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Abstract

Most of Action recognition methods deploy networks pretrained on image datasets, and a
common limitation is that these networks hardly capture salient features of the video clip
due to their training strategies. To address this issue, we propose Action Attention Recali-
bration Module (AARM), a lightweight but effective module which introduces the attention
mechanism to process feature maps of the network. The proposed module is composed of
two novel components: 1) convolutional attention submodule that obtains inter-channel
attention maps and spatial-temporal attention maps during the convolutional stage, and
2) activation attention submodule that highlights the significant activations in the fully
connected process. Based on ablation studies and extensive experiments, we demonstrate
that AARM enables networks to be sensitive on informative parts and gain accuracy in-
creasements, achieving the state-of-the-art performance on UCF101 and HMDB51.

Keywords: Feature Modulation, Channel and Spatial-temporal Attention, Activation At-
tention, Action Recognition

1. Introduction

As a compelling topic of computer vision, human action recognition has drawn sustained
attention from the research community due to its huge potential value in the industries like
video surveillance and human-computer interaction. Before the introduction of AlexNet
(Krizhevsky et al., 2012), handcrafted approaches led by iDT (Wang and Schmid, 2013)
dominates the field of human action recognition. Since a 2D CNN (LeCun et al., 1998)
pretrained on ImageNet (Russakovsky et al., 2015) achieved a state-of-the-art performance,
researchers have preferred deep learning methods rather than handcrafted approaches. Al-
though obtaining excellent performances, deep models still exist deficiencies, as they cannot
benefit from the video temporal feature, a crucial feature for video action recognition. To
address this, researchers develop many significant techniques. Two-stream network (Si-
monyan and Zisserman, 2014) introduces optical-flow as an extra input stream. 3D CNN
(Tran et al., 2015) expands the 2D convolution to 3D and takes consecutive frames as input,
and feature-encoding network (Diba et al., 2017) leverages temporal encoding as pooling

c© 2020 Z. Li, Y. Yi, Y. She, J. Song & Y. Wu.



Li Yi She Song Wu

method. Those techniques overcome the flaws in some ways, making deep learning more
suitable for action recognition.

On the other hand, the attention mechanism is one of the remarkable methods for
computer vision task. The attention mechanism is to recalibrate the network to focus on
important features and suppress unimportant ones. In literature, Hu et al. (2018) propose
SENet using channel attention mechanism and achieve a notable performance on ImageNet
classification task. Hu et al. (2019) leverage CSARNet for super resolution and reach the
state-of-the-art result. It should be noted that most of the existing attention-based methods
are proposed for the image-base task, which may not be optimal for the video-based action
recognition task. Furthermore, how to handle spatial-temporal attention and fuse it with
channel attention effectively also remain unsolved.

To tackle this issue, in this study, we propose a lightweight yet powerful module called
Action Attention Recalibration Module (AARM). AARM consists of three submodules,
Channel Attention Module (CAM) and Spatial-Temporal Attention Module (STAM) for the
convolutional block like Resblock and Video Context Module (VCM) for the fully connected
layer. CAM is leveraged to infer inter-channel relationships of convolutional feature maps
and decide “what” to focus, STAM is leveraged to infer intra-channel relationships and
decide “where” and “when” to focus, and VCM is leveraged to obtain attention maps among
activations with less computational cost than the encoding approaches. Meanwhile, as the
most discriminative part is the key to classification, highlight and dropout mechanisms are
arranged in STAM to benefit the attention mechanism. Furthermore, instead of combining
CAM and STAM simply in a sequential order, a parallel fusion manner by concatenation
and convolution is proposed to preserve their features simultaneously. We demonstrate that
AARM is suitable for any existing CNN architectures for video-base tasks by helping them
understand what should be noticed or ignored through explicit feature weight maps. Finally,
experimental results show that our method can achieve better performance compared with
the state-of-the-art methods on two datasets UCF101 (Soomro et al., 2012) and HMDB51
(Kuehne et al., 2011).

