this necessary con-
dition is not sufficient in general.

Example 4 Consider the same setting as in Examples 2—
3. Example 3 shows two comonotone extensions P, and
P, of (Fx,Fx) and (Fy,Fy). Ex-absurdo, if there exists
a comonotone natural extension Eyy of (Fy,Fx) and
(Fy,Fy), then by definition Ex y > Py, Py, where of course
Ex y, P1 and P, denote the conjugate upper probabilities of
E, P, and P,, respectively. From this inequality we deduce

that:

Exy({(x2,y3)}) > Pi ({(x2,y3)}) >0,
Exy({(x3,52)}) = P2({(x3,52)}) > 0.

If follows that both (x3,y3) and (x3,y2) belong to
Supp(Ey y), so the support would not be increasing. This
means that Ex y would not be comonotone. ¢

From this example we deduce that the comonotone nat-
ural extension of two marginal p-boxes does not always
exist, even when there are comonotone extensions. Interest-
ingly, the example above also shows that the comonotone
extension is not preserved when taking lower envelopes
of comonotone extensions, unlike what happens with the
properties of independence or coherence, for instance.
Our aim now is to investigate which additional condi-
tion must be imposed to guarantee the existence of the
comonotone natural extension and, in such case, how to

build it.
Consider again the set S defined in Equation (7), and
rewrite it as in Equation (8). For each (u;,v;) € S, we define:

{(x,)) EX XY |x=uy, y€vi,viz1)}, ifEy(v)=
(oY) € 2% |x€uu), y=wi}, if Fy(u) <
{Qu,v)},  if Fx(u) = Fx () =Fy(v)) =Fy(v)),
for every [ = 1,...,s. These sets satisfy the following
properties:

Ex (),
Ey("/%

N

Lemma 11 The sets Si,...,Ss are disjoint and S* =
Uj_ 81 is an increasing superset of S.

From this technical result we deduce that the set S* =
Uj_,S; can be used for defining a comonotone extension
following the steps described in Section 4.2. More impor-
tantly, using this increasing superset of S we can build the
comonotone natural extension, as next theorem shows.
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Theorem 12 There exists a comonotone natural exten-
sion of (Fx,Fx) and (Fy,Fy) if and only if for every
(x,y) € & x ¥, either there is a strict interval domi-
nance relationship between Fy(x) and Fy (y) or Fx(x) =
Fx(x) =FEy(y) =Fy(y).

Moreover, when this holds, the comonotone natural ex-
tension Ey y is the belief function built in Section 4.2 using
the set §* = U]_,S;.

This theorem not only characterises the conditions that
the marginal p-boxes must satisfy to guarantee the exis-
tence of their comonotone natural extension, but also gives
the constructive method for building it and also assures
that the comonotone natural extension is a belief func-
tion. It is worth mentioning that the p-boxes in Example 2
do not satisfy the condition given in Theorem 12, since
Fyx(x2) = Fy(y2) = [0.4,0.8], and for this reason we saw
in Example 4 that the comonotone natural extension of
these p-boxes does not exist.

Example 5 Consider the possibility spaces % =
{x1,x2,x3} and % = {y1,y2,y3,y4}, and the p-boxes

(Fx,Fx) and (Fy,Fy) given by:

2 |lx xn x Y|y v yi ona
Fx(x) | 0 08 1  Fy(y;) |02 02 08 1
Fx(x,-) 05 0.8 1 Fy(yj) 0.8 0.8 0.8 1

The condition in Theorem 12 is satisfied because:

Fy(x1)=10,0.5] < Fy(y1) = Fy(y2) = [0.2,0.8] <
Fy(x2) =Fy(y3)=[0.8,0.8] < Fy(x4) =Fy(y4) =[1,1].
The bivariate p-box (E y,Fx y) they define through Equa-

tion (6) applying the minimum operator to the lower and
upper bounds, respectively, is given by:

Fy(x) | 0,05 (08,08 [1,1] ||
y4 | [0,0.5] [0.8,0.8] [1,1] [1,1]
y3 | [0,0.5] | [0.8,0.8] [0.8,0.8] || [0.8,0.8]
y2 | [0,0.5] [0.2,0.8] [0.2,0.8] || [0.2,0.8]
y1 | [0,0.5] [0.2,0.8] [0.2,0.8] || [0.2,0.8]
Fxy (Xiayj) X1 X2 X3 Ey (yj )

The set S defined in Equation (7) is given by:

S ={(x1,1), (x2,91), (x2,3), (x3,y4) }
= {(u11); - (g, va) -

Since Fx (u1) < Fy(v1), the set Sy is given by:
Si={(y) € 2 x¥ |xeluu)y=vi}={(n.ym)}
Similarly, the set S, is given by:

So={(xy) € XY |x=uy,y € [v2,v3)}
= {(x2,31); (x2,32)}.
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mz (Ey) Es

mz(E3) ’ E3

///////////////

0 Ey

mz ()

mz(Ey)
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Figure 4: P-box (F,,F7) defined in Equation (13) with the
focal events of its associated belief function.

Iterating the procedure, we obtain S3 = {(x2,y3)} and S4 =
{(x3,y4)}, hence S* = U,_,4S; is given by:

S = {(xlayl)7(x27y1)’(x27y2)7 ()Cz,y3), (X3,y4)}.

Let us apply the procedure in Section 4.2 using S*. For this
aim, consider the possibility space & = {z1,22,23,24,25 }
and the univariate p-box defined in Equation (10):

Zlu » n u
F,| 0 02 02 08 1
Fz|05 08 0.8 08 1

13)

Its graphical representation is shown in Figure 4, where
we also show the focal events of the belief function P,
associated with (F ;,F7), which are given by:

E, %) E3 E4
Ei | {z1,22} {z1,22,23,24} {z2,23,4} {25}

Using Equation (12), the focal events of Ex y are given by:

ja) F F Fy
Fr=g '(E) | (ciyn) | (eoyn) | (e2oyn) | (x3,0)
(x2,31) | (x2,32) | (x2,¥3)
(x2,51) | (x2,¥2)
(x2,¥3)
m(F) =mz(E) | 02 03 03 02

These focal events have been graphically depicted in Fig-
ure 5. According to our previous result, this is the comono-
tone natural extension of the given marginal p-boxes. 4

6. Conclusions

The notion of comonotonicity for lower probabilities was
introduced in [13], where their main properties were also
studied. In this paper we have solved one of the open ques-
tions proposed in that paper, related to the construction of
a joint comonotone model with given marginals. In this
paper, we have considered that the marginals are given in
terms of p-boxes, and we have analysed the problems of the
existence, construction and uniqueness of a comonotone
extension. Even if a first attempt could be to consider all the
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Figure 5: Graphical representation of the focal events of
the comonotone natural extension Ey y in Example 2.

compatible comonotone models built using the marginals
p-boxes and taking a lower envelope, Example 4 shows that
this approach is not useful.

From our results, we deduce that (i) we cannot always
guarantee the existence of a comonotone model, but we
have characterised when such comonotone model exists.
In fact, its existence depends on the interval dominance
between the values of the marginal p-boxes; (ii) when it
exists, we have seen a constructive method for building it;
and (iii) when it exists, we have seen that such comono-
tone extension may not be unique. The lack of uniqueness
led us to investigate the existence of a most conservative
comonotone extension. We have seen that in general such
most conservative comonotone extension does not always
exists, but we have characterised its existence, giving rise
to the notion of comonotone natural extension.

The dual dependence structure to comonotonicity is
countermonotonicity, which refers to random variable with
a negative dependence. It is well know that X and Y are
comonotone if and only if X and —Y are countermonotone,
hence our results about comonotonicity can be straightfor-
wardly extended to countemonotonicity.

There are still a number of interesting open problems
related to comonotonicity for imprecise models. The former
is the analysis of the existence, construction and uniqueness
of a comonotone extension when the marginal models are
given in terms of coherent lower probabilities instead of
p-boxes. In addition, one of the fields of application of
comonotonicity is finance [6, 7], so it would be interesting
to analyse the extent to our results about comonotonicity
with imprecise models can be used in this field.
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