Overall, our contributions can be summarized as follows.

• We propose a light-weight yet effective module AARM with CAM, STAM and VCM,
which can recalibrate convolutional features and activation.

• We introduce the highlight and dropout mechanism for STAM and a parallel fusion
strategy for CAM and STAM to further optimize AARM for video action recognition.

• We conduct extensive experiments on two human action recognition datasets to vali-
date the effectiveness of the proposed submodules and compare AARM-based methods
with the state-of-the-art to verify the performance of our module.

The rest of the paper is organized as follows: Section 2 summarizes the related works.
Section 3 introduces our modules. Section 4 reports the performance of our modules. Section
5 concludes the whole paper.
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2. Related Works

2.1. Action recognition approaches

The existing action recognition methods can be summarized into two categories. The first
type is the two-stream based network, as Simonyan and Zisserman (2014) first introduce
a two-stream convolutional network, which takes optical-flow as input for the first time.
They decompose a video clip into RGB stream and optical-flow stream to represent spatial
features and temporal features respectively. Wang et al. (2016) propose Temporal Segment
Network based on the two-stream network, which divides a video clip into three snippets
as input. Networks share parameters among snippets, and the predictions of all snippets
are fused to produce the final prediction. Diba et al. (2017) propose Deep Temporal Linear
Encoding Network inheriting TSN’s architecture, and it deploys a bilinear encoding layer
in the fusion stage.

The other is the 3D convolutional network, Tran et al. (2015) first introduce a 3D convo-
lutional network, expanding convolution from 2D to 3D. However, due to the huge number of
parameters and the difficulty of training, the performance is unsatisfactory. To address the
issue of training, Carreira and Zisserman (2017) introduce Inflated 3D convolutional Net-
work which makes pre-training on image datasets possible in virtue of inflating a pretrained
2D convolutional network into 3D and copying an image repeatedly into a “boring video”.
To address the issue of excessive parameters, Tran et al. (2019) propose channel-seperated
convolutional networks to balance parameter cost and channel interaction by decomposing
a 3D convolutional operation into 1× 1× 1 convolution or 3× 3× 3 depth-wise convolution.
STM proposed by Jiang et al. (2019) capture temporal features by a combination of a 2D
sematic module and a motion module, successfully replaceing 3D convolution by 2D. The
above-mentioned architectures have already achieved state-of-the-art performance, while
we believe that the attention mechanism can be a complementary way observed from our
experiments.

2.2. Attention mechanism

Attention can be dated back to the human visual system (Corbetta and Shulman, 2002).
The reason why a man can catch the point instantly is that the system does not handle the
whole scene but selectively focuses on the interesting part to maximum informativeness.
Consequently, applying the attention mechanism on networks is theoretically sound. Hu
et al. (2018) propose Squeeze and Excitation module for image classification. The module
exploits the relationship between convolutional channels and reweights features by element-
wise multiplication. Kim et al. (2018) introduce a residual attention module RAM to capture
inter-spatial attention. Moreover, Park et al. (2018) introduce spatial attention mechanism
and propose Bottleneck Attention Module and Convolutional Block Attention Module that
take spatial attention into account. BAM is placed after each bottleneck in a network while
CBAM (Woo et al., 2018) is deployed after each convolutional block. Both two modules are
effective in image classification and object detection tasks. Although BAM and CBAM are
simple yet effective modules for image-based tasks, they may not be optimal for video tasks.
Temporal feature is the key difference between image-base task and video-base task, and
Wang et al. (2018) introduce self attention mechanism to capture temporal features and
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propose Non-local Neural Network for 3D CNN. Based on these observations, our proposed
AARM is closely related to CBAM, and further designed for video-base task, finding better
temporal feature representation and fusion method. Furthermore, our proposed AARM is
simple yet effective and can be easily injected into any existing methods including two-
stream methods and 3D CNN methods.

3. Action Attention Recalibration Module

Figure 1: The overview of AARM. AARM has three submodules: Channel Attention
Module(CAM), Spatial-Temporal Attention Module(STAM) depicted in green
blocks, and Video Classification Module(VCM) depicted in orange block. CAM
and STAM are deployed after convolutional layers in each convolutional block(e.g.
ResBlock). They refine inter-channel attention and intra-channel attention from
feature maps respectively. VCM is deployed after fully connected layers to opti-
mize actions for classification.

Illustrated in Fig 1, the overall architecture of our AARM can be divided into two parts:
convolution attention part (CAM and STAM) and classification attention part (VCM). Both
CAM and STAM are plugged after convolutional layers in convolutional blocks, while VCM
is arranged after fully connected layers.

In a convolutional block, given convolutional feature maps M ∈ RH×W×C in 2D net-
works or RT×H×W×C in 3D networks as input, CAM obtains channel attention map Fch(M)
and then STAM obtains spatial-temporal attention map Fst(M). STAM varies over the di-
mension of network input, which is described in the following subsection. At last, two
attention maps are fused and the recalibrated feature maps Y is obtained. In summary, the
process of convolutional block attention refinement can be shown as follows:

Mch = Fch(M)⊗M
Mst = Fst(M)⊗M
Y = Fuse(Mch,Mst)

(1)

where ⊗ represents element-wise multiplication, Fch(X) ∈ RC×1×1 or RC×1×1×1 denotes
the channel attention map, Fst(X) ∈ R1×H×W or R1×H×W×T denotes the spatial-temporal
attention map, and Fuse(·, ·) denotes the fusion strategy which is described in the following
subsection.
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VCM is deployed after fully connected layer before classification to recalibrate activation
value, which emphasizes the discriminative activations through giving high weights and vice
versa. For instance, in a “golf” video clip, the activations of “golf club” and “human” are
significant while the activations of “grassland” and “audience” are not. VCM is learnt to
highlight “golf” and “human” and conceal “grassland” and “audience”. In this way, the
deep network is more sensitive to the discriminative feature and more robust to ambiguous
video clips. The overall process can be formulated as

M ′ = Fvc(M)⊗M (2)

where Fvc(M) denotes the attention vector with the length u and u is the number of units
in the fully connected layer M .

The following subsections describe the details of each submodule.

3.1. CAM

CAM focuses on exploiting the relationships among channels of convolutional maps and
quantizing them into attention value. In most cases, channels of convolutional layer focus
on different parts of the feature, where some of them involve discriminative features, whereas
others are insignificant. But common deep networks handle all the channels equally, which
may ignore those global clues in forward propagation. CAM is invented to address the
shortcoming by modelling the channel relationships explicitly. Thus, CAM enables deep
networks to capture inter-channel relationships and recognize “what” is important in the
early stage.

Figure 2: The overview of Channel Attention Module. Mixed pooling is first deployed
to squeeze feature map to C × 1 × 1, where α ∈ [0, 1] is the weight of average
pooling in mixed pooling. After that, the subsequent hidden preception layer is
arranged to extract attention map. Then the attention map is normalized to [0,1]
by a sigmoid function. Notice that the dimension of the hidden layer is reduced
to C/r×1×1 to restrict the number of parameters where r is the reduction ratio,
which is set to 16 in this paper.
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The architecture of CAM is illustrated in Fig 2. In the previous work (Hu et al., 2018),
average pooling method is adopted simply to squeeze feature maps. However, we claim that
since action recognition needs salient components for classification, it is proper to take max
pooling into consideration. To this end, we choose to leverage the pixel-wise mixed pooling
with weight α rather than the average pooling method. Given a feature map M ∈ RC×H×W ,
it is reduced to a weight vector with length C by the pixel-wise mixed pooling operation.
After aggregation, a recalibration operation composed of two fully connected layers with a
hidden layer is arranged. To restrict the number of parameters, we reduce the dimension
of the hidden layers to C/r × 1 × 1 where r is the reduction ratio and empirically set to
16 as SENet. After recalibration, the attention maps are normalized to [0,1] by a sigmoid
function and then element-wise multiplied by the input feature maps to reweight channel
attention as shown in (1). Concisely, CAM can be summarized as:

Fch(M) = σ(W2δW1(αPoolAvg,P ixel(M) + (1− α)PoolMax,P ixel(M))) (3)

where σ denotes the sigmoid function, Pool·,P ixel denotes the pixel-wise pooling, δ de-
notes the ReLU function, α denotes the weight of average pooling in mixed pooling which
is set to 0.5 in this paper, W1 ∈ RC/r×C and W2 ∈ RC×C/r represent fully connected layer
and r denotes the reduction ratio which is set to 16 in this paper.

CAM can be treated as a channel-wise weight optimizer. Given a feature map, CAM
generates a weight vector whose length is the channel of the feature map, and redresses it
by reweighting channels.

3.2. STAM

Different from CAM extracting inter-channel attention maps, STAM infers intra-channel
attention maps, finds ”where” and ”when” are discriminative parts and recalibrates the
input feature map. The overview of STAM is depicted in Fig 3. Considering 3D convolution
having more parameters than 2D, we arrange (2+1)D STAM for 3D CNNs.

Apart from the attention map generated by the sigmoid function, we introduce an
extra attention map, the highlighted map, which is generated by a threshold function,
since the highlighted map further obtains the discriminative parts for better classification.
Meanwhile, to prevent overemphasis resulting overfitting, we propose a dropout layer to
stochastically select one as the final map for the subsequent processing. Note that the
dropout layer has two hyperparameters: threshold η and pick rate χ. η controls the size
of the region to be highlighted, and χ controls the frequency of the highlighted map being
selected.

Specifically, given the 2D input feature map M ∈ RC×H×W , STAM first aggregate
to a single channel map M ′ ∈ R1×H×W , and then the attention map is generated by a
convolutional layer. After that, the highlighted map and the normalized attention map
are produced respectively through threshold and sigmoid function. For the former, we set
each pixel to 1 if it is larger than the threshold and 0 if it is less, suggesting that the size
increases as η decreases and vice versa. For the latter, the attention map is normalized
to [0,1] simply by a sigmoid function. While the highlighted map is emphasized the most
discriminative parts for classification, the attention map focuses on the meaningful regions to
avoid overfitting. Both two maps are weight maps ∈ [0,1] and one is randomly chosen as the
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Figure 3: The overview of Spatial-Temporal Attention Module. For the input fea-
ture map M ∈ RC×H×W or RC×H×W×T , where C denotes channel, T denotes
the temporal volume for 3D convolution and H and W denotes height and width
respectively, channel-wise mixed pooling is leveraged to squeeze it to a single
channel map. Then the convolutional layer extracts the map and constructs
the highlighted map and attention map through threshold function and sigmoid
function respectively. Finally the dropout mechanism works to select one of them
stochastically as the final attention map for recalibration.

final attetion map. In this way, we can benefit from both attention and dropout mechanism
and improve the classification performance. And the 3D feature map is processed similarly.

Note that for 2D convolutional networks, STAM does not simply perform 7×7 convolu-
tion with abundant parameters, but three consecutive 3×3 convolutional layers. Meanwhile,
for 3D convolutional networks, since expanding convolutional operation from 2D to 3D leads
to unbearable parameter growth and training cost, we introduce a (2+1)D convolutional
layer for 3D STAM. It is claimed that factorizing 3D convolution as a sequential process of
a 2D convolution and a 1D convolution reduces the number of parameters and complexity
of convolutional operation (Sun et al., 2015). Based on this theory, as depicted in the bot-
tom side of Fig 3, we design the 3D convolutional layer by a (2+1)D convolution one and
expand the channel-wise mixed pooling layer to 3D. Furthermore, the dropout layer does
not require any trainable parameters and is applied only during training as we need a stable
classification result in testing phase. The overall process can be summarized as follows:
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

Fst(M) =

{
threshold(F ′ST (M)) if χ

sigmoid(F ′ST (M)) others

F ′2DST (M) = conv3×3(conv3×3(conv3×3(αPoolAvg,Ch(M)) + (1− α)PoolMax,Ch(M)))

F ′3DST (M) = conv7×1×1(conv1×7×7((αPoolAvg,Ch(M)) + (1− α)PoolMax,Ch(M)))

threshold(m) = 1 for each m ∈M,m ≥ η ×max(M)

threshold(m) = 0 for each m ∈M,m < η ×max(M)

(4)
where M denotes the input feature map, Pool·,Ch denotes the channel-wise pooling, α
denotes the weight of the mixed pooling and threshold(·) denotes the construction function
of the highlighted map in the dropout layer.

3.3. Attention fusion

The proposed CAM and STAM exploit inter-channel and intra-channel relationships re-
spectively. In this regard, there are two methods fusing two attention maps: 1) sequential
fusion and 2) parallel fusion. Although many previous works (Zhang et al., 2018; Hu et al.,
2018; Woo et al., 2018) combine two attention maps in a sequential way, we argue that
this manner may result in the latter module being affected by the former module as the
input of the latter one is the output of the former one. And the parallel manner can avoid
this issue conveniently. Therefore, in our method, we choose the parallel strategy to fuse
CAM and STAM simultaneously. In details, we first obtain channel attention map and
spatial-temporal map respectively, then two attention maps are concatenated simply and
1× 1 convolution is leveraged to combine the concatenated map. The whole process can be
formulated as

Fuse(Mch,Mst) = conv1×1([Mch,Mst]) (5)

where [·, ·] denotes concatenation.

3.4. VCM

While CAM and STAM refine attention maps in the convolutional blocks, VCM aims at
capturing attention value in the classification stage. VCM extracts attention value before
classification to improve the network’s non-linearity and recalibrate activations by empha-
sizing informative activations and suppressing not informative ones. As VCM is arranged
in the late stage, it has a simple design, which consists of a fully connected layer to obtain
an attention map and a sigmoid activation for normalization.

The structure of VCM is illustrated in Fig 4. VCM can be regarded as a trainable
classification optimizer. Given an activation vector M from the fully connected layer, it
first collects the attention value of M through the fully connected layer without any pooling
operation. After that, it generates the weight vector by normalizing the attention value to
[0,1]. At last, the input activations M are element-wise multiplied by the attention map
for recalibration. The motivation behind VCM is two-fold. First, the fully connected
layer is leveraged to reweight the strengths of different activations among the network
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Figure 4: The overview of Video Classification Module. The VCM obtains the at-
tention vector thorugh an extra fully connected and sigmoid function σ. Note
that the attention vector has the same size as the input activation. And then the
activations are reweighted by element-wise multiplication ⊗.

fully connected layer. Second, the sigmoid activation is set to improve non-linearity. The
overview of the process is shown as:{

M ′ = Fvc(M)⊗M
Fvc(M) = σWM,Fvc(M) ∈ [0, 1]

(6)

where W denotes the fully connected layer.

3.5. Summary

In this section, we clarify AARM and its submodules CAM, STAM and VCM. CAM and
STAM are deployed after the convolutional layer in each convolutional block. Both of them
obtain attention maps from convolutional feature maps while CAM refines channel-wise
attention and STAM collects pixel-wise attention. VCM is deployed after the fully connected
layer to obtain activation attention maps to recalibrate action for better classification.
Besides, AARM has four hyperparameters: r, α, threshold and pick rate. The r controls
the reduction ratio in CAM which is set to 16, and the α indicates the weight of average
pooling of mixed pooling method in CAM and STAM. And the threshold and pick rate
control the size and frequency of dropout layer in STAM. The analysis of them except r are
covered in details in the next section.

4. Experiments

To evaluate the proposed AARM, we conduct experiments on two action recognition datasets
UCF101 and HMDB51, with ablation studies to verify the effectiveness of each component.
Additionally, we implement well-known state-of-the-art methods using PyTorch (Ketkar,
2017) for better apple-to-apple comparisons. We provide the results of both methods and
their AARM plugged architectures.
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4.1. Experiment setting

UCF101 (Soomro et al., 2012) and HMDB51 (Kuehne et al., 2011) are two well-known
action recognition benchmark datasets. The UCF101 dataset published in 2012 consists of
101 categories with 13,320 video clips collected from YouTube. The training set contains
9537 train samples and 3783 test samples, and the test set contains 3783 samples. The
HMDB51 dataset published in 2011 is known as a challenging one containing 6766 video
clips divided into 51 classes. Both of them providing three training/testing splits are trained
by leave-one-out.

Unless stated ontherwise, we perform our AARM as follows. We use a Resnet pretrained
from the ImageNet dataset as the backbone network and finetune it on the target dataset.
Note that our modules are only trained during finetune phase to validate the extensibility.
CAM and STAM are plugged in each convolutional block of the CNN and the output of
them is the input of the next layer. Note that the dropout layer in STAM is activated
in the training phase and deactivated in the testing phase. VCM is plugged after the
fully connected layer and the output is used for classification. We use Top-1 classification
accuracy as the metric in testing stage.

All the experiments are implemented on PyTorch with NVIDIA GeForce GTX 1080Ti
GPU. We use SGD to finetune the models. We finetune our model 200 iterations for RGB
branch and 250 iterations for Flow branch. The input size is croped to 224 × 224. The
mini-batch size is set to 50, the momentum is set to 0.9 and the learning rate is set to 0.001.
In comparison experiment section, all the settings follow the original approaches.

4.2. Ablation studies

In this subsection, to clarify each setting of the proposed AARM fairly, we utilize two-
stream Resnet50 as a backbone network and measure their performances on UCF101 and
HMDB51.

Analysis of each submodule. Table 1 shows the ablation study of AARM’s sub-
modules. For fair comparison, we leverage Resnet50 as the baseline network for the 2D
network experiment and C3D(1net) for 3D. The 2D networks pretrained on ImageNet are
tested on UCF101 and HMDB51, while the 3D networks trained from scratch are only
tested on UCF101 as HDMB51 is too small to train. To get a closer look at effectiveness of
our module, submodules are plugged into the networks one by one. Overall, each submod-
ule makes enhancement on all networks and we can confirm the efficiency of our proposed
AARM. Note that CAM and STAM are combined in a sequential way and dropout layer in
STAM is not activated. The results demonstrate that CAM and STAM lead to the major
performance improvement and VCM makes the minor contribution with fewer additional
parameters.

Analysis of α. The weight of the mixed pooling layer α is crucial to attention extrac-
tion. The higher α suggests that AARM focuses on global features, and vice versa. To
clarify how α impacts on the performance, we conduct comparison on both UCF101 and
HMDB51 with α from 0.1 to 0.9 and stride 0.2.

Table 2 shows the performance among alpha. It can be observed that α = 0.5 achieve
the best performance, while too high or too low α value contributes nearly nothing to
performance, which implies that paying the same attention on both global features and
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Table 1: Comparison of each component on split1 of UCF101 and HMDB51.
Architecture UCF101 HMDB51

Two-Stream(Resnet50) 90.8% 65.4%
Two-Stream+CAM 91.4% 66.0%
Two-Stream+CAM+STAM 92.1% 66.4%
Two-Stream+CAM+STAM+VCM 92.4% 66.9%
C3D(1net) 44.0% -
C3D+CAM 44.3% -
C3D+CAM+STAM 45.0% -
C3D+CAM+STAM+VCM 45.4% -

Table 2: Performance among aplha on UCF101 and HMDB51. AARM can achieve
the best performance while α = 0.5.

dataset
α

0.1 0.3 0.5 0.7 0.9

UCF101 92.1% 92.7% 93.4% 92.5% 92.3%

HMDB51 66.5% 67.1% 67.6% 66.9% 66.5%

silent one is proper for action recognition rather than only deploy avg pooling or max
pooling.

Analysis of dropout layer. We further investigate the effect of the pick rate χ and
the threshold η in STAM’s dropout layer on accuracy and thus activate dropout layer in
STAM. First, we fix η to 90% to find the best χ value for the dropout layer. According to
Table 3, the result reports that the best performance can be achieved when the χ is 25%.
Furthermore, we observe that when the highlighted map deactivated (χ=0), the performance
decreases lighty, implying that the highlight mechanism make a boost actually. However, we
also find that the performance degrades when the highlighted map is applied more frequent
than 25%. As a result, we can confirm that over emphasis on the most discriminative part
leads to overfitting and regrading highlight mechanism as an auxiliary method is the best
strategy .

Table 3: Performance among χ on UCF101 and HMDB51.

dataset
χ(%)

100 75 50 25 0

UCF101 88.1% 91.2% 93.0% 93.4% 92.9%

HMDB51 63.6% 65.7% 67.0% 67.6% 67.1%

Next, we explore the optimal value of η in a similar manner and Table 4 reports the
results. We can see that 90% can make the highest accuracy. And too small highlighted map
(η = 95%) causes accuracy decreases, suggesting that the network may not capture enough
features for classification although they are discriminative. Meanwhile, large highlighted
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map makes tiny contribution as it almost includes the whole discriminative region. We
conclude that 90% keeps the balance between saliency and the map size.

In summary, the dropout plays an auxiliary role in STAM, which is activated only during
the training phase. Note that both two hyperparameters are only the optimal setting for
Resnet and the performance can be further improved on other architectures when the better
setting is investigated.

Table 4: Performance among η on UCF101 and HMDB51.

dataset
η(%)

95 90 85 80 70

UCF101 92.9% 93.4% 93.2% 93.1% 92.9%

HMDB51 67.2% 67.6% 67.3% 67.2% 67.1%

Analysis of different CNNs. We further analyze the generalization of our proposed
AARM. To this end, we construct several network architectures including two-stream net-
works and 3D networks before and after our AARM. The experimental results are showed
in Table 5. We have three observations: 1) The network with AARM shows higher perfor-
mance than the original one. 2) Some architectures with AARM yield better performance
than deeper original ones with fewer parameters. 3) Our AARM shows clear ability to
boost the existing CNN architectures on action recognition task. We believe that AARM is
suitable for action recognition and able to help deep architectures jump out of overfitting
in some way by the novel attention mechanism.

Table 5: Performance of differnet CNN architecture before and after AARM on
UCF101 and HMDB51.

Architecture
UCF101 HMDB51

origin with AARM origin with AARM

3DResnet18(scratch) (Hara et al., 2018) 42.4% 44.8% 17.1% 19.2 %
VGG16 86.9% 89.1% 58.4% 60.9%
Resnet18 87.6% 90.4% 61.7% 63.2%
Resnet34 89.9% 92.3% 63.9% 66.2%
Resnet50 90.8% 93.4% 65.4% 67.6%
Resnet101 91.6% 93.6% 66.1% 67.9%
Resnet152 92.6% 94.1% 66.6% 68.3%

4.3. Comparison with attention modules

In this section, to further evaluate the effectiveness and efficiency of our proposed AARM,
we compare it with other well-known attention modules SE module and CBAM module on
action recognition task. For fair comparison, we leverage two-stream Resnet50 as baseline
architecture. Both top-1 accuracy and number of parameters are taken into consideration.

Table 6 compares the number of parameters and performance, realtive to the baseline
and other attention modules. Overall, all the cases obtain lower performance than our
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Table 6: Comparison of attention modules on split1 of UCF101 and HMDB51.
Experiment result shows that Resnet50 with AARM can yield the best top-1 ac-
curacy of all attention modules, where RGB represents the RGB branch and OF
represents the optical flow branch.

Architecture Parameters UCF101 HMDB51

Res50 23.71M(RGB)+23.76M(OF) 90.8% 65.4%
Res50+SE 26.22M(RGB)+26.27M(OF) 91.3% 65.7%
Res50+CBAM 26.23M(RGB)+26.28M(OF) 91.7% 66.3%
Res50+AARM 26.25M(RGB)+26.3M(OF) 93.4% 67.6%

method and thus we can confirm the effectiveness and efficiency our presented AARM. In
details, AARM achieves the best top-1 accuracy 92.4% on UCF101 and 66.9% on HMDB51.
On the other hand, on UCF101 dataset, the SE module obtains a 0.5% increasement as well
as the CBAM module makes a 0.9% accuracy gain by leveraging max pooling. Moreover, by
comparing parameters of different modules, AARM has nearly the same parameters as the
others, especially including the novel VCM. The observation reveals that STAM actually
save parameters yet preserve enhancement. In brief, our AARM is effective than other
modules with bearable computational cost growth.

4.4. Comparison with the state-of-the-art

We finally compare our proposed AARM with various state-of-the-art action recognition
methods including the attention-based method: TSN (Wang et al., 2016), Hidden Two-
stream (Zhu et al., 2018), ISPAN (Du et al., 2018) and ISTA (Meng et al., 2019). We
reimplement some methods and plug AARM to evaluate its extensibility. Meanwhile, we
leverage two-stream Resnet50 as the backbone architecture to construct AARMNet and use
list the result based on TSN method.

In Table 7, we list the recent state-of-the-art and comparable methods. Our two-stream
”AARM+” methods outerperform their original methods by about 2% on both UCF101 and
HDMB51, implying that AARM is of wide applicability. In addition, our TSN+AARMNet
achieves 95.8% on UCF101 and 70.2% on HMDB51. Compared with other attention-base
method ISTA and ISPAN, our method obtain competitive performance. Moreover, we
also observe that our method gain an improvement on C3D architecture, which shows the
suitability of AARM for both two-stream networks methods and 3D CNN methods.

5. Conclusion

In this paper, we have introduced a novel module AARM for action recognition through
attention of convolution and activation. Also, we propose the highlight and dropout layer
in STAM to further obtain attention in space and time, and the parallel fusion strategy for
convolutional attention module to tackle the influence of order. Meanwhile, AARM can be
theoretically plugged into any existing CNNs to obtain better performance without extra
modality or training samples. Furthermore, the data experiments of our proposed AARM
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Table 7: Performance on split 1 of UCF101 and HMDB51. The results indicate that
methods with AARM gain improvement about 2%.

Architecture UCF101 HMDB51

iDT+FV (Wang and Schmid, 2013) 85.9% 57.2%
Two-Stream(VGG16) (Simonyan and Zisserman, 2014) 86.9% 58.4%
C3D (Tran et al., 2015) 85.2% -
TSN (Wang et al., 2016) 94.0% 68.5%
PA3D (Yan et al., 2019) - 55.3%
Hidden Two-stream(TSN) (Zhu et al., 2018) 93.2% 66.8%
Coarse-to-fine(Motion) (Ji et al., 2019) 93.6% 69.3%
MRST-T (Wu et al., 2019) 92.2% 68.9%

Attention-base methods

ISTA (Meng et al., 2019) 87.1% 53.1%
ISPAN (Du et al., 2018) 94.8% 64.6%

Two-Stream(VGG16)+AARM 89.1% 60.9%
Hidden Two-stream+AARM 95.3% 68.7%
ST-Res+AARM 95.4% 68.3%
C3D+AARM 86.9% -
AARMNet (Ours) 93.4% 67.6%

TSN+ AARMNet (Ours) 96.1% 70.4%

has been verified to further improve deep networks’ performance on UCF101 and HMDB51.
It is clear that the AARM can provide a new aspect for action recognition by applying
attention recalibration mechanism. In the future, we will be dedicated to improving the
efficiency of the attention modules.
